
Copyright © 2002-2025 Software Verify Limited

Memory Validator

Software Verify

by

Memory Validator
Memory leak detection for Windows applications built using
.Net, .Net Core, C#, VB.Net, C, C++, Delphi, Fortran 95 and Visual
Basic 6.

by Software Verify Limited

Welcome to the Memory Validator software tool. Memory
Validator is a very powerful memory and handle analysis
software tool that can be used for determining the cause of
leak ing objects, memory hotspots, memory corruption and
performing regression tests amongst many other uses.

Memory Validator provides the ability to enable and disable
all functionality at a fine-grained level, thus providing you with
power and control over the data that Memory Validator
monitors.

We have provided two levels of user interface, one simplistic
and the other comprehensive and powerful to cater for both
novices and experienced software engineers.

We hope you will find this document useful.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: March 2025 in United Kingdom.

Memory Validator Help

Copyright © 2001-2025 Software Verify Limited

Memory Validator HelpI

Copyright © 2001-2025 Software Verify Limited

Table of Contents

Part I Overview 1

... 31 Notation used in this help

... 42 Introducing Memory Validator

... 53 Why Memory Validator?

... 74 What do you need to run Memory Validator?

... 85 Buying Memory Validator and support

... 96 How does Memory Validator work?

... 97 What does Memory Validator do?

... 118 Supported Compilers

... 139 User Permissions

Part II Getting Started 19

... 201 Before you start

... 252 Enabling Debugging

... 263 Quick Start

Part III The User Interface 31

... 321 First run configuration

... 402 Menu Reference

.. 41File menu

.. 41Launch Menu

.. 42Edit menu

.. 43Settings menu

.. 44Managers menu

.. 45Query menu

.. 45Tools menu

.. 46.Net Tools menu

.. 46Data Views menu

.. 47Software Updates menu

.. 48Help menu

... 483 Toolbar Reference

... 504 The status bar

... 525 Keyboard Shortcuts

... 536 Icons

... 557 The main display

.. 57Summary

.. 67Memory

... 67Memory and handle leaks

... 89Memory Display Settings

... 93.Net Memory

IIContents

II

Copyright © 2001-2025 Software Verify Limited

... 96.Net Memory Display Settings

.. 98Timeline

.. 104Statistics

... 104Types

... 116Sizes

... 124Locations

... 132Generations

... 137Generation Settings Dialog

... 137Ages

... 142Ages Settings Dialog

.. 143.Net

... 143.Net Snapshots

... 146.Net Snapshot Creation Dialog

... 147.Net Snapshot Comparison Dialog

... 148.Net Snapshot Display Settings Dialog

... 149.Net Snapshot Callstack Display Settings Dialog

... 150.Net Heap Dumps

... 157.Net Heap Dump Display Settings Dialog

... 161.Net Path to Root

... 161.Net Leak Analysis

... 167.Net Leak Analysis Display Settings

.. 168Analysis

... 168Hotspots

... 174Hotspot Display Settings

... 176Coverage

... 180Query

... 191Analysis Display Settings

... 193Pages

... 200Virtual

.. 206Diagnostic

.. 211Floating Licence

... 2138 User Interface Mode

... 2139 UX Theme

... 21410 Summary Display Layout

... 22011 Delete Cache Files

... 22112 Settings

.. 222Global Settings Dialog

... 225Native

... 225Collect

... 229Allocation Range

... 231Error Reporting

... 235Trace Hooks

... 237Allocation History

... 238.Net

... 238.Net Collect

... 240.Net Stale Object Detection

... 242.Net Heap Dump

... 243.Net Snapshots

... 245Data Collection

... 245Callstack

... 253Memory Coverage

... 259Applications to Monitor

Memory Validator HelpIII

Copyright © 2001-2025 Software Verify Limited

... 264Advanced

... 264Failed Allocations

... 265Breakpoints

... 269Heap

... 271Instrumentation

... 272Uninitialised Data

... 274Deleted "this" Pointer

... 279Memory Corruption Detection

... 283Timeline

... 284Allocator Alias

... 287C Runtime Setup

... 289Warning

... 292Don't Show Me Again

... 293.Net Warnings

... 295MFC Message Map Checks

... 298CoInitializeEx

... 300Data Transfer

... 304Symbol Handling

... 304Symbols Misc

... 306Symbol Lookup

... 309Symbol Servers

... 314Symbol Load Preferences

... 315Symbol Caching

... 317Filters

... 317Callstack Trim

... 319Hooked DLLs

... 324Load Settings Pattern Match

... 327Data Display

... 327Display Behaviour

... 329Colours

... 330User Interface

... 333Data Highlighting

... 335Source Brow sing

... 337Source Parsing

... 339Editing

... 342File Locations

... 347Path Substitutions

... 349File Cache

... 350Datatypes and Enumerations

... 356Hooks

... 356Memory Allocation Hooks

... 357Handle Allocation Hooks

... 359Buffer Manipulation Hooks

... 360Custom Hooks

... 370Third Party DLLs

... 370Stub Global Hook DLLs

... 372User Interface Global Hook DLLs

... 375Extensions

... 375Stub Extensions

... 376User Interface Extensions

.. 377User Permissions Warnings

.. 377Ordinal Handling

.. 382Loading and saving settings

.. 382Symbol Path Truncated Warning

IVContents

IV

Copyright © 2001-2025 Software Verify Limited

... 38413 Managers

.. 384Session Manager

.. 386Filters

... 387Thread Filters

... 390Global Filters and per-Session Filters.

... 395Local Filters

... 399Find Filter

... 401Filter Definition

... 408Location Filters

... 409Location Filter Definition

... 411Generation Filters

... 412Generation Filter Definition

... 413Ages Filters

... 414Age Filter Defintion

.. 414Named Heaps

.. 415Watermarks

.. 418Bookmarks

... 41914 Query and Search

.. 420Finding memory

.. 425Finding addresses

.. 431Finding objects

.. 435Finding functions

.. 439Finding memory allocations deallocated in different threads

... 44215 Tools

.. 442Colour coded source code editor

.. 446Refresh and Refresh All

.. 447Loaded Modules

.. 448DLL Debug Information

.. 453DLLs Prevented from Loading

.. 454Out Of Date DLLs

.. 455Running totals

.. 458Memory leak and handle leak detection

.. 467Uninitialised memory detector

.. 468Integrity checker

.. 468Update information

.. 470Send command to stub extension DLL

... 47116 .Net Tools

.. 472Heap Dump

.. 473Garbage Collect

.. 473Snapshots

... 47417 Sessions: Load, Save, Export, Close

.. 475Loading & Saving Sessions

.. 478Exporting Sessions

... 481XML Export Tags

.. 484Exporting Virtual Memory Data

... 48718 Starting your target program

.. 487Launch chooser

.. 489Launching the program (native and .Net)

.. 497Launching the program (.Net Core)

.. 503Re-launching the program

.. 504Injecting into a running program

.. 507Waiting for a program

Memory Validator HelpV

Copyright © 2001-2025 Software Verify Limited

.. 517Monitor a service

.. 519IIS

... 519Monitor IIS and ISAPI

... 521Monitor IIS and ASP.Net

... 523Reset & Stop IIS

.. 523Web Development Server

... 523Monitor Web Development Server and ASP.Net

... 525Stop Web Development Server

.. 525ASP.Net Core Web Application

... 525Start ASP.Net Core Web Application

... 527Stop ASP.Net Core Web Application

.. 527Linking to a program

.. 528Environment Variables

.. 529.Net Core Runtime Arguments Editor

... 53119 Stopping your target program

... 53120 Command Line Builder

... 53521 Data Collection

... 53622 Help

... 54223 Software updates

Part IV Tag Tracking 549

... 5501 Data Tracking with svlDataTracker

Part V Command Line / Regression Testing 553

... 5551 Manual Regression Testing

... 5602 Automated Regression Testing

.. 560Example Command Lines

.. 563Environment variables

.. 564Target Program & Start Modes

.. 571User interface visibility

.. 572Session Management

.. 574Session Export Options

.. 577Filter options

.. 578File Locations

.. 580Command Files

.. 581Help, Errors & Return Codes

.. 584Command Line Reference

.. 588Troubleshooting

Part VI Native API 590

... 5941 Native API Reference

.. 595Loading and Starting the Profiler

.. 596Custom Heap Tracking

.. 599Naming Heaps

.. 599Naming Threads

.. 600Setting Watermarks & Bookmarks

.. 601Callbacks for Leaks & Uninitialized Data

.. 603Tag Tracking

.. 604Data Collection

.. 605Lifetime Allocations

VIContents

VI

Copyright © 2001-2025 Software Verify Limited

.. 605Playing Sounds

.. 606Utility Functions

.. 607Example code

... 6092 C# API

.. 609Snapshots

.. 610Object Inactivity

.. 611Watermarks & Bookmarks

.. 611Tag Tracking

.. 612Data Collection

.. 612Utility Functions

... 6133 Calling the API via GetProcAddress

... 6154 Convenience functions

Part VII Working with IIS and Services 616

... 6181 NT Service API

.. 621Changes to the NT Service API

.. 623NT Service API Reference

.. 627Troubleshooting

... 6292 Working with IIS

... 6303 Example Source Code

.. 630Example Service Source Code

.. 635Example ISAPI Source Code

Part VIII Working with Marmalade game SDK 638

Part IX Working with Intel Math Kernel Library 643

Part X Working with Visual Basic 6 (VB6) 646

Part XI Extending Memory Validator 649

... 6511 Example user interface extension DLL

... 6542 Example stub extension DLL

Part XII Examples 656

... 6571 The example application

.. 659Building the example application

.. 660Allocation menu

.. 667Memory Errors menu

.. 673Handles and More Handles menus

.. 674Trace menu

.. 674DLL menu

.. 676Reporting menu

.. 676Help menu

... 6772 Finding memory leaks

... 6783 Finding handle leaks

... 6804 Finding uninitialised memory

... 6835 Finding double deallocations

Memory Validator HelpVII

Copyright © 2001-2025 Software Verify Limited

... 6866 Finding memory corruptions

... 6887 Finding crashes due to deleted objects

... 6898 Finding allocations and reallocations

... 6929 Finding incorrect deallocations

... 69410 Reducing data in the display

... 69711 Session comparison

... 70012 Using bookmarks

... 70213 Using watermarks

... 70714 Example NT Service

.. 707Building the sample service

.. 708Building the sample client

.. 709Building the sample service utility

.. 710Monitoring the service

... 71215 Example Application Launched from a Service

.. 713Building the service and application

.. 714Monitoring the application launched from the service

Part XIII Hook Reference 717

... 7181 C/C++ Memory Hooks

... 7202 Win32 Memory Hooks

... 7213 Handle Hooks

... 7254 COM Related Hooks

... 7255 Buffer Manipulation Hooks

... 7286 Uninitialised Data Hooks

... 7287 Miscellaneous Memory Allocations

... 7298 LocalAlloc and GlobalAlloc Functions

... 7309 Functions using CoTaskMemAlloc

... 73110 Net API Hooks

Part XIV Debug Information, Symbols, Filenames,
Line Numbers 732

... 7331 Visual Studio

... 7412 C++ Builder

... 7463 Delphi

... 7524 MingW, gcc, g++

... 7535 Dev C++

... 7546 Salford Software FORTRAN 95

... 7547 Metrowerks

... 7558 Visual Basic 6

Part XV Frequently Asked Questions 756

... 7571 General Questions

VIIIContents

VIII

Copyright © 2001-2025 Software Verify Limited

... 7622 Not getting results

... 7673 Not getting symbols, filenames, line numbers

... 7704 Seeing unexpected data

... 7755 Crashes and error reports

... 7786 Performance

... 7807 DbgHelp

... 7888 Extensions, services and tools

... 7949 System and environment

... 79510 Does Memory Validator do...

Part XVI Installing Floating Licensing 798

Part XVII Copyright notices 800

... 8011 Udis86

Index 802

Part

I

Overview 2

Copyright © 2001-2025 Software Verify Limited

1 Overview

Hi, welcome to the Memory Validator help manual.

This help manual is available in Compiled HTML Help (Windows Help files), PDF, and online.

Windows Help https://www.softwareverify.com/documentation/chm/memoryValidator.chm
PDF https://www.softwareverify.com/documentation/pdfs/memoryValidator.pdf
Online https://www.softwareverify.com/documentation/html/memoryValidator/index.htm

l

Tutorials for Memory Validator are available at https://www.softwareverify.com/tutorial/memory-
validator-tutorial/.

Before reading this manual, it's worth taking a quick look at the notation used.

Read background information

The overview section covers things like:

· the capabilities of Memory Validator

· how it works

· what's supported

· how to purchase

If you've already purchased, thank you!

Learn about getting started

You can skip the background information, but do make sure you're aware of how to prepare your target
program in the getting started section.

Dive right in

The quick start section shows how to launch your application

To find your way around the rest of the features and settings then read about the user interface, or
browse the examples.

If you're already feeling confident you can read about some of the advanced features such as regression
testing, the API and extending Memory Validator.

Don't miss the powerful and easy-to-use tag tracking feature.

https://www.softwareverify.com/product/memory-validator/
https://www.softwareverify.com/documentation/chm/memoryValidator.chm
https://www.softwareverify.com/documentation/pdfs/memoryValidator.pdf
https://www.softwareverify.com/documentation/html/memoryValidator/index.html
https://www.softwareverify.com/documentation/html/memoryValidator/index.html
https://www.softwareverify.com/tutorial/memory-validator-tutorial/
https://www.softwareverify.com/tutorial/memory-validator-tutorial/

Memory Validator Help3

Copyright © 2001-2025 Software Verify Limited

1.1 Notation used in this help

 Instruction steps
 Menu action steps

Throughout the help you'll find instruction steps like this:

· Filter... shows the session comparison private filters dialog

or

 Settings Menu Edit Settings... Data Collection in the list Trace Hooks

This is a shorthand notation for performing consecutive steps in the user interface.

The first example indicates that the action of clicking the Filter... button will result in showing the
dialog described.

The second example directs you to open the Settings menu (from the menu bar in this case), and
then choose the Edit Settings item, and in the dialog that appears, open the Data Collection option
via the list and select the Trace Hooks child entry.

Right mouse button menu

Where you see this mouse menu the instruction is to use the right mouse button menu (a.k.a.
popup menu or context menu) and select the menu option that follows this symbol.

For example: use Edit Source Code...

 Interactive images

Shown next to a screenshot or illustration, the hand symbol indicates the picture is interactive
and can be clicked on in order to jump directly to the help section most relevant to the part of the
image under the cursor.

 External Links

You may see this symbol after some links. Those links lead to an external website (shown in
your default browser), as opposed to jumping to another section in the help. Naturally, if you have no
internet access, these links will be unavailable.

For example: Software Verify Limited

 Notes

https://www.softwareverify.com

Overview 4

Copyright © 2001-2025 Software Verify Limited

 Warning notes

Notes pertaining to the current topic are indicated by the symbol. Notes may include
exceptions to a rule, items to watch out for, or other asides to the main topic.

Notes that include warnings will use the similar symbol, for example where there's a danger of
crashing your application. Don't panic though - there aren't many of these!

See also

Where there are other pages in the help that have more detail on the topic at hand, or if there is
additional reading that is not already linked within the content, you will find these sections linked
after the symbol.

1.2 Introducing Memory Validator

What is Memory Validator?

Memory Validator is an advanced memory and resource leak detector for Windows.

It works with versions of Windows from NT® 4.0 and above, running on the Intel i386 (and compatible)
family of processors.

What does it do?

If you think your software might be leaking or even corrupting memory or resources, then Memory
Validator will help with that - and more.

Memory Validator is fast and does not require the target program to be recompiled or relinked.

It detects:

· memory leaks
· handle leaks
· memory corruptions
· uninitialized memory
· buffer overruns and underruns

It finds performance problems related to:

· memory allocation and deallocation
· resource allocation and deallocation
· fragmented memory heaps

And it does this by tracking:

· C runtime heaps
· Win32 heaps
· GlobalAlloc heap
· LocalAlloc heap

Memory Validator Help5

Copyright © 2001-2025 Software Verify Limited

· VirtualAlloc heaps
· Win32 resource handles
· COM object creation and destruction
· .Net object and .Net handle creation and garbage collection

 Not all the above capabilities are enabled 'out of the box' due to extra performance impacts involved.
Also, note that not all capabilities can be enabled simultaneously.

What Memory Validator does.

You can learn more about memory management on Windows at the MSDN Dev Center .

The main sections of Memory Validator

The user interface is split via tabs into seven separate sections (+Tutorials), each dedicated to a different
task for analysing a problem that is present in the target program.

Here's a summary of those sections, each of which is covered in full in The User Interface section.

Summary A high level dashboard for everything that you might want to look at. Click on any statistic
to see more detailed information.

Memory Displays any leaked memory or handles, and memory errors, such as double frees,
incorrect frees, uninitialized data etc.

Contains subtabs for Native and .Net.

Timeline Shows a visual timeline of total memory, handle allocations and memory allocations.

Statistics Statistics for types, sizes, allocation location, generations and object ages.

.Net .Net specific user interfaces for memory snapshots, heap dumps and .net leak analysis.

Analysis Allocation hotspots, allocation coverage, allocation queries, memory page layout and
virtual memory analysis.

Diagnostic

Lists diagnostic information collected by the stub.

Tutorial Tutorial exercises for people new to the software.

1.3 Why Memory Validator?

Adapts to everyone's workflow

Memory Validator allows you to find otherwise hard to isolate errors, using an intuitive user interface.

Many query options are provided so that when faced with a large amount of data you can search or filter
to reduce the amount of data to examine.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366525(v=vs.85).aspx

Overview 6

Copyright © 2001-2025 Software Verify Limited

Want to edit the offending source code? Simple - just double click on the code fragment shown and the
appropriate source code file will be loaded into Memory Validator's colour coded editor, or into
Microsoft® Visual Studio®, or you can choose your preferred awesome editor.

Memory Validator can monitor regression tests, producing HTML and/or XML reports detailing
regressions and improvements (compared to a baseline).

You can even reload the saved session at a later date and interact with the collected data. Being HTML
or XML output, the results can be used to create reports targeted to the appropriate audience: the
management team; quality assurance team; or detailed stack traces for the software engineers.

Designed with principles

Memory Validator has been created with the following principles in mind:

· must not adversely
effect on the program's
behaviour

Any hooks placed into the target program's code must not affect the
registers or the condition code flags of that program. The program
must behave in the same way when being inspected by Memory
Validator as without.

· must be reliable and
avoid causing the target
program to crash

Since we can't know exactly which DLLs and other components are
present on every computer that Memory Validator is installed on,
every hook and group of hooks is configurable so that they can be
enabled or disabled, and/or installed or not installed.

Thus if a new DLL is released in the future that causes problems with
certain functions, you can disable the hooks for those functions, and
continue using Memory Validator until a fix for the new DLL's
behaviour is available.

· must have as little
impact on the target
program's performance
as possible

You can enable and disable as many or as few function hooks as you
wish. For example:

If you are only interested in the CRT for a particular bug, turn all the
COM, uninitialized data, buffer and handle checking off.

If you are only interested in buffer overflows turn everything off except
the buffer checking hooks.

Memory Validator Help7

Copyright © 2001-2025 Software Verify Limited

If you have handle leaks that you know come from the GDI, turn off all
other handle checking code and only check the GDI handles.

If you want to go deeper than that and only check handles from
GetDC() and ReleaseDC() you can do that too!

· must have a user
interface independent
of the target program

Memory Validator's user interface is independent of the target
program. So for example:

If the target program crashes, the user interface will not crash - you
will still have data to work with.

If the target program is stopped in the debugger, Memory Validator's
user interface will continue to work.

In the unlikely event that the Memory Validator user interface crashes,
your target program will not crash.

· must be flexible We know our users like choices! Where there are multiple ways of
presenting the data, the user is given a choice over how that display
works, so that not all users have to work with the same settings.

1.4 What do you need to run Memory Validator?

Compilers

The following makes of compiler are supported:

· Microsoft® Visual Studio®
· Borland C++
· Borland Delphi
· Intel
· Metrowerks
· MinGW
· QtCreator
· Fortran (various)

 Supported compilers for more details regarding versions and caveats.

User Privileges

Memory Validator can be run as a normal user or an administrator user.

For any tasks that require special privileges to achieve Memory Validator will do these tasks via the
svlAdminService that was installed and started when you installed Memory Validator.

Overview 8

Copyright © 2001-2025 Software Verify Limited

You can also run Memory Validator with elevated privileges.

Operating System

Any modern windows machine is suitable to run Memory Validator.

At a minimum, Memory Validator requires Windows NT® 4.0 or better.

Because the CreateRemoteThread() Win32 function and named pipes are not available on Windows
95®, Windows 98® and Windows Me®, Memory Validator will not run on these platforms.

Any newer operating systems do not need any additional service packs but we generally recommend
being up to date where possible.

For older systems, we recommend using the minimum service pack levels below:

· Windows NT 4.0: Service Pack 6
· Windows 2000: Service Pack 2

1.5 Buying Memory Validator and support

The best way to purchase Memory Validator is online from Software Verify Limited - just click the
Purchasing link at the top of the website.

Purchase options

There are options for single or multiple licenses, per-user or floating licenses, and although you can of
course purchase it as a single product, you can save significantly by buying Memory Validator as part of
a suite of products. All the details are online.

Pre-purchase questions?

If you have any pre-purchase questions not answered in this help manual, or niggling little doubts about
something, we can be contacted as below.

email: sales@softwareverify.com (recommended)

web: https://www.softwareverify.com

or by old fashioned post:

Software Verify Limited
Suffolk Business Park
Eldo House
Kempson Way
Bury Saint Edmunds
IP32 7AR
United Kingdom

https://www.softwareverify.com
mailto:sales@softwareverify.com
https://www.softwareverify.com

Memory Validator Help9

Copyright © 2001-2025 Software Verify Limited

After sales support

If you need support after purchase, check our frequently asked questions and then drop us a line below
with as much detail as possible about your problem.

email: support@softwareverify.com

1.6 How does Memory Validator work?

The Stub and the UI - more than the sum of its parts

Memory Validator has two main parts - the stub and the user interface.

The stub is typically injected into the target program and communicates with the Memory Validator user
interface.

The stub is injected into the target program using the CreateProcess() or CreateRemoteThread()
Win32 function. Communication between the stub and the user interface is via named pipes. There is no
human readable data sent between the two parts of the program. Both the stub and the user interface are
multithreaded.

The stub rewrites the DLL import address table and the delay loaded import address tables to make
functions call into the stub's hooks. For functions that are not present in the import address tables, the
stub rewrites the function prologue and function epilogue using proprietary techniques.

For COM objects. the stub rewrites the function prologue and function epilogue for the AddRef(),
Release() and QueryInterface() functions in each COM object.

The stub can also be linked if required, for example in order to use the API in order to track custom
memory heaps.

Memory Validator can be extended by user supplied extension DLLs. These can be used to augment
either the stub or the user interface.

1.7 What does Memory Validator do?

Memory Validator provides functionality to detect memory leaks and resource leaks in 32 and 64 bit
programs running on Windows NT® 4.0 and above.

Memory leaks

Memory leaks (allocations without a corresponding deallocation) are detected in the following:

Functions

· new
· malloc
· calloc
· realloc

· HeapAlloc
· HeapReAlloc
· VirtualAlloc
· VirtualAllocEx

mailto:sales@softwareverify.com

Overview 10

Copyright © 2001-2025 Software Verify Limited

· _expand
· LocalAlloc
· LocalRealloc
· GlobalAlloc
· GlobalRealloc

· IMalloc
· CoTaskMemAlloc
· CoTaskMemReAlloc
· SysAllocString

· NetApi function group
· Miscellaneous other memory allocation functions
· Crypt API

COM objects

· COM leaks

User defined

· User defined heaps (requires linking with svlMemoryValidatorStubLib.lib /
svlMemoryValidatorStubLib_x64.lib to access this functionality)

· User defined reference counted objects (requires linking as above)
· Reference counting for user managed heaps.
· Memory leaks from user managed heaps.

Potentials

· Potentially unused memory.
· Potentially leaked memory.

Learn more about memory management on Windows at the MSDN Dev Center .

Handle leaks

Handle leaks are detected - typically handles that are not closed.

GDI Handle leaks

GDI Handle leaks are detected - typically handles that are not destroyed, or handles that are still
selected into a DC.

Memory usage errors

Memory usage errors are typically the result of passing the wrong pointer to a deallocation or reallocation
function, or attempting to deallocate memory more than once.

Examples detected include:

· Incorrect memory freeing - e.g. freeing a pointer not allocated from the appropriate heap
· Allocate with malloc() - then deallocate with delete or delete []
· Allocate with calloc() - then deallocate with delete or delete []
· Reallocate with realloc() or _expand() - then deallocate with delete or delete []
· Allocate with new - then deallocate with free()

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366525(v=vs.85).aspx

Memory Validator Help11

Copyright © 2001-2025 Software Verify Limited

· Allocate with new - then reallocate with realloc() or _expand()
· Multiple memory freeing - e.g. freeing the same pointer more than once

Memory corruption

· Heap overruns - writing past the end of an allocated heap block
· Heap underruns - writing past the start of an allocated block
· Heap corruption - heap getting damaged by heap overruns, heap underruns and wild pointer writes
· Stack overruns - writing past the end of the current stack frame
· Stack underruns - writing past the start of the current stack frame

Uninitialized data

· Uninitialized data in C++ objects.
· Detection of C++ objects that do not initialise all their member variables.

COM object tracking

Memory Validator can hook AddRef(), Release() and QueryInterface() so that it can track the
reference counts for COM objects.

.Net memory and .Net handles

Memory Validator uses the .Net ICorProfiler and ICorProfilerCallback interfaces to monitor .Net
applications.

1.8 Supported Compilers

Memory Validator will work with any portable executable (PE) file format and supports .Net, .Net Core,
C#, VB.Net, C, C++, Delphi, Fortran 95 and Visual Basic.

All Win32 functions listed in the Hook Reference section will be tracked for any executable.

Microsoft .Net, .Net Core

Both .Net and .Net Core technologies are supported as well all the native compilers listed below.

The following compilers are supported by Memory Validator.

Microsoft http://www.microsoft.com

· Microsoft Developer Studio 4.0
· Microsoft Developer Studio 5.0
· Microsoft Developer Studio 6.0
· Microsoft Visual Basic 6.0

https://msdn.microsoft.com/en-us/magazine/bb985992.aspx
http://www.microsoft.com

Overview 12

Copyright © 2001-2025 Software Verify Limited

· Microsoft Visual Studio 6.0 - service pack 3 or later
· Microsoft Visual Studio 7.0 / .net 2002
· Microsoft Visual Studio 7.1 / .net 2003
· Microsoft Visual Studio 8.0 / .net 2005
· Microsoft Visual Studio 9.0 / .net 2008
· Microsoft Visual Studio 10.0 / .net 2010
· Microsoft Visual Studio 11.0 / .net 2012
· Microsoft Visual Studio 12.0 / .net 2013
· Microsoft Visual Studio 14.0 / .net 2015
· Microsoft Visual Studio 15.0 / .net 2017
· etc...
· Microsoft Visual Studio Express - supported, but see also: building the examples for Visual Studio

Express

 Some of the heap identification functions will not work with applications built using Microsoft®
Visual Studio® 4.0, 7.0, 7.1, 8.0, 9.0, 10.0. This only affects the virtual memory view in terms of
representing a heap as a CRT heap - a minor lack of functionality.

Visual Studio and Visual Basic 6 in the Getting Started section.

Intel http://www.intel.com

· Intel performance compiler - The Intel compiler uses the Microsoft runtime already installed on
your computer rather than supply its own

· Intel Fortran

Metrowerks http://www.metrowerks.com

· Metrowerks CodeWarrior for Windows Version 8.0
· Metrowerks CodeWarrior for Windows Version 9.0

You will need to ensure the debug information is stored as CodeView information and not a custom
Metrowerks debug format. Metrowerks symbolic information is embedded in the .exe/.dll as CodeView
information. Please consult the documentation for CodeWarrior to include debug information (including
filenames and line numbers) in the CodeView information.

Embarcadero https://www.embarcadero.com/

This includes compilers formerly produced by Borland.

· C++ Builder 5.0 to C++ Builder 11
· Delphi 6.0 to Delphi 11
· Rad Studio

C++ Builder and Delphi in the Getting Started section.

MinGW http://www.mingw.org

http://www.intel.com
http://www.metrowerks.com
https://www.embarcadero.com/
http://www.mingw.org

Memory Validator Help13

Copyright © 2001-2025 Software Verify Limited

· MinGW (Minimalist GNU for Windows)

MinGW can create symbols in a variety of formats. If you configure MinGW to produce DWARF
symbols, STABS symbols or COFF symbols Memory Validator can read them.

MinGW compiler in the Getting Started section.

Qt (Digia, Nokia, Trolltech) http://qt.digia.com

· QtCreator

Ensure that debug information is created in DWARF, STABS or COFF formats.

Salford Software http://www.salfordsoftware.co.uk

· Salford Software FORTRAN95

Compaq

· Compaq Visual Fortran 6.6

The Compaq Visual Fortran product may be compatible with Memory Validator. If you are using
Compaq Visual Fortran and wish to use Memory Validator please contact us.

Cherrystone

· Cherrystone Software Extremely Scalable Allocator (ESA) - a replacement allocator providing
high performance allocation algorithms for use in single threaded applications and multi-threaded
applications.

There is no web page for this product.

Other...?

If the compiler you are using is not listed here, please contact support@softwareverify.com for advice.
We add compilers as we receive requests for them. The Borland C++, Borland Delphi, Metrowerks
CodeWarrior, Salford Software's FORTRAN95 compiler, Intel Fortran support and Cherrystone ESA
support were all added at the request of customers.

1.9 User Permissions

This section details the privileges a user requires to successfully run Memory Validator.

 Typically, Administrator and Power User user types will already have the appropriate privileges.

http://qt.digia.com
http://www.salfordsoftware.co.uk
mailto:support@softwareverify.com

Overview 14

Copyright © 2001-2025 Software Verify Limited

Why do user privileges matter?

Debugging tools such as Memory Validator are intrusive tools - they require specific privileges not
normally granted to typical applications.

Memory Validator requires specific privileges to write to the default user profile in the registry.

This is so that when Memory Validator is working with services (or any application run on an account
which is not the current user's account) it can read the registry and the correct configuration data.

If the account upon which a service or application is running is not the user's account, the fallback
position is the DEFAULT account in HKEY_USERS\.DEFAULT.

You can enable and disable various warnings using the User Permissions Warnings dialog.

User privileges

Memory Validator requires the following privilege to allow debugging of applications and services:

Debug Programs (SE_DEBUG_NAME)

Ordinary users will need to be granted these permissions using the Administrative User Manager tool.
The example below shows the NT4 User Manager - the Windows 2000 User Manager and Windows XP
User Manager will be different but similar in principle.

In the User Manager select the user - in this case "Test User".

Choose: Policies Menu User Rights check Show Advanced User Rights select Debug
Programs in the Right combo box

Memory Validator Help15

Copyright © 2001-2025 Software Verify Limited

Click Add.... Show Users

Select [ComputerName]\Test User in the top list. Click Add OK OK Close the User Manager.

Registry access privileges

Memory Validator requires read access and write access to:

HKEY_CURRENT_USER\Software\SoftwareVerification\MemoryValidator

Overview 16

Copyright © 2001-2025 Software Verify Limited

When working with services, Memory Validator requires read access and write access to
HKEY_USERS\.DEFAULT\Software\SoftwareVerification\MemoryValidator.

If read access and write access to that key is not allowed, Memory Validator will use default settings
(thus any user selections will not apply).

In addition, error messages will be displayed when Memory Validator tries to access this registry key.
These error messages can be suppressed if they are not desired.

You can modify the registry access permissions using the regedt32.exe tool Security menu. Ask your
administrator to modify your registry access permissions if you can't do this yourself.

Error notifications

When Memory Validator fails to gain access for read or write to the registry a message box is displayed
indicating if the error is for the user interface (UI) or Services. The message indicates the name of the
registry key that failed and the failure reason.

This simple message box is displayed during early startup and late closedown of Memory Validator:

This message box is displayed when Memory Validator is not starting up or closing down:

Memory Validator Help17

Copyright © 2001-2025 Software Verify Limited

Detailed registry access error messages

The following detailed registry access error messages are also displayed when failing to gain access to
the registry:

Overview 18

Copyright © 2001-2025 Software Verify Limited

Insufficient user privileges

The following dialog is displayed if a user has insufficient privileges to use the software correctly.

 Without the Debug Programs privilege Memory Validator will not work correctly with Services, and
may not work correctly with Applications.

 Creating Power User accounts for Windows XP.

Part

II

Getting Started 20

Copyright © 2001-2025 Software Verify Limited

2 Getting Started

For those that wish to 'dive in', this section will make you aware of how to prepare your target program
before giving a quick start introduction.

Otherwise skip right on to the next chapter - The User Interface.

Diving in?

If you have never used Memory Validator before you have probably purchased Memory Validator because
you're already aware of a memory leak or performance problem that you have in your application. As
such you may want to 'dive in' and find memory leaks immediately.

However, if you choose to read this manual first you'll find out more about Memory Validator and how to
leverage it to its full advantage.

For new users of Memory Validator, a configuration wizard appears the first time you run the application.
This ends with a brief overview video.

We also recommend that you watch the tutorials online - it's an easy way to explore the functionality
available.

2.1 Before you start

This section details the requirements necessary to monitor C runtime (CRT) heap allocations, followed
by sections specific to enabling debugging information for Visual Studio, C++ Builder, Delphi, MinGW,
and other compilers.

If you are using Memory Validator to monitor C runtime (CRT) heap allocations, read on, and check you
have the necessary run time library setup.

Once you're confident you have the required environment (CRT and debug info settings), skip to Quick
Start.

CRT heap allocations

The gist of the rest of this section is that Microsoft compiler users should use a dynamically linked CRT
library, or you may use a statically linked CRT provided you have a matching MAP file.

Supported compilers and linkers

Dynamic CRT linking

To track C runtime heap allocations, your program and/or dlls must be linked to the dynamic CRT in one
of the following:

https://www.softwareverify.com/software-tutorials.php

Memory Validator Help21

Copyright © 2001-2025 Software Verify Limited

· MSVCRT.DLL
· MSVCRTD.DLL
· the equivalent depending on the version of Visual Studio e.g. msvcr70/71/80/90/100/110.dll
· an alternative library for other compilers, as outlined in the Memory Hooks reference

Static CRT linking

If you are linked statically, to one of the following CRTs:

· LIBC.LIB - single-threaded
· LIBCD.LIB - single-threaded debug
· LIBCMT.LIB - multi-threaded
· LIBCMTD.LIB - multi-threaded debug

then the CRT heap allocation tracking will function but performance will be slower than for the
dynamically linked case.

However, in addition, you must generate MAP files for each EXE/DLL that you link statically to the C
runtime. The MAP file should have the same name as the EXE/DLL but with the extension ".map", e.g.
"example.dll" should have a corresponding MAP file "example.map".

What are MAP files and why are they needed?MAP files are typically plain text files that indicate the
relative offsets of functions for a given version of a compiled binary. They contain information about
your program’s global symbols, source file and source line numbers. In the event of statically linked
CRT libraries, Memory Validator falls back to using the MAP file to locate the functions. You can
create the MAP file when linking your executable or DLL by setting certain options for the linker.

Why is dynamic linking better?The reason for this is that Memory Validator uses the Import Address
Table to provide hooks into MSVCRT.DLL. When you link statically the Import Address Table is not
present and cannot be hooked. Most large applications are dynamically linked (based on our testing),
but many small projects are often built statically. These statically linked projects need to be built
using the dynamic library for best monitoring performance.

 If using Borland compilers you can use Memory Validator to monitor memory allocations in a
statically linked program. You'll be presented with the usual CRT warning dialog informing you that the
use of the dynamic memory allocator could not be detected, but that can be ignored.

Which CRT am I using?

You can inspect (and change) the static/dynamic linking nature of your program:

Microsoft Developer Studio

Choose Project menu Settings... C++ tab on the dialog box Using the Category combo box
choose Code Generation.

If you are using the dynamic multi-threaded MSVCRT.DLL the following will be shown in the Use run-
time library combo box (highlighted in red below).

Alternatively, if using the debug MSVCRTD.DLL, the same box will show Debug Multithreaded DLL.

Getting Started 22

Copyright © 2001-2025 Software Verify Limited

Visual Studio e.g. VS9.0 (2008)

Choose Project menu [ProgramName] Properties... Configuration Properties in the list C++
 Code Generation

If you are using the debug dynamic multi-threaded MSVCRTD.DLL the following will be shown in the
Runtime Library option (highlighted in red below).

Alternatively, if using the non debug MSVCRT.DLL, the same box will show Multi-threaded DLL (/MD).

Memory Validator Help23

Copyright © 2001-2025 Software Verify Limited

CRT Compiler options

The compiler options corresponding to the above choices are:

For dynamic multi-threaded CRT linking:

/MD MSVCRT.DLL
/MDd MSVCRTD.DLL debug

For static CRT linking:

/ML LIBC.LIB - single threaded
/MLd LICD.LIB - single threaded debug
/MT LIBCMT.LIB - multi-threaded
/MTd LIBCMTD.LIB - multi-threaded debug

Changing from static to dynamic CRT linking

To use dynamic linking you need to either select one of the selections shown in the pictures above, or
use the /MD or /MDd compiler flags instead of /ML, /MLd, /MT, /MTd.

The following shows which option you should use when changing compiler options:

Getting Started 24

Copyright © 2001-2025 Software Verify Limited

static dynamic
/ML /MD
/MT /MD
/MLd /MDd
/MTd /MDd

If you are linked statically, you only need to make this change once and rebuild the application. If you
are linked dynamically you do not need to rebuild your application.

 When rebuilding your DLL(s), you may get warning messages which refer to libraries used by the
static linking which you are no longer using. This is caused by some default settings in your project. You
can prevent these by disabling the linking of default libraries. You will then need to specify any libraries
you require.

In Developer Studio, the image below shows the checkbox to select to prevent linking to the default
libraries.

In Visual Studio 9.0 to show the same option:

Choose Project menu [ProgramName] Properties... Configuration Properties in the list
 Linker Input Ignore All Default Libraries

CRT Warning Dialog

When Memory Validator launches an application it checks to determine if the application is using the
dynamic C runtime library (or equivalent).

Memory Validator Help25

Copyright © 2001-2025 Software Verify Limited

If the dynamic CRT cannot be detected, a warning dialog is displayed to the user:

Don't panic! It looks worrying, but it's not! It is just a warning. You can still launch your application with
Memory Validator.

Many applications do not use the dynamic CRT in the main .EXE, but do use it in the DLLs used by the
application. In this case, Memory Validator will monitor CRT allocations in the DLLs, and will monitor
non-CRT allocations (handles and other memory types) in the .EXE and the DLLs.

Lucky users of Borland compilers can build their applications statically linked or dynamically linked -
either will work.

2.2 Enabling Debugging

To get the best from our tools you will need to enable debugging information for your compiler and your
linker.

Detailed instructions are available for these IDEs / compilers:

· Visual Studio
· Visual Basic 6
· C++ Builder
· Delphi

Getting Started 26

Copyright © 2001-2025 Software Verify Limited

· MingW, gcc, g++
· Dev C++
· Salford Software FORTRAN 95
· Metrowerks Code Warrior

Debug Information Formats

Thread Validator can understand debugging information in the following formats:

· Microsoft Program Database (PDB)
· Turbo Debugger Symbols (TDS)
· COFF
· DWARF
· STABS

The Intel Performance Compiler and Intel Fortran compilers produce symbols in Microsoft's PDB format.

2.3 Quick Start

If you're an admin level user, using Microsoft compilers on a modern OS and already know that you
create debug info in your debug and release product, then you're more than likely good to go and dive
in! Otherwise, we recommend reading these topics before starting:

· What do you need to run Memory Validator?
· Supported Compilers
· User Permissions

Default collection of data

If you have just installed Memory Validator the default settings:

· will enable collection of data about the C runtime heap, Win32 heaps and handles

· will not collect data about uninitialized memory, buffer overruns and buffer underruns

Testing on the Example Program

You can test drive the capabilities of Memory Validator using the example program supplied with
Memory Validator - nativeExample.exe. This program deliberately leaks memory and provides many
menu entries that create even more errors, for all memory heap types, handles, uninitialized data, buffer
overruns, buffer underruns and demonstrates the API. (You can disable use of the API by undefining a
macro in the source code).

Ensure you have debugging information

Your application needs to be compiled to produce debugging information and linked to make that
debugging information. Details are available for enabling debugging information with Visual Studio, C++
Builder, Delphi, MinGW, and other compilers.

Memory Validator Help27

Copyright © 2001-2025 Software Verify Limited

If you have no debugging information but you do have a Microsoft format MAP file available the MAP file
must contain line number information by using the /MAPINFO:LINES linker directive.

Launching

To start your program click on the launch icon on the session toolbar.

What you see next depends on the user interface mode (wizard or dialog style).

The Launch Wizard...

If you have just installed the software you will be shown the launch wizard:

Click Browse... to choose a program to launch Next Next Start Application...

Getting Started 28

Copyright © 2001-2025 Software Verify Limited

...or the Launch Dialog

If you have switched to Dialog mode you will be shown the launch dialog:

Memory Validator Help29

Copyright © 2001-2025 Software Verify Limited

During launch

Memory Validator will start and inject the stub into the target program. Progress during this phase is
displayed in the header of the main window.

Once correctly installed in the target program the stub will establish communications with Memory
Validator and data can be collected and viewed until the target program exits.

Click on the Refresh button on the left of the Memory Tab, or click on the refresh icon on the toolbar to
get a snapshot view of the errors.

After exit - examining the output

When the target program exits, Memory Validator calculates which data items are leaked. The data
collection icons on the session toolbar are disabled, and the launch icons are enabled again.

Getting Started 30

Copyright © 2001-2025 Software Verify Limited

Click on the Refresh button on the left of the Memory Tab, or click on the Refresh icon on the toolbar.

Memory Validator will display data on any outstanding allocations of memory and/or handles. Leaked
memory will be shown in yellow, although the colours can be changed from the colour settings tab.

The picture shown below shows the memory tab displaying some memory leaks. One of the leaked
objects has had its stack trace expanded showing the source code line responsible for the leak.

Ending the session

Even though the target program has exited, the session is still active and can be examined or saved until
the session is closed via the File menu Close Session.

Part

III

The User Interface 32

Copyright © 2001-2025 Software Verify Limited

3 The User Interface

The part of memory Validator that you get to see is the user interface. Behind the scenes, the stub
installs and controls the data hooks in the target program and interacts with the user interface.

This section describes the various functions of the user interface so that you can get the most from using
Memory Validator.

Typical workflow

Typical usage of Memory Validator is very simple:

· Start the target program
· Test whatever needs testing on the program
· Close the program
· See what memory leaks and other errors Memory Validator reports

However, there is much more to Memory Validator than this simple workflow. For example, whilst your
program is running, you can display data and gain insight into a bug you are looking at in the debugger.
You can find which objects are pointing at a given object, or which objects are being pointed to from a
given object. Such capabilities are very useful for finding bad pointers, dangling pointers and so on.

The user interface

The user interface consists of the menus, toolbars, status bar and the main display.

You can read on to find out about all the features, or click parts of the images below to jump directly to
the four main section of interest.

3.1 First run configuration

First run configuration

For new users of Memory Validator, a configuration wizard appears the first time you run the application.

The wizard collects a few details about environment, tools, update requirements (for non-evaluation
users) and ends with a short video tutorial.

Memory Validator Help33

Copyright © 2001-2025 Software Verify Limited

User interface mode

After the introductory page, the wizard presents options for configuring the how the launch, inject and
wait dialogs present information to you.

The User Interface 34

Copyright © 2001-2025 Software Verify Limited

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode all options are contained in a single dialog

Experienced users will find this mode quicker to use

These settings can be changed at any time via the User Interface Mode option on the Settings menu.

Symbol search path environment variables

After the introductory page, the wizard presents options for using environment variables for symbol
search paths when finding PDB symbols.

You don't have to choose any of these options as Memory Validator will try to automatically determine
symbol path information.

Memory Validator Help35

Copyright © 2001-2025 Software Verify Limited

These environment settings can be changed at any time via the Configure Symbol Handling Environment
Variables on the Symbol Server page of the Settings Dialog.

Symbol lookup

The next page of the wizard allows you to specify which IDE, Compiler or Linker you're using.

This is important as it affects how symbol lookup is performed. Visual Studio has various quirks in its
history of symbol handling and we have to work around that.

The default settings are shown below, although the Visual Studio version may vary.

The User Interface 36

Copyright © 2001-2025 Software Verify Limited

These lookup settings can be changed at any time on the Symbol Lookup page of the Settings Dialog.

Software update credentials

The software updates page of the wizard is only shown to non-evaluation users.

You can configure your software update credentials within the application and where updates are
downloaded to.

Memory Validator Help37

Copyright © 2001-2025 Software Verify Limited

You can test the login details to ensure they are valid:

· Test login details click to check your entered details are valid (requires an internet connection)

Valid details will be confirmed:

Invalid details may mean you entered credentials for another application in the Validator suite,
or they could have been entered incorrectly.

The User Interface 38

Copyright © 2001-2025 Software Verify Limited

You should have received the correct credentials when you purchased Memory Validator.

If you experience problems, check with your system administrator or contact Software Verify.

These update credentials can be changed at any time from the Software Updates menu.

Software update download location

It’s important to be able to specify where software updates are downloaded to because of potential
security risks that may arise from allowing the TMP directory to be executable.

We use the TMP directory as a default, but if you're not comfortable with that you can specify your
preferred download directory. This allows you to set permissions for TMP to deny execute privileges if you
wish.

An invalid directory, e.g. one that does not exist, will show text in red and will not be accepted until a
valid folder is entered.

· Reset reverts the download location to the user's TMP directory

The default location is c:\users\[username]\AppData\Local\Temp

The download location can be changed at any time from the Software Updates menu.

Build example projects

The next page of the wizard allows you to build the example projects that ship with Memory Validator.

The example projects demonstrate various application types containing bug you may wish to investigate
with Memory Validator.

Memory Validator Help39

Copyright © 2001-2025 Software Verify Limited

· Visual Studio... opens the example projects solution with the version of Visual Studio selected

· Download... downloads a prebuilt version of the example projects, unzips them and installs them
in the examples folder in the Memory Validator installation directory

If you choose this option and you have not installed Memory Validator in the default location
(assuming a 64 bit OS) the source file paths in the debug information will be incorrect - you will need
to use the File Locations settings to inform Memory Validator of the correct location(s).

· Open example projects folder... opens the folder that contains all example projects

Video overview of application

The final page of the wizard presents a short video overview of Memory Validator.

 The video has audio

The User Interface 40

Copyright © 2001-2025 Software Verify Limited

More help is available via the Tutorials tab and the Help menu.

The video is also available on the product website. Visit https://www.softwareverify.com/products.php and
find the product link for Memory Validator.

· Finish closes the First Run Configuration dialog leaving the application ready to use

3.2 Menu Reference

The menus provide access to all the major features in Memory Validator. The most common ones are
also directly accessible via the toolbars.

The next few pages just provide a convenient collection of links to the detailed help pages on each topic

Click on an item in the picture below to jump to the menu's page:

https://www.softwareverify.com/products.php

Memory Validator Help41

Copyright © 2001-2025 Software Verify Limited

3.2.1 File menu

The File menu allows you to:

· open, close and save sessions
· manage the launching of an application
· control the collection of data
· exit the application

Most of these actions are also available via the standard or session toolbars.

Near the bottom of the menu, a list of recently used file names allows you to easily reload a previously
saved session.

Click on an item in the picture below to find out more:

 The last two items are not linked to topics. Exit is self explanatory, and above that is a list of
recently opened files.

3.2.2 Launch Menu

The Launch menu allows you to:

· start applications and restart applications
· inject into running applications
· wait for applications to start then attach to them
· monitor services and ISAPI extensions
· stop monitoring an application

Most of these actions are also available via the standard or session toolbars.

These actions are grouped into submenus according to whether they involve applications or services.

Click on an item in the pictures below to find out more:

The User Interface 42

Copyright © 2001-2025 Software Verify Limited

Applications

Services

Web

 In addition to the function key short cuts shown above, you can redisplay the previously chosen

launch dialog by using +

3.2.3 Edit menu

Selections and the clipboard

The Edit menu options can be used to clear all selected items in a table or tree, copy selected items
(and relevant data where applicable) to the clipboard, or select all the items available.

Memory Validator Help43

Copyright © 2001-2025 Software Verify Limited

Selected data is formatted into one line per row with a single space used to separate column data.

 Select All will include the header row as well as the data, and Copy will include the column titles.

For example Select All on the Types tab might show:

This would result in the following being copied to clipboard

Type R Size C Size Count Max Cumulative % R Size % C Size % Objects R Total C Total Seq 1 Add Seq Del Seq Cur Seq

Unknown (Av.) 105 (Av.) 104 212 223 223 10.54% 10.44% 77.09% (Av.) 22,287 (Av.) 23,303 409 696 814 814

CString (Av.) 5 (Av.) 5 17 20 20 0.04% 0.04% 6.18% (Av.) 88 (Av.) 100 112 375 382 382

[strcore.cpp:141] (Av.) 30 (Av.) 38 15 93 110 0.22% 0.27% 5.45% (Av.) 456 (Av.) 4,156 41 609 914 914

CtestParsing_c 4 4 3 3 3 0.01% 0.01% 1.09% 12 12 98 370 - 370

...

3.2.4 Settings menu

The Settings menu allows you to:

· choose the user interface mode (wizards or dialogs)
· change settings for global data and how it is displayed
· modify other application settings

Global settings are also accessible via the toolbar.

Click on an item in the menu below to find out more:

The User Interface 44

Copyright © 2001-2025 Software Verify Limited

Missing menu options?

If you're looking for the Ordinal to Function mapping, it's now accessed via the Symbols Misc page of the
global settings dialog.

The management of datatype and enumeration definitions is now done in the Datatypes and
Enumerations page of the global settings dialog.

3.2.5 Managers menu

Managers

The Managers menu provides a handful of powerful tools to manage or inspect data collected by
Memory Validator.

The tools include:

· session management

· global, session, local and thread filters

· named heaps

· watermarks and bookmarks

Click on an item in the picture below to find out more:

Memory Validator Help45

Copyright © 2001-2025 Software Verify Limited

3.2.6 Query menu

Query

The query and search tools help you find memory and handle allocations using different criteria and are
all found on the.

Click on an item in the picture below to find out more:

3.2.7 Tools menu

Tools

Click on an item in the picture below to find out more:

The User Interface 46

Copyright © 2001-2025 Software Verify Limited

3.2.8 .Net Tools menu

.Net Tools

The query and search .net tools help you inspect the .net memory heap and are all found on the.

Click on an item in the picture below to find out more:

3.2.9 Data Views menu

Data Views

The Data Views provides easy control of which tabs are displayed in the main view.

Selecting any of the items shows the relevant tab (if it's not visible already), and makes it the current
selected tab.

· Hide All Views hides all tabs except the one that's currently visible

· Show All Views shows all the listed tabs, and in that order

· Reset All Views shows only the most popular tabs, so excludes Coverage, Analysis, Pages, and
Virtual

Memory Validator Help47

Copyright © 2001-2025 Software Verify Limited

This is the default setting when you first use the software

When you hide a tab (by clicking the cross on the right of the tab header), you'll initially be reminded of
where to go to show it again.

You can choose not to keep seeing this reminder.

If you hide the Analysis tab, but make use of options to view data in the Analysis tab, it will be shown
automatically. The Find menu option on the Memory view is an example of this.

Hidden views are remembered between sessions.

3.2.10 Software Updates menu

All the items in this menu are covered in the Software Updates topic.

The User Interface 48

Copyright © 2001-2025 Software Verify Limited

 The Software Updates menu is not present in evaluation versions of the software.

3.2.11 Help menu

Click on an item in the picture below to find out more in the Help topic:

If you're looking for more help, check out the Frequently Asked Questions too!

3.3 Toolbar Reference

This reference section lists the various toolbars in Memory Validator, linking to the appropriate section of
the help manual.

The items are listed in left to right order.

Memory Validator Help49

Copyright © 2001-2025 Software Verify Limited

Click on any part of the pictures below to jump straight to the topic:

Standard toolbar

· Load session
· Save session
· Help

Session toolbar

· Filter manager
· Settings
· Launch application using the launch chooser
· Relaunch the previously launched application
· Inject into application
· Wait for application to start
· Stop application
· Enable collecting data
· Disable collecting data

Watermarks

· Watermark manager
· Bookmark manager
· Add watermark at most recent trace
· Add bookmark at most recent trace

Query

· Search
· Query address
· Query object
· Find function
· Find cross-thread allocations

The User Interface 50

Copyright © 2001-2025 Software Verify Limited

Tools

· Leak Detect
· Check initialised
· Integrity check
· Update
· Send command to stub extension DLL
· Running totals display
· Refresh view
· Refresh all views

.Net Tools

· Heap Dump
· Garbage Collect
· Snapshot

3.4 The status bar

Elements of the status bar

The status bar has three main sections, from left to right:

· the message line
· program information
· data collection statistics

The message line

Most of the time, you'll just see this:

When you hover the mouse over a toolbar button or a menu item for a short time, a message appears in
the status bar describing the button's action.

Data collection statistics

The data statistics counts give a crude indicator of how data is being collected by the stub and sent to
Memory Validator.

Memory Validator Help51

Copyright © 2001-2025 Software Verify Limited

The collection data has four items

· Status indicating whether collection is currently on or off
· the number of data items received from stub waiting to be processed
· the number of data items processed
· the number of memory or resource allocations and miscellaneous data items not yet resolved

In the example below, collection is on, with 60 items pending processing, 4943 having been processed
and 149 items waiting to be deallocated:

The boxes stay gray when the values are static, but will be coloured for a few seconds when the value
changes

 The value increased

 The value decreased

Once data collection is off, no more data will arrive in the pending processing queue.

Profiling status

The status of the flow trace indicates what is currently happening.

· Ready. Waiting to start a run, or a run has finished and is waiting for you to analyze the data.
· Starting. Starting a run (hooks being installed etc).
· Running. Target executable is hooked and running.
· Terminating. Target executable has entered ExitProcess but has not yet finished executing.
· Post Processing. Target executable has finished executing. There is data that still needs to be

processed.

Target program name

This displays No active session when there is no session running, terminating or loaded.

When a session is running, terminated or loaded, this displays the name of the target program followed
by a timestamp.

The User Interface 52

Copyright © 2001-2025 Software Verify Limited

Watermark / Bookmark

This display is empty when there is no session running, terminating or loaded.

It is also empty when a session is running and no watermark or bookmark has been set via the native
API.

When a session is running, terminated or loaded, if a watermark or bookmark has been set via the native
API, the name of the most recent watermark or bookmark is displayed in this field.

3.5 Keyboard Shortcuts

Keyboard shortcuts

The following shortcuts are available:

 + Select All

 + Copy

 + Open session

 + Save session

 Help (contextual for current view or dialog)

 Wait for application

 Inject into process

 Start application (Native / .Net)

 + Start application (.Net Core)

 Restart application

 Monitor a Service

 Monitor IIS and ISAPI

Memory Validator Help53

Copyright © 2001-2025 Software Verify Limited

 Monitor IIS and ASP.Net

 Monitor Web Development Server and ASP.Net

 + Redisplay the previously chosen launch dialog.

3.6 Icons

Some of the displays show icons on the left border to indicate the type of data associated with that line.

Explanatory tooltips are shown over the icons in the Memory and Analysis views:

Common icon shapes

There are a few recurring shapes you will find in the icons:

 allocation

 deallocation

 reallocation

List of icons used in the main displays

The full suite of icons are shown below in groups, and with a very brief explanation.

General option enabled

 option disabled

 line corresponding to allocation/reallocation/deallocation

 source code

CRT Heaps malloc(), calloc(), new

 free(), delete

 realloc()

Win32 Heaps HeapAlloc()

 HeapFree()

 HeapRealloc()

Handles handle creation

 handle destruction

GlobalAlloc GlobalAlloc()

 GlobalFree()

 GlobalRealloc()

The User Interface 54

Copyright © 2001-2025 Software Verify Limited

LocalAlloc LocalAlloc()

 LocalFree()

 LocalRealloc()

CoTaskMemAlloc CoTaskMemAlloc()

 CoTaskMemFree()

 CoTaskMemRealloc()

IMallocSpy IMallocSpy allocation

 IMallocSpy deallocation

 IMallocSpy reallocation

SysAllocString
(BSTR)

 SysAllocString()

 SysFreeString() (and ::VariantClear() used to free BSTRs)

 SysReAllocString()

Misc Allocations miscellaneous allocation

 miscellaneous deallocation

 miscellaneous reallocation

NetApiXXX NetApiBufferAllocate() or NetApiXXX() function allocating memory

 NetApiBufferFree deallocation

 NetApiBufferReallocate reallocation

CryptoAPI CryptoAPI allocation

 CryptoAPI deallocation

 CryptoAPI reallocation

COM COM object created

 COM QueryInterface()

 COM AddRef()

 COM Release()

VirtualAlloc VirtualAlloc()

 VirtualFree()

TRACE and
OutputDebugString

 trace message, or OutputDebugString() message

 trace from an exception

 trace from an ASSERT

Errors bad allocation

 bad deallocation

 bad reallocation

 double free(), or double delete

 mismatch between delete and free(), eg used delete when should
have used free(), or vice versa

 mismatch deleting array, eg used delete [] when should have used
delete, vice versa

 memory underrun

Memory Validator Help55

Copyright © 2001-2025 Software Verify Limited

 memory overrun

 free memory write

 free memory read

 uninitialized memory

 memory error

User Allocations
from API

 user allocation (mvUserCustomAlloc())

 user deallocation (mvUserCustomFree())

 user reallocation (mvUserCustomReAlloc())

 user increase reference count
(mvUserCustomRefCountIncrement())

 user decrease reference count
(mvUserCustomRefCountDecrement())

Coverage The following symbols are used by the coverage user interface to
describe the types of allocations

 malloc()

 calloc()

 realloc()

 _expand()

 free()

 operator new

 operator delete

 handle creation

 handle destruction

Other watermark placed by a user, or by mvSetWatermark() API function

 memory leak used by filter managers to show the filtering of an
allocation of some

3.7 The main display

Windows

The main display of Memory Validator consists of tabbed windows. Not all the tabs may be visible - see
the Data Views menu to show any hidden tabs.

Each window allows the data collected to be viewed, inspected and queried in different and
complimentary ways.

Typically usage might be to use one window to analyse a problem that is present in the target program,
but to then use another view to gain different insights.

Click on an item in the picture below to find out more about each of the tabbed windows, or use the
list further below:

The User Interface 56

Copyright © 2001-2025 Software Verify Limited

Local window settings

Some of the windows have local settings - ie settings that affect only that window, rather than the
application as a whole, and help on these are also linked below:

Window

· Memory
· Types
· Sizes
· Timeline
· Hotspots
· Coverage
· Analysis
· Pages
· Virtual
· Diagnostic

Settings

display

display

display

Icons

Most windows use icons to indicate different types of data. You can browse the icons that you'll see.

Memory Validator Help57

Copyright © 2001-2025 Software Verify Limited

3.7.1 Summary

The summary tab provides a high level overview of all memory and handle activity in the program.

The display is divided into many panels that contain bar graphs, dials or graphs. Some of the panels also
contain hyperlinks.

Clicking any bar graph, graph or dial will take you to a more detailed version of the same data.

Hyperlinks usually open a new data display or take you to a more detailed version of the same data.

Bar graphs are usually shown in green/yellow, except when there are error conditions for that statistic,
when they are shown in red.

Events

The User Interface 58

Copyright © 2001-2025 Software Verify Limited

The Events panel gives you an overview of the profiling status, incoming data stream and a high level
summary of any errors.

Additional information is in the status bar.

Native Memory

The Native Memory panel gives you an overview of all native memory allocations and native handle
allocations.

More detailed information is available on the Memory tab.

Memory Validator Help59

Copyright © 2001-2025 Software Verify Limited

The Allocator Statistics hyperlink will display the Running Totals dialog

.Net Memory

The .Net Memory panel gives you an overview of all .Net memory allocations and .Net handle
allocations.

More detailed information is available on the Memory tab.

The Allocator Statistics hyperlink will display the Running Totals dialog

.Net Stats

The User Interface 60

Copyright © 2001-2025 Software Verify Limited

The .Net Stats panel gives you an overview of .Net allocations, garbage collections, snapshots and heap
dumps.

Native Memory Timeline

A graphical representation of native memory allocation behaviour. A more detailed version is available on
the Timeline tab.

.Net Memory Timeline

Memory Validator Help61

Copyright © 2001-2025 Software Verify Limited

A graphical representation of .Net memory allocation behaviour. A more detailed version is available on
the Timeline tab.

Virtual Memory

An overview of virtual memory statistics. A more detailed version is available on the Virtual tab.

Coverage Files

The User Interface 62

Copyright © 2001-2025 Software Verify Limited

An overview of coverage of memory allocation locations by filename. A more detailed version is available
on the Coverage tab.

The Coverage Files tile will only be shown if there is memory coverage data to display (Memory Coverage
needs to be enabled).

Types

An overview of all the memory allocation types used by the target program. A more detailed version is
available on the Types tab.

Memory Validator Help63

Copyright © 2001-2025 Software Verify Limited

Sizes

An overview of all the memory allocation sizes used by the target program. A more detailed version is
available on the Sizes tab.

Locations

An overview of all the memory allocation locations used by the target program. A more detailed version is
available on the Locations tab.

The User Interface 64

Copyright © 2001-2025 Software Verify Limited

Generations

An overview of the generations for the types used by the target program for the most recent .Net
generation. A more detailed version is available on the Generations tab.

Ages

An overview of the ages of the types used by the target program for the oldest aged .Net objects in the
target program. A more detailed version is available on the Ages tab.

Memory Validator Help65

Copyright © 2001-2025 Software Verify Limited

Objects Churn

An overview of the object churn for the types used by the target program. These may indicate leaking
objects.

A more detailed version is available on the Object Churn sub-tab of the Ages tab.

Stale Objects

An overview of the stale object types used by the target program. These may indicate leaking objects.

The User Interface 66

Copyright © 2001-2025 Software Verify Limited

A more detailed version is available on the Stale Objects sub-tab of the Ages tab.

Coverage Locations

An overview of coverage of memory allocation locations. A more detailed version is available on the
Coverage tab.

The Coverage Locations tile will only be shown if there is memory coverage data to display (Memory
Coverage needs to be enabled).

Instrumentation Status

An overview of profiling settings and status information that will aid your understanding of the current
profiling results.

Memory Validator Help67

Copyright © 2001-2025 Software Verify Limited

3.7.2 Memory

The Memory tab provides tabs for native and .Net memory inspection.

Click on an item in the picture below to find out more about each of the tabbed windows, or use the
list further below:

3.7.2.1 Memory and handle leaks

The Native Memory tab displays native memory and native handle allocations that are still waiting to be
deallocated.

This memory view also displays leaked memory, handles and memory errors, such as double frees,
incorrect frees, uninitialized data etc.

Read on, or click a part of the image below to jump straight to the help for that area (the icons link to
a different page).

The User Interface 68

Copyright © 2001-2025 Software Verify Limited

Status Information

The very top line of the memory tab gives a brief summary of:

· memory allocated and number of blocks
· memory leaked and number of blocks
· handles allocated and leaked
· the number of errors

The status line is only updated when the Refresh button is pressed or when data is added to the display
automatically.

More up-to-date information can be found on the Running Totals Dialog or the Types view.

This example shows a status line after the target application has exited (hence 0 bytes for current
memory):

Collected data

The main display shows the live collected data during or after the application running. Memory that has
been allocated and then freed is not shown.

 Initially no data will be displayed until the data is manually refreshed or the automatically updated
with significant errors as they happen.

Each line has an icon at the left, indicating its type, and has an explanatory tooltip:

The text on each line indicates:

· datatype (if known)
· size
· allocation address/handle value
· source file and line number (if available) where the allocation occurred
· optional event sequence id at the beginning of the line

The background colour for each line indicates the status of the data - eg, leaked, damaged, or
uninitialized.

This example shows memory allocations and handles in yellow are leaked, while the red line shows a
serious occurrence of damaged memory.

Memory Validator Help69

Copyright © 2001-2025 Software Verify Limited

Examining a data item

Each item can be expanded with the button (and then collapsed with the) to show more detailed
information:

· brief description of the item's purpose (allocation location, reallocation location, etc)
· thread id, and the name if assigned
· timestamp
· lifetime of the item
· allocation request ID (if there is one)
· the callstack for the item

Each line of the callstack shows

· instruction address
· module name
· undecorated C++ function name
· source file and line number (if available) for the function

For allocations that Memory Validator has seen allocated with an identical callstack to a previous
allocation that has been deallocated, that callstack and the top line entry are coloured green. This is a
hint that allocations at this callstack location have been seen to be deallocated and that this location
may not leak memory (although conditional logic may mean that it does).

The User Interface 70

Copyright © 2001-2025 Software Verify Limited

Examining the callstack and code

One or more parts of the callstack can be expanded or collapsed using the or to show the source
code around the relevant line in the associated file.

If the source code can't be found, or the file location is invalid you'll be prompted for the file.

The line on which the allocation occurred is highlighted, e.g. green in this example:

Memory Validator Help71

Copyright © 2001-2025 Software Verify Limited

To edit the source code, double click on any part of the lines of source code displayed or use Edit
Source Code...

Source file not found automatically?

If the source file isn't found automatically, you'll be prompted to provide the location manually with the
Find Source File dialog

You can scan, search or browse for the source location depending on how much of an idea you have of
the location:

· Browse... uses an explorer to search manually

· Search All Drives... does a full scan of your computer, showing the Searching For Source Files
dialog

You can stop the search at any time

If a file is found, the filename is entered at the top of the Find Source File dialog.

If multiple results are found, pick the best one from the results dialog that appears:

The User Interface 72

Copyright © 2001-2025 Software Verify Limited

· Search Folder... prompts for a folder, and scans that using the same Searching For Source Files
dialog as above

If multiple results are found, pick the best one from the results dialog (above)

Rather than repeatedly searching manually for locations, it's recommended to modify the automatic
source file search paths:

· File Locations... shows the File Locations Settings dialog so you can change the automatic
search paths

Changing the search paths to include additional source locations means you'll get prompted
less.

The file locations settings dialog is identical to the File Locations page of the global settings
dialog.

Memory Validator Help73

Copyright © 2001-2025 Software Verify Limited

If you don't want to be prompted with this dialog, then uncheck the first option below

· Ask for location of file if file cannot be found in search paths shows this dialog each time
you try to open a source file where the location is unknown

· Don't ask for location of file if line number is not valid stops this dialog from showing when
line numbers are invalid, e.g. zero or negative

The default is not to ask in this case.

Navigation shortcuts

Two navigation keyboard shortcuts are provided. They collapse the current entry, move to the next or
previous entry and then expand that entry to show the full callstack.

To move to the previous top level entry press

To move to the next top level entry press

Memory tab options

The User Interface 74

Copyright © 2001-2025 Software Verify Limited

The following controls are displayed to the left of the data area

Watermarks

The amount of data in the main display can be reduced by filters and watermarks.

Here you can choose two watermarks allowing only the data between them to be displayed.

· First Watermark Choose a watermark from the list Last Watermark Choose another
watermark Refresh updates the data shown in the display

There are two permanent default watermarks, called First watermark (before anything else) and
Last watermark (after anything else).

Attempting to choose a first watermark later than the last watermark, or vice-versa will result in
the alternate watermark automatically updating.

Tag Tracker

Data tracking allows you to associate collected allocation data with an id or tag.

Memory Validator Help75

Copyright © 2001-2025 Software Verify Limited

If using data tracking, you can then choose here which of your tags you want allocations to be displayed
for.

· Tag Tracker Choose a tag from the list Refresh updates the data shown in the display

There are two permanent tags: All which filters nothing (the default), and None which shows
everything that is untagged.

This type of tag tracker and watermark selection is also used in the Tag Tracker and Watermark view
of the Types and Sizes tabs, as well as the Hotspots and Analysis tabs.

Sorting

The data on the display can be ordered using the following attributes and in an ascending or descending
direction - just pick an attribute and click Refresh.

· Allocation Order
· Num Allocations
· Size
· Total Size
· Object Type
· Tag Tracker
· Filename
· DLL
· Address

 the order that events are recorded by Memory Validator - the event
sequence id

 the number of allocations at this unique callstack
 the allocation size
 the total number of bytes allocated at this unique callstack
 the allocation object type (or handle type)
 the allocation tag tracker (above)
 the filename where the allocation occurred
 the name of the DLL where the allocation occurred
 the allocation address or handle value

· Ascending Refresh when ticked shows the biggest, newest, etc. last, otherwise first if
unticked

Local filters and settings

· Filter... shows the local filters dialog for the memory tab

The filter button also indicates the number of local filters, although not all of these may be
enabled

· Display... shows the Memory Tab Display Settings dialog to set the types of data and messages
displayed in the data view

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

· Clear removes all data from the display

The User Interface 76

Copyright © 2001-2025 Software Verify Limited

· Collapse All collapse all data items, whilst remembering any source code views that were open

· Expand All expand all data items including any previously expanded sections of source code

· Refresh when load session when ticked updates the display immediately when a session is
loaded from a file

Memory view popup menu

The following popup menu is available over the data area

Click on any part of the menu to jump straight to the topic below:

Memory Validator Help77

Copyright © 2001-2025 Software Verify Limited

Menu option: data item summary

· Help on selected item the sub-menu shows a simple one line description of the type of data that
has been selected:

Menu option: relations

The relations menu has a large sub-menu with many different options for choosing a set of related data to
display in the upper analysis window.

Think of this as a sub-query on the working data - like searching for friends of friends on a social network!

Given an entry in the upper window, available relations are as follows, with allocations generally meaning
any allocation, reallocation or deallocation

· Same address
· Same size
· Smaller
· Larger

Finds any other allocations on the same memory address, for example
previous allocations or frees
Allocations on any memory objects of identical size
 or on smaller
 or larger objects

· Same handle Finds any other allocations on the same resource handle

· Same location,
 same callstack
 different
callstack
 all callstacks

Finds other allocations made at the source code location:
 via the same callstack
 different callstacks
 or any callstack

· Same function
· Same source file
· Same DLL

All allocations from the same function...
 or the same file
 or the same DLL

· Class allocations All allocations, reallocations or deallocations from the same C++
class

· Relations to 'this' Finds various other events relating to the selected object:

Allocator of this - only for reallocated objects
Reallocation of this
Reallocation of this address at same address
Reallocation of this address at different address
Deallocation of this
Allocations, reallocations, deallocations
Referenced by this - these two need the target application to still
be running
Referencing this

The User Interface 78

Copyright © 2001-2025 Software Verify Limited

· Same address
· Same size
· Smaller
· Larger

Finds any other allocations on the same memory address, for example
previous allocations or frees
Allocations on any memory objects of identical size
 or on smaller
 or larger objects

· Allocations within For memory allocations, finds all other allocations within a range of 32
bytes up to 4Kb of this one

· Allocations prior
· Allocations after

For memory allocations, finds the previous 5, 10 or 20 allocation events
 or the next 5, 10 or 20 events

· Errors Shows any known damaged memory allocation information relating to
this entry

Menu option: filters

The next three options provide a powerful way of filtering the data to exclude all other items similar in
some way to the one you clicked on.

· Local: Filter for this user interface
· Session: Filter for this session
· Global: Filter for all sessions

Each of these options have the same sub-menus:

· Instant Filter creates an instant filter based on the selected data item

· Temporary Filter as for instant filter, but will not be saved along with any other filters

The final sub-menu above shows a variety of predefined filters, each of which creates a filter
matching that attribute of the selected item.

The term callstack root refers to the function at the top of the callstack, while all other options
refer to the lowest item in the callstack - the callstack leaf.

Memory Validator Help79

Copyright © 2001-2025 Software Verify Limited

So for example:

· Callstack creates a filter that excludes data items matching the entire callstack of the
selected item

· Callstack Root or Leaf excludes items matching the address for the top or bottom of the
callstack

 Examples of matching callstack root and leaf are shown in the Filter Definition topic.

· Object Type, Size or Address excludes all items with the same allocation type, size or
address

· Custom Filter brings up the Define Filter dialog, letting you customise your own filter in more
detail

The filter definition will be pre-populated with the callstack and other datatype information to use
in your filter.

Menu option: filter by thread id

The Filter by Thread Id submenu has the following options:

· Show only this thread the thread filter is set to show only the selected thread

· Hide this thread the thread filter is set to hide the selected thread

· Thread filter manager... the thread filter manager is displayed

Menu option: filter by hooked DLL

You can filter the next run by DLL, either excluding that DLL, or including that DLL, in the list of DLLs
that will be monitored.

The Hooked DLLs settings dialog is displayed.

The User Interface 80

Copyright © 2001-2025 Software Verify Limited

Menu option: mark as fixed

· Mark as fixed marks the selected item as "I have fixed this"

To remove the marking from the event press the shift key at the same time you choose Mark as
fixed on the menu.

Items that have been marked as fixed are shown with a line struck through them.

This allows you to easily identify items that you've worked on and items that have yet to be worked on.

Menu option: add to callstack trim

· Add to Callstack Trim... displays the Callstack Trim settings with the selected function added to
the list of trimmed functions

Menu option: bookmarks and watermarks

Memory Validator Help81

Copyright © 2001-2025 Software Verify Limited

Bookmarks allow you to find a data item easily at a later date, while watermarks are used above to show
only those items between two points in time

· Add Bookmark... adds a bookmark for the selected item

· Add Watermark... adds a watermark for the selected item

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu option: pointers in and out

· Referencing Pointers... shows all pointers in the target program that point to the selected item

· Referenced Pointers... shows all pointers in the target program identified by the selected item

Referencing and referenced pointers are shown in the same references dialog as when finding addresses.

 These options are only available while the target application is running

Menu option: find

The find option and sub-menus below allow you to use the address or the object type of the allocation to
say things like:

Show me all the data items that have the same allocation type as the selected item

or

Add to the Analysis tab all the data items where the allocation address is the same as the selected
item

The results can be displayed in one of three places:

· the Address Query Dialog if you choose By Address Using Find Dialog...

· the Object Query Dialog if you choose By Type Using Find Dialog...

· the Analysis tab when choosing Using Analysis Tab for both Address and Type

The User Interface 82

Copyright © 2001-2025 Software Verify Limited

Menu option: copy special

The copy special sub-menu lets you copy to the clipboard any of the following attributes, (or all the
information):

This can be very useful if you need to use the address, file name or other attribute of an allocation
elsewhere in Memory Validator; an external application, or just to share with a colleague.

Possible areas in Memory Validator that you might need such data include:

· memory search
· address query
· object type query
· filter definition
· leak detection

...and other similar tools.

Here's an example of copying All Info to the clipboard:

Memory Validator Help83

Copyright © 2001-2025 Software Verify Limited

c:\program files (x86)\software verification\c++ memory validator\examples\nativeexample\testsvw.cpp
nativeExample.exe
Thread ID: 284736
11/23 12:28:33 267ms (Lifetime:00:06:25:666ms)
Sequence: 854
nativeExample.exe CTeststakView::OnTestDoublefreeofmemory : [c:\program files (x86)\software verification\c++ memory validator\examples\nativeexample\testsvw.cpp Line 1152]
mfc90ud.dll _AfxDispatchCmdMsg : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\cmdtarg.cpp Line 81]
mfc90ud.dll CCmdTarget::OnCmdMsg : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\cmdtarg.cpp Line 381]
mfc90ud.dll CView::OnCmdMsg : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\viewcore.cpp Line 162]
mfc90ud.dll CFrameWnd::OnCmdMsg : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\winfrm.cpp Line 942]
mfc90ud.dll CWnd::OnCommand : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\wincore.cpp Line 2363]
mfc90ud.dll CFrameWnd::OnCommand : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\winfrm.cpp Line 365]
mfc90ud.dll CWnd::OnWndMsg : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\wincore.cpp Line 1769]
mfc90ud.dll CWnd::WindowProc : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\wincore.cpp Line 1755]
mfc90ud.dll AfxCallWndProc : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\wincore.cpp Line 240]
mfc90ud.dll AfxWndProc : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\wincore.cpp Line 402]
mfc90ud.dll AfxWndProcBase : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\afxstate.cpp Line 441]
USER32.dll gapfnScSendMessage : [{FUNC}gapfnScSendMessage Line 0]
USER32.dll GetThreadDesktop : [{FUNC}GetThreadDesktop Line 0]
USER32.dll CharPrevW : [{FUNC}CharPrevW Line 0]
USER32.dll DispatchMessageW : [{FUNC}DispatchMessageW Line 0]
mfc90ud.dll AfxInternalPumpMessage : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\thrdcore.cpp Line 181]
mfc90ud.dll CWinThread::PumpMessage : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\thrdcore.cpp Line 899]
mfc90ud.dll CWinThread::Run : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\thrdcore.cpp Line 629]
mfc90ud.dll CWinApp::Run : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\appcore.cpp Line 864]
mfc90ud.dll AfxWinMain : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\winmain.cpp Line 47]
nativeExample.exe wWinMain : [f:\dd\vctools\vc7libs\ship\atlmfc\src\mfc\appmodul.cpp Line 33]
nativeExample.exe __tmainCRTStartup : [f:\dd\vctools\crt_bld\self_x86\crt\src\crtexe.c Line 578]
nativeExample.exe wWinMainCRTStartup : [f:\dd\vctools\crt_bld\self_x86\crt\src\crtexe.c Line 402]

The same menu option is also on the Analysis menu

Menu option: showing GDI objects

· Show GDI Object... shows a graphical representation of the GDI object that is selected

A GDI Handle dialog will be displayed showing the handle type, the value and appearance.

This option is only valid for the GDI objects listed below, and only while your application is running as the
data will not be accessible afterwards.

· Bitmap · Font · Palette · Menu
· Brush · Icon · Pen · Window
· Cursor · ImageList · Region

These examples below are from the example application and show a font, icon, pen, brush and menu:

The User Interface 84

Copyright © 2001-2025 Software Verify Limited

Menu option: show memory byte data...

· Show Data at (bytes)... shows the byte format data at the memory allocation identified by the
selected item

The example below shows the memory for a BSTR string shows the address of each 16 byte row, 16
bytes of data and the ASCII text conversion on the right:

The Options menu for this window lets you update the content and choose whether to colourise data
(e.g. uninitialized memory), or to display the memory content as bytes, words or dwords.

Memory Validator Help85

Copyright © 2001-2025 Software Verify Limited

· Refresh redisplay updated data

· Colour highlight bytes:
uninitialized data signatures (0xCD)
C runtime heap data guards (0xFD)
deleted memory (0xDD)
Win32 heap values (uninitialized: 0xBAADF00D, deleted: 0xDEADBEEF)

· Bytes displays data as a series of bytes with ascii text representation

· WORDS displays data as WORDs with unicode text representation

· DWORDS displays the data as a series of DWORDs (no text equivalent)

· Exit closes the data window

 Showing byte data is only possible whilst the target application is still running

Menu option: show data at...

 This option is dependent upon having first defined some datatypes or enumerations in the global
settings dialog.

These example allocation below uses the data structures from the section on defining a new datatype.

· Show Data at... shows the Show Data At dialog below

Choose a datatype to use for interpreting the memory contents at the allocation address and
click OK.

The User Interface 86

Copyright © 2001-2025 Software Verify Limited

The allocated memory will be displayed showing values in memory for each data member:

Some values are colour coded to highlight them. For example the NULL pointers in the above
image.

Values that are colour coded are values related to NULL, uninitialised memory, deleted memory
and damaged memory (buffer overruns and underruns).

Menu options: collapse / expand trace

· Collapse or Expand Trace simply shows and hides data item information, the same as using

the or buttons

Menu options: AddRefs & Releases, showing related COM objects

When tracking leaked COM objects it is useful if you can quickly and easily identify operations on the
same COM objects.

· Highlight paired AddRefs & Releases highlights all paired AddRef and Release calls

Memory Validator Help87

Copyright © 2001-2025 Software Verify Limited

In general, clicking on any AddRef or Release item will display items relating to the same object in the
selected object colour.

Menu options: Zero refcount COM objects

· Highlight all COM objects with zero refcount highlights items in the display that are zero
refcount COM objects

When you know which objects have a reference count of zero, you know that they have been
deallocated.

This means you can concentrate on any COM objects that have not been highlighted, since reference
count is non zero.

Menu options: Properties

· Properties... display the Windows File Property dialog for the DLL.

The User Interface 88

Copyright © 2001-2025 Software Verify Limited

Memory Validator Help89

Copyright © 2001-2025 Software Verify Limited

3.7.2.1.1 Memory Display Settings

The Memory Tab Display Settings control the memory, handles and messages displayed on the Memory
tab.

The default options are shown below:

The User Interface 90

Copyright © 2001-2025 Software Verify Limited

 Note that these settings control what is displayed, not what is collected. The data collection
settings may have more information about some of the settings below.

Display categories

The combo box at the top of the dialog controls the broad categories of what is displayed, the other
sections of the settings dialog provide more find grained control within the broad categories.

Choosing a display category can be a really useful way to quickly simplify the display to just a few
items. For example just showing the errors, so that you don't have to wade through 1000s of leaked data
reports to find the more serious errors.

· Everything all data is displayed
· Leaks and errors items that are leaked (or potentially leaked) and errors are displayed
· Leaks items that are leaked (or potentially leaked) are displayed
· Errors items that are errors are displayed
· Unleaked items that are not leaked and not errors are displayed

Memory Validator Help91

Copyright © 2001-2025 Software Verify Limited

 Note that even though you've chosen a broad category (for example Everything) the other criteria on
this dialog also have to be satisfied in order for the item to be displayed.

Types of memory to display

Setting Displays memory that is not deallocated and was allocated by...

· CRT memory CRT memory

· Heap the HeapAlloc() group of functions

· Delphi Delphi's allocation functions

· Local Alloc the LocalAlloc() group of functions

· Global Alloc the GlobalAlloc() group of functions

· Virtual Alloc the VirtualAlloc() group of functions (see below)

· CoTaskMemAlloc the CoTaskMemAlloc() group of functions

· SysAllocString the SysAllocString() group of functions

· NetApi the NetApi group of functions

· Open GL the OpenGL group of functions

· Misc various other memory functions that allocate and manage memory

· Salford FORTRAN
95

Salford Software's FORTRAN 95 allocation functions

· IMalloc the IMalloc() interface

Using VirtualAlloc?

Note that your call to VirtualAlloc/VirtualAllocEx should include the flag MEM_RESERVE or
MEM_COMMIT.

If including MEM_COMMIT without MEM_RESERVE the first page of the proposed address range should
be non-reserved or your proposed address should be NULL allowing the operating system to choose the
address for you.

Other data to display

Setting Displays...

· Handles handles that have not been deallocated

· COM Reference
Counts

COM Objects and reference counts (Query Interface, AddRef,
Release) that Memory Validator is aware of

· Trace Messages TRACE() and OutputDebugString() messages received by Memory
Validator

· Custom Hooks memory allocated by custom memory allocation functions

· User Objects memory allocated by the user defined allocation functions which
has not been deallocated

The User Interface 92

Copyright © 2001-2025 Software Verify Limited

· User Object
Reference Counts

reference counts received from the user defined reference count
function

Error messages

Setting Displays...

· Uninitialized Data
(CObject)

memory marked as uninitialized and derived from CObject

· Uninitialized Data
(non CObject)

memory marked as uninitialized and not derived from CObject

· Memory Errors
(overruns/underruns
)

memory marked as damaged due to an overrun or underrun

You may also need to set the All Memory (leaks, errors,
unleaked) check box to see changes as memory error traces are
not considered memory leaks.

· Handle Errors attempts to use handles incorrectly (passing them to the wrong
functions)

Auto

Setting Displays...

· Automatically Display
UnInit Data

uninitialized data information received by Memory Validator

· Automatically Display
Memory Errors

memory damage data information received by Memory
Validator

Other settings

Setting Displays...

· Display style how much information is displayed on the screen

· Callstack grouping display all callstacks or just unique callstacks

· Refresh the display when
this dialog box is closed

updates when this settings dialog is closed

The display style can be one of the following values:

· Full information about every allocation and error is displayed (unless filtered)
· Simplified - your source code at root Only traces that have a callstack with your source code

at the top of the callstack are displayed
· Simplified - your source code not at root Only traces that have a callstack with your source

code in the callstack (except for the top position) are displayed
· Simplified - your source code anywhere Only traces that have a callstack with your source

code anywhere in the callstack are displayed
· Simplified - compiler vendor source code at root Only traces that have a callstack with your

compiler vendor source code at the top of the callstack are displayed

Memory Validator Help93

Copyright © 2001-2025 Software Verify Limited

· Simplified - compiler vendor source code not at root Only traces that have a callstack with
your compiler vendor source code in the callstack (except for the top position) are displayed

· Simplified - compiler vendor source code anywhere Only traces that have a callstack with
your compiler vendor source code anywhere in the callstack are displayed

· Simplified - no source code Only traces that have a callstack with no source code are
displayed

The callstack grouping can be one of the following values:

· Full every callstack is shown
· Simplified - Only show unique callstacks Traces that share the same callstack are displayed

once. A summary is shown indicating the number of allocations, how many bytes in those
allocations and the size of the largest allocation.

Reset

· Reset resets all the display related settings for this tab

3.7.2.2 .Net Memory

The .Net Memory tab displays .Net memory and .Net handle allocations that are still waiting to be
garbage collected.

This display is very similar to the Native Memory tab, but it only displays .Net memory allocations and
the context menu is a subset of the context menu on the Native Memory tab because some of the
options don't apply to .Net memory/handle allocations.

Read on, or click a part of the image below to jump straight to the help for that area (the icons link to
a different page).

The User Interface 94

Copyright © 2001-2025 Software Verify Limited

Status Information

The very top line of the memory tab gives a brief summary of:

· memory allocated and number of blocks
· handles allocated

The status line is only updated when the Refresh button is pressed or when data is added to the display
automatically.

More up-to-date information can be found on the Running Totals Dialog or the Types view.

This example shows a status line after the target application has exited (hence 0 bytes for current
memory):

Collected data

The main display shows the live collected data during or after the application running. Memory that has
been allocated and then garbage collected is not shown.

 Initially no data will be displayed until the data is manually refreshed or the automatically updated
with significant errors as they happen.

Memory Validator Help95

Copyright © 2001-2025 Software Verify Limited

Each line has an icon at the left, indicating its type, and has an explanatory tooltip:

The text on each line indicates:

· datatype (if known)
· size
· allocation address/handle value
· source file and line number (if available) where the allocation occurred
· optional event sequence id at the beginning of the line

There are two types of callstack representation.

The first callstack representation is that of an object that has been allocated on a callstack that has
never had any objects allocated on it that have been garbage collected.

The second callstack representation is that of an object that has been allocated on a callstack that has
had objects allocated on it garbage collected.

This colouring is controlled by the Enhanced callstack colouring option on the Callstack settings of
the settings dialog.

Controls

Most of the controls on the .Net Memory tab work identically to the controls on the Native Memory tab.
The filters are shared between the two tabs.
One thing works differently is the Display Settings.

· Display... shows the .Net Memory Tab Display Settings dialog to set the types of data and
messages displayed in the data view

The User Interface 96

Copyright © 2001-2025 Software Verify Limited

Memory view popup menu

The following popup menu is available over the data area. This menu is a subset of the menu on the
Native Memory tab.
The descriptions for this menu are in the Native Memory tab.

Click on any part of the menu to jump straight to the topic below:

3.7.2.2.1 .Net Memory Display Settings

The .Net Memory Tab Display Settings control the .Net memory, .Net handles and displayed on the .Net
Memory tab.

The default options are shown below:

Memory Validator Help97

Copyright © 2001-2025 Software Verify Limited

 Note that these settings control what is displayed, not what is collected. The .Net data collection
settings may have more information about some of the settings below.

The Data to display combo causes the dialog to update as it is changed. The combo has four values

· All Data display all information (unless filtered)
· Generation Range displays information about every allocation between two generations (unless

filtered)
· Age Range displays information about every allocation between in the specified age range

(unless filtered)
· During Generation displays information about every allocation that was alive during generation

(unless filtered)

The User Interface 98

Copyright © 2001-2025 Software Verify Limited

Other settings

Setting Displays...

· Group by Callstack display all callstacks or just unique callstacks

· Refresh the display when
this dialog box is closed

updates when this settings dialog is closed

The display style can be one of the following values:

· Full information about every allocation and error is displayed (unless filtered)
· Simplified - your source code at root Only traces that have a callstack with your source code

at the top of the callstack are displayed
· Simplified - your source code not at root Only traces that have a callstack with your source

code in the callstack (except for the top position) are displayed
· Simplified - your source code anywhere Only traces that have a callstack with your source

code anywhere in the callstack are displayed
· Simplified - compiler vendor source code at root Only traces that have a callstack with your

compiler vendor source code at the top of the callstack are displayed
· Simplified - compiler vendor source code not at root Only traces that have a callstack with

your compiler vendor source code in the callstack (except for the top position) are displayed
· Simplified - compiler vendor source code anywhere Only traces that have a callstack with

your compiler vendor source code anywhere in the callstack are displayed
· Simplified - no source code Only traces that have a callstack with no source code are

displayed

The callstack grouping can be one of the following values:

· Full every callstack is shown
· Simplified - Only show unique callstacks Traces that share the same callstack are displayed

once. A summary is shown indicating the number of allocations, how many bytes in those
allocations and the size of the largest allocation.

Reset

· Reset resets all the display related settings for this tab

3.7.3 Timeline

The Timeline tab gives you a set of graphical timelines showing all memory, objects and gdi handles,
user32 handles and other handles tracked by Memory Validator.

Click a part of the image below to jump straight to the help for that area.

Memory Validator Help99

Copyright © 2001-2025 Software Verify Limited

Timeline display styles

At the top of the Timeline tab is a combo box containing a list of many display styles, allowing you to
choose what data to watch.

· Adaptive chooses a display style determined by the type of data collected from the target
application. The resulting displays will be equivalent to All Native T/C, All .Net T/C and All Native
and .Net T/C.

· Native Memory presents total native memory as well as unfreed memory, allocations and
deallocations

· Native Handles shows similar data for native handles

· Native GDI Handles shows similar data for native GDI handles

· Native USER32 Handles shows similar data for native USER32 handles

· Native Objects tracks the number of native allocations and deallocations

· .Net Memory presents total .Net memory as well as unfreed memory, allocations and garbage
collected memory

· .Net Handles shows similar data for .Net handles

· .Net Objects tracks the number of .Net allocations and garbage collected memory

· Native and .Net Memory presents total native and .net memory as well as unfreed memory,
allocations and deallocations

· Native and .Net Handles shows similar data for native and .net handles

The User Interface 100

Copyright © 2001-2025 Software Verify Limited

· Native and .Net Objects tracks the number of native and .net allocations and deallocations

· Native Allocations T/C Shows all native allocation data with topics horizontally and categories
vertically

· Native Allocations C/T Shows all native allocation data with topics vertically and categories
horizontally

· Native Allocations T/C Shows all .Net allocation data with topics horizontally and categories
vertically

· Native Allocations C/T Shows all .Net allocation data with topics vertically and categories
horizontally

· Native Allocations and Deallocations T/C Shows all native allocation and deallocation data
allocation with topics horizontally and categories vertically

· Native Allocations and Deallocations C/T Shows all native allocation and deallocation data
allocation with topics vertically and categories horizontally

· Native Allocations and Deallocations T/C Shows all .Net allocation and deallocation data
allocation with topics horizontally and categories vertically

· Native Allocations and Deallocations C/T Shows all .Net allocation and deallocation data
allocation with topics vertically and categories horizontally

· All Native T/C Shows all Native data with topics vertically and categories horizontally

· All Native T/C Shows all Native data with topics horizontally and categories vertically

· All .Net T/C Shows all Native data with topics vertically and categories horizontally

· All .Net T/C Shows all Native data with topics horizontally and categories vertically

· All Native and .Net T/C Shows all Native data with topics vertically and categories horizontally

· All Native and .Net T/C Shows all Native data with topics horizontally and categories vertically

The difference between T/C and C/T displays is that the data shown in rows is shown in columns and
vice versa. Depending on the data you're interested in you may find having the data on the same row is
more beneficial, or having the data in the same column in different rows is more beneficial. We provide
with you both options so that you have more freedom interpreting the data.

Why T/C and C/T? We wanted two letters that didn't look similar. We started out with X/Y and
Y/X but after a while realised they are too similar.

C and T are impossible to mis-read and have the benefit of mapping to topics and categories
which is helpful when thinking about the graphs rather than an abstract notion like X and Y.

Sampling periods - the key to understanding the graphs

Before covering the features, it's important to understand what these graphs are showing.

Memory Validator Help101

Copyright © 2001-2025 Software Verify Limited

Once a second, Memory Validator takes a snapshot of the activity in the target program and plots
another line on the graph to indicate how that activity affected resources.

The top graph shows snapshots of total consumption at each sample, while the others show change
during each sample period.

In any given second, memory may be allocated, but not freed - although it may be freed later. This shows
as a spike on the graph because there was an overall change during the sample period.

Memory allocated and freed within the same sample period does not contribute to a spike since there's
no overall change.

The maximum value on any graph is the maximum change resulting from activity during any single
sample period

Timeline graphs

Each memory or handle group consists of five graphs:

· Total displays the total consumption, either as an amount of memory, number of handles, or
number of allocations

· Unfreed the amount of allocated data, not freed in the sample period.

To calculate this add up all the allocations in the time period, and add up all the deallocations in the
time period. Now subtract the deallocations from the allocations. If the result is negative, it is limited
at 0.

· Allocations (in order) shows allocation change during the sample

· Deallocations (in order) shows deallocation changes during the sample period

· Deallocations (in allocation order) timeline for deallocations in the order the related allocation
happened

Each of these graphs is available for memory, handles and objects (count of all activities) for both native
and .Net. Five data sources for six different counts. That makes for total of up to 30 different graphs that
can be displayed depending on the choice you make with the combo at the top of the display. Which
graphs you choose to use will depend on the problem you're looking at and what you find interesting.

The T/C and C/T variations of the graph allow you to examine things from different points of view. Do you
want to see deallocations lined up below allocations (so that you can easily see deallocation vs
allocation behaviour), or is it more interesting to see native memory and .Net memory lined up
underneath each other so that you can see if the allocations in native memory correspond to the
allocations in the .Net memory space?

Moving the mouse over a graph shows a yellow dotted marker indicating the current sample period, and
some information above the graph.

· Value displays memory usage at the sample point, or the number of allocations or handles
depending on the graph

The User Interface 102

Copyright © 2001-2025 Software Verify Limited

· Sequence IDs the lowest and highest event sequence ids used in that sample period

 Why is the maximum for deallocations sometimes different to the maximum for allocationMultiple
related allocations and deallocations may interleave with each other. Because of the one second
sampling they may also span multiple sample periods. This means that the total amount of freed
memory in one period may not match that for total allocated in another period.

Why two deallocation graphs?

Comparing the two graphs and the allocation graph lets you see if deallocations are generally happening
near (and in the same order) as the allocations or if they are happening some time after the allocation

You may also be able to see if the allocations are being deallocated in a different order to their
allocation.

This can be useful for analysing memory usage behaviour and performance.

Timeline view popup menu

The following popup menu is available over the top three timelines to examine data in more detail, and is
identical to the one over the Sizes tab.

Menu option: Showing locations - drilling down into the data

The following three options all open the Analysis Tab, adding a callstack for every allocation or
deallocation in the selected sample period(s).

This enables a deeper inspection of where and how objects of this size are allocated or freed.

Memory Validator Help103

Copyright © 2001-2025 Software Verify Limited

· Show Allocation Locations shows allocations only

· Show Deallocation Locations shows deallocations only

· Show Allocation and Deallocation Locations shows both

The range of data to which the menu applies is as follows:

· If you have selected a range of sample periods, all the events in that range will be shown

· If no range is highlighted, we will only show the events in the single sample period at the exact point
you click the mouse

Timeline controls

There are just three check boxes to control the display of data.

· Display watermarks shows all watermarks on the graphs as a dashed vertical blue line

· Automatically start timeline starts the timeline at the point the application is launched

· All scrollbars move together synchronises the use of scrollbars on each timeline so they all
move together - just uncheck this for independent control

If you manually scroll the timeline to look at some data and then wish the timeline to scroll as new data
is added, scroll the timeline to the extreme right. It will automatically start scrolling as new data is
added.

You can control how long the timeline can show data for (and hence the memory used for the timeline)
in the Timeline page of the settings dialog.

The User Interface 104

Copyright © 2001-2025 Software Verify Limited

3.7.4 Statistics

The Statistics tab provides access to statistics for types, sizes, allocation locations, generations and
ages.

Click on an item in the picture below to find out more about each of the tabbed windows, or use the
list further below:

3.7.4.1 Types

The Types tab summarises all the types of objects in the target program.

Read on, or click a part of the images below to jump straight to the help for that area.

The left hand side of the view shows controls and a variety of statistics:

The right hand side of the view shows information about event sequence id:

Memory Validator Help105

Copyright © 2001-2025 Software Verify Limited

The view lists of all the objects in the program with their type, size and number allocated as well as other
information.

You can constrain the displayed objects to those in particular threads or DLLs, and those between
watermarks or being tracked by tag trackers.

Much of the statistics and settings here are also relevant for the Sizes tab.

Types tab

At the top of the Types tab is a set of five more tabs allowing you to change the scope within which
objects and types are shown in the table.

· Thread show stats for an individual thread in the list or All threads (the default)

· DLL show stats for a chosen DLL or All of them (the default)

· Watermark filter the display to show objects used between two watermarks

· Tag Tracker display stats for an individual tag tracker or for All trackers

· Tag Tracker Macro shows amalgamated values of all object types in each tag tracker group,
allowing overviews of memory use within each tag

Colours used in the display

Each object type's row is coloured according to whether the object has:

 an increasing count

 a decreasing count

 a static count - i.e. not recently changed

 a zero count

The importance of each value within most of the columns is highlighted with a percentage bar:

 the object type with the maximum value in a given column

 relative contribution of the object value in each column

See also the Data Highlighting dialog to customise the first two colours.

The data columns

The data in each column is summarised below and described in more detail further down, with the help of
examples.

The User Interface 106

Copyright © 2001-2025 Software Verify Limited

Some of the header columns display a total for the column underneath the column name.

· Type
· R Size
· C Size
· Count
· Max
· Cumulative
· % R Size
· % C Size
· % Objects
· R Total
· C Total
· Seq 1
· Add Seq
· Del Seq
· Cur Seq
· Activity

object type
running allocation size
cumulative allocation size
number of live allocations
maximum number of live allocations
cumulative number of allocations
size as percentage of total running allocations
size as percentage of total cumulative allocations
object count as percentage of total number of objects
running total size (R Size x Count)
cumulative total size (C Size x Cumulative)
sequence id of first allocation of this type
id of most recent allocation
id of most recent deallocation
id of most recent allocation or deallocation
the span between first and most recent event sequence ids

To best explain the numbers in each column we'll use a simple example scenario which has a series of
char[] allocations and deallocations shown in order of their event sequence id.

This event sequence below (not actual code) will be used to demonstrate how some of the figures in the
columns would change with each event. Note this would leak allocations s4 and s5.

Type

The type is simply that of the memory allocation, determined by parsing the source code at the
allocation location, eg char[] in our example above.

When a type cannot be determined, a pseudo-type is created by merging the filename and the line
number for the allocation:

Memory Validator Help107

Copyright © 2001-2025 Software Verify Limited

About Running and Cumulative values (R & C)

Some of the columns make reference to R or C values.

Running (R) values increase with each allocation and then decrease with deallocations, thus giving a
snapshot of the live or current state.

Cumulative (C) figures only ever increase, ignoring deallocations, so give a quantitative extent of overall or
historical activity.

R Total and C Total

Although not first in the column order, these two values are used to calculate some of the other column
values.

· R Total the running total gives the total size of all live objects of each type

· C Total the cumulative total tells you how much of each type has ever been allocated

R Size and C size

· R Size the running size for each object type is R Total / Count - i.e. the average size of all live
objects

The User Interface 108

Copyright © 2001-2025 Software Verify Limited

· C Size the cumulative size for each object type is C Total / Cumulative - i.e. the average size of
all allocated objects whether live or freed

For objects with a fixed size these values will both always be the size of the object.

Objects with an average size calculation have the value prefixed with (Av.):

Count, Max and Cumulative

· Count the number of live objects of each type, so in our example the count increases and
decreases, resulting in an overall increase of 2

· Max the maximum value that the count ever reaches - i.e. the peak number of live objects at any
one time

· Cumulative increases with every single allocation, giving a historical total.

Memory Validator Help109

Copyright © 2001-2025 Software Verify Limited

Percentage contributions: % R Size, % C Size and % Objects

The percentage figures give an indication of how important each type is relative to others:

· % R Size the percentage of total live object sizes represented by each type i.e. the contribution of
R Total for each object to that of all object types combined

· % C Size similar to above but for cumulative figures - the contribution of each C Total to that of all
object types combined

· % Objects the contribution of each object count to the combined counts of all objects

Sequence numbers: Seq 1, Add Seq, Del Seq and Cur Seq

The sequence numbers show significant event sequence ids relating to each object type:

· Seq 1 the first allocation sequence id for each object type

· Add Seq the sequence id for the most recent allocation

· Del Seq the sequence id for the most recent deallocation

If no objects of a type have ever been deleted, the value just shows a hyphen

· Cur Seq the most recent event sequence id related to each object type - usually the greater of
Add Seq or Del Seq

The User Interface 110

Copyright © 2001-2025 Software Verify Limited

Looking at the values for the range Seq 1 to Cur Seq helps give an indication of the span of activity of
each object type.

Event sequence id markers

The four sequence id columns show markers visualizing the event's position relative to the the total
number of events so far.

Each row shows green markers denoting the relative position of the first and most recent sequence ids
for the object type.

In the following example there have been approximately 3000 events to date:

These markers can help you see the relative timing and order of object type allocation and deallocation
much more quickly than scanning through the numbers alone.

Object activity

The 'activity' of an object type is the span between its first allocation id and the most recent event
sequence id at which at least one object was still live.

The Activity column in the view shows a graph of that lifespan, with the value being the number of events
spanned:

Memory Validator Help111

Copyright © 2001-2025 Software Verify Limited

Below are some examples of what the activity graph means, where:

· Start corresponds to the first known event in the target program
· Now indicates the most recent event sequence id for any event in the target program

Example 1: Some objects of the given type have been allocated, but none freed

Example 2: Some objects of the given type have been allocated, and all have been freed

The User Interface 112

Copyright © 2001-2025 Software Verify Limited

Example 3: Some objects of the given type have been allocated. Some of those have been freed,
but not all

Sorting columns

Sorted columns are shown yellow. Just click on the column header to change the sorting column or it's
sort direction order.

The sorted column takes effect in each of the five object tab views, Thread, DLL, etc.

Object tab options

Each of the five object tab views has different options at the top, with Tag Tracker Macro having none.

The first two tabs allow you to choose a single Thread or DLL for which to show object types used.

The Memory tab topic describes use of the Watermark and Tracker options in detail.

The following options are common to all five tabs:

Memory Validator Help113

Copyright © 2001-2025 Software Verify Limited

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to Never, you'll need to use this Refresh button to update the display.

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds - or never!

Allocator

· Allocator updates the display to show types allocated by the specified allocator

The allocator can be one of the values in this table. The default is All.

All All types
All Native
Memory

All native memory types

All Native
Handles

All native handle types

All .Net All .Net types

CRT All types from CRT allocations
HeapAllocAll types from HeapAlloc allocations
LocalAllocAll types from LocalAlloc allocations
GlobalAllo
c

All types from GlobalAlloc allocations

SysAlloc
String

All types from SysAllocString allocations

CoTaskM
emAlloc

All types from CoTaskMemAlloc
allocations

IMalloc All types from allocations tracked by
IMalloc

NetAPI All types from NetAPI allocations
Misc All types from Misc allocations
VirtualAllo
c

All types from VirtualAlloc allocations

The User Interface 114

Copyright © 2001-2025 Software Verify Limited

VirtualAllo
cEx

All types from VirtualAllocEx allocations

VirtualAllo
cVlm

All types from VirtualAllocVlm
allocations

User
Defined
(API)

All types from allocations reported by
the User Defined Types API

Custom
Hook

All types from allocations tracked by the
Custom Hooks settings

COM All types from COM allocations
Com
AddRef

All types from COM AddRef tracking

OpenGL All types from OpenGL allocations
Crypt All types from Crypt API allocations

Handles All types from handles not represented
by other allocators in this list

GDI
Handles

All types from GDI handle allocations

USER32
Handles

All types from USER32 handle
allocations

Internet
Handles

All types from internet related allocations
(socket, WinHttp...)

Printer
Handles

All types from WinSpool allocations

Fortran All types from Fortran allocations
Delphi All types from Delphi allocations

.Net
Objects

All types from .Net objects

.Net Large
Objects

All types from .Net large objects (>=
85,000 bytes in size)

.Net
Handles

All types from .Net handles

.Net
VTables

All types from .Net VTables

Local filters and settings

· Filter... shows the local filters dialog for the types tab, allowing you to fine tune what is included
or excluded from the display

The filter button also indicates the number of local filters, although not all of these may be
enabled

See also the popup menu options to create filters based on the selected object type

Memory Validator Help115

Copyright © 2001-2025 Software Verify Limited

See the Data Highlighting settings dialog to set the appearance of rows in the table depending on the
object count and whether it's increasing or decreasing

Types view popup menu

The following popup menu is available over the data area to allow filter creation or data drill-down.

Menu option: Filters

· Filter By Type creates a filter using the selected object type, so that it is removed from the view

· Filter By Size creates a filter based on the size of the selected object so all rows with an object
type of this size are removed

Filters created this way are added to the local filters dialog where they can be modified or
removed.

 Filters apply to each of the five object tabs and do not affect the values in each column -
only whether the object type is actually shown in the view.

Menu option: Finding types - drilling down into the data

· Find allocation of Type searches the Memory tab for allocations of the selected type

Menu option: Finding sizes - drilling down into the data

· Find allocation of Size searches the Memory tab for allocations of the selected size

Menu option: Showing locations - drilling down into the data

The following three options all open the Analysis Tab, adding a callstack for every allocation or
deallocation of the selected object type.

The User Interface 116

Copyright © 2001-2025 Software Verify Limited

This enables a deeper inspection of where and how instances of an object type is allocated or freed.

· Show Allocation Locations shows allocations only

· Show Deallocation Locations shows deallocations only

· Show Allocation and Deallocation Locations shows both

For example, showing allocations for the following row in the Types tab will show the callstacks for six
allocations of various sizes in the Analysis tab below:

3.7.4.2 Sizes

The Sizes tab summarises all the allocations in the target program by their size, as opposed to by type.

Click a part of the image below to jump straight to the help for that area.

The display shows information about allocations in threads, allocations in DLLs, allocations for each
watermark set in the session and allocations tracked by tag trackers.

The view lists of all the objects in the program in size order with the numbers of each allocated as well as
other information.

As in the types tab, here you can constrain the objects shown to those in particular threads or DLLs,
and those between watermarks or being tracked by tag trackers.

Memory Validator Help117

Copyright © 2001-2025 Software Verify Limited

 The features here are roughly a subset of those on the Types tab. If you're going through this help
and already read the about the Types tab, you could skip this topic and go on to the Timeline tab if you
wish.

Size tabs

At the top of the Size tab is a set of four tabs, each filtering which object sizes are shown in the table.

· Thread show stats for an individual thread in the list or All threads (the default)

· DLL show stats for a chosen DLL or All of them (the default)

· Watermark filter the display to show objects used between two watermarks

· Tag Tracker display stats for an individual tag tracker or for All trackers

Colours used in the display

Each row is coloured according to whether the object has:

 an increasing count for the number of live objects of the size

 a decreasing count

 a static count

 a zero count - i.e. where all allocated objects of the size have been freed

The importance of each value within the column is highlighted with a percentage bar:

 the object size with the maximum value in a given column (not shown for all columns)

 relative contribution of the value in each column

See also the Data Highlighting settings dialog to customise the first two colours.

The size data columns

The data in each column for all types of allocation are summarised below:

Some of the header columns display a total for the column underneath the column name.

· Size
· Count
· Max
· Cumulative

object size
number of live allocations of each size
maximum number of live allocations
cumulative number of allocations

The User Interface 118

Copyright © 2001-2025 Software Verify Limited

· Total
· Cum Total
· Seq 1
· Add Seq
· Del Seq
· Cur Seq
· Activity

running (live) total size (Size x Count)
cumulative total size (Size x Cumulative)
sequence id of first allocation of this size
id of most recent allocation
id of most recent deallocation
id of most recent allocation or deallocation
the span between first and most recent event sequence ids

To best explain the numbers in each column we'll use a simple example scenario which has a series of
char[] allocations and deallocations shown in order of their event sequence id.

This event sequence below (not actual code) will be used to demonstrate how some of the figures in the
columns would change with each event. Note this would leak allocations s4 and s5.

Size

The size is simply that of the allocated memory. Many different types of objects may have the same
size, especially the smaller sizes.

When a size cannot be determined, a size of -1 may be used:

Zero is a valid allocation size, for example new char[0] or SysAllocString(L"").

Count, Max and Cumulative

· Count the number of live objects of each size, so in our example the count for objects of size 10
increases and decreases, resulting in an overall increase of 1

· Max the maximum value that the count ever reaches - i.e. the peak number of live objects of each
size at any one time

· Cumulative increases with every single allocation, giving a historical total

Memory Validator Help119

Copyright © 2001-2025 Software Verify Limited

Total and Cumulative Total

· Total the running total gives the total size of all live objects of each type. This is simply Size *
Count

· C Total the cumulative total tells you how much of each type has ever been allocated. This is
Size * Cumulative

Sequence numbers: Seq 1, Add Seq, Del Seq and Cur Seq

The sequence numbers show significant event sequence ids relating to each size of object:

· Seq 1 the first allocation sequence id for each object size

· Add Seq the sequence id for the most recent allocation

· Del Seq the sequence id for the most recent deallocation

If no objects of a given size have ever been deleted, the value just shows a hyphen

· Cur Seq the most recent event sequence id related to each object size - usually the greater of
Add Seq or Del Seq

The User Interface 120

Copyright © 2001-2025 Software Verify Limited

Looking at the values for the range Seq 1 to Cur Seq helps give an indication of the span of activity of
each size of object.

Event sequence id markers

The four sequence id columns show markers visualizing the event's position relative to the the total
number of events so far.

Each row shows green markers denoting the relative position of the first and most recent sequence ids
for the objects of each size.

In the following example there have been approximately 3000 events to date:

These markers can help you see the relative timing and order of object size allocation and deallocation
much more quickly than scanning through the numbers alone.

Object activity

The 'activity' of an object size is the span between its first allocation id and the most recent event
sequence id at which at least one object of that size was still live.

The Activity column in the view shows a graph of that lifespan, with the value being the number of events
spanned:

Memory Validator Help121

Copyright © 2001-2025 Software Verify Limited

See also, explanatory examples of the graphs in the Types view.

Sorting columns

Sorted columns are highlighted yellow. Just click on the column header to change the sorting column or
it's sort direction order.

The sorted column takes effect in each of the five object tab views, Thread, DLL, etc.

Size tab options

Each of the four size tab views has different options at the top, with Tag Tracker Macro having none.

The first two tabs allow you to choose a single Thread or DLL for which to show object types used.

The Memory tab topic describes use of the Watermark and Tracker options in detail.

The following options are common to all five tabs:

The User Interface 122

Copyright © 2001-2025 Software Verify Limited

Updating the display

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds - or never!

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to Never, you'll need to use this Refresh button to update the display.

Allocator

· Allocator updates the display to show types allocated by the specified allocator

The allocator can be one of the values in this table. The default is All.

All All types
All Native
Memory

All native memory types

All Native
Handles

All native handle types

All .Net All .Net types

CRT All types from CRT allocations
HeapAllocAll types from HeapAlloc allocations
LocalAllocAll types from LocalAlloc allocations
GlobalAllo
c

All types from GlobalAlloc allocations

SysAlloc
String

All types from SysAllocString allocations

CoTaskM
emAlloc

All types from CoTaskMemAlloc
allocations

IMalloc All types from allocations tracked by
IMalloc

NetAPI All types from NetAPI allocations
Misc All types from Misc allocations
VirtualAllo
c

All types from VirtualAlloc allocations

Memory Validator Help123

Copyright © 2001-2025 Software Verify Limited

VirtualAllo
cEx

All types from VirtualAllocEx allocations

VirtualAllo
cVlm

All types from VirtualAllocVlm
allocations

User
Defined
(API)

All types from allocations reported by
the User Defined Types API

Custom
Hook

All types from allocations tracked by the
Custom Hooks settings

COM All types from COM allocations
Com
AddRef

All types from COM AddRef tracking

OpenGL All types from OpenGL allocations
Crypt All types from Crypt API allocations

Handles All types from handles not represented
by other allocators in this list

GDI
Handles

All types from GDI handle allocations

USER32
Handles

All types from USER32 handle
allocations

Internet
Handles

All types from internet related allocations
(socket, WinHttp...)

Printer
Handles

All types from WinSpool allocations

Fortran All types from Fortran allocations
Delphi All types from Delphi allocations

.Net
Objects

All types from .Net objects

.Net Large
Objects

All types from .Net large objects (>=
85,000 bytes in size)

.Net
Handles

All types from .Net handles

.Net
VTables

All types from .Net VTables

Display settings

· Display... shows the Data Highlighting settings dialog to set the appearance of rows in the table
depending on the object count and whether it's increasing or decreasing

Sizes view popup menu

The following popup menu provides options for examine data in more detail in the Analysis tab.

The User Interface 124

Copyright © 2001-2025 Software Verify Limited

Menu option: Finding sizes - drilling down into the data

· Find allocation of Size searches the Memory tab for allocations of the selected size

Menu option: Showing locations - drilling down into the data

The following three options all open the Analysis Tab, adding a callstack for every allocation or
deallocation of the selected object size.

This enables a deeper inspection of where and how objects of this size are allocated or freed.

· Show Allocation Locations shows allocations only

· Show Deallocation Locations shows deallocations only

· Show Allocation and Deallocation Locations shows both

For example, showing allocations for the following row in the Sizes tab will show the callstacks for four
allocations and one reallocation of 36 bytes in the Analysis tab below:

3.7.4.3 Locations

The Locations tab summarises all the allocations in the target program by their allocation location, as
opposed to by type.

Click a part of the image below to jump straight to the help for that area.

The left hand side of the view shows controls and a variety of statistics:

Memory Validator Help125

Copyright © 2001-2025 Software Verify Limited

The right hand side of the view shows information about generations and event sequence id:

The view lists of all the objects in the program in allocation location order with the numbers of each
allocated as well as other information.

 The features here are roughly a subset of those on the Types tab. If you're going through this help
and already read the about the Types tab, you could skip this topic and go on to the Timeline tab if you
wish.

Colours used in the display

Each row is coloured according to whether the object has:

 an increasing count for the number of live objects of the size

The User Interface 126

Copyright © 2001-2025 Software Verify Limited

 a decreasing count

 a static count

 a zero count - i.e. where all allocated objects of the size have been freed

The importance of each value within the column is highlighted with a percentage bar:

 the object size with the maximum value in a given column (not shown for all columns)

 relative contribution of the value in each column

See also the Data Highlighting settings dialog to customise the first two colours.

The locations data columns

The data in each column for all types of allocation are summarised below:

Some of the header columns display a total for the column underneath the column name.

· Function
· Count
· Size
· Delta
· Max
· Cumulative
· %Size
· %Objects
· Total
· Cum Total
· Gen 1
· Add Gen
· Del Gen
· Seq 1
· Add Seq
· Del Seq
· Cur Seq
· Activity

allocation location
number of live allocations of each size
size of the allocations made at this location
change in count since last refresh
maximum number of live allocations
cumulative number of allocations
percentage of all allocations by total size
percentage of all allocations by object count
running (live) total size (Size x Count)
cumulative total size (Size x Cumulative)
first generation allocated
recent generation allocated
recent generation deallocated (or garbage collected)
sequence id of first allocation of this size
id of most recent allocation
id of most recent deallocation
id of most recent allocation or deallocation
the span between first and most recent event sequence ids

Function

The function in which the memory was allocated for this allocation location.

Size

The size is simply that of the allocated memory. Many different types of objects may have the same
size, especially the smaller sizes.

When a size cannot be determined, a size of -1 may be used:

Memory Validator Help127

Copyright © 2001-2025 Software Verify Limited

Zero is a valid allocation size, for example new char[0] or SysAllocString(L"").

Count, Max and Cumulative

· Count the number of live objects for each allocation location, so in our example the count for
objects of size 10 increases and decreases, resulting in an overall increase of 1

· Max the maximum value that the count ever reaches - i.e. the peak number of live objects for
each allocation location at any one time

· Cumulative increases with every single allocation, giving a historical total

Total and Cumulative Total

· Total the running total gives the total size of all live objects of each allocation location. This is
simply Size * Count

· C Total the cumulative total tells you how much for each allocation location has ever been
allocated. This is Size * Cumulative

Generation numbers, Gen 1, Add Gen, Del Gen

The generation numbers show significant generation ids relating to each allocation location.

· Seq 1 the generation for the first allocation at this location

· Add Seq the generation for the most recent allocation at this location

· Del Seq the generation for the most recent deallocation of memory allocated at this location

If no objects have ever been deleted for a given location, the value just shows a hyphen

Looking at the values for the range Gen 1 to Del Gen helps give an indication of the span of activity of
each allocation location.

Sequence numbers: Seq 1, Add Seq, Del Seq and Cur Seq

The sequence numbers show significant event sequence ids relating to each allocation location:

· Seq 1 the first allocation sequence id for each allocation location

· Add Seq the sequence id for the most recent allocation

· Del Seq the sequence id for the most recent deallocation

If no objects of a given size have ever been deleted, the value just shows a hyphen

The User Interface 128

Copyright © 2001-2025 Software Verify Limited

· Cur Seq the most recent event sequence id related to each allocation location - usually the
greater of Add Seq or Del Seq

Looking at the values for the range Seq 1 to Cur Seq helps give an indication of the span of activity of
each size of object.

Event sequence id markers

The four sequence id columns show markers visualizing the event's position relative to the the total
number of events so far.

Each row shows green markers denoting the relative position of the first and most recent sequence ids
for the objects of each allocation location.

In the following example there have been over 19 million events:

These markers can help you see the relative timing and order of object size allocation and deallocation
much more quickly than scanning through the numbers alone.

Allocation location activity

The 'activity' of an allocation location is the span between its first allocation id and the most recent event
sequence id at which at least one object of that size was still live.

The Activity column in the view shows a graph of that lifespan, with the value being the number of events
spanned:

See also, explanatory examples of the graphs in the Types view.

Memory Validator Help129

Copyright © 2001-2025 Software Verify Limited

Sorting columns

Sorted columns are highlighted yellow. Just click on the column header to change the sorting column or
it's sort direction order.

Locations tab options

The following options are available:

Updating the display

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds - or never!

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to Never, you'll need to use this Refresh button to update the display.

Allocator

The User Interface 130

Copyright © 2001-2025 Software Verify Limited

· Allocator updates the display to show types allocated by the specified allocator

The allocator can be one of the values in this table. The default is All.

All All types
All Native
Memory

All native memory types

All Native
Handles

All native handle types

All .Net All .Net types

CRT All types from CRT allocations
HeapAllocAll types from HeapAlloc allocations
LocalAllocAll types from LocalAlloc allocations
GlobalAllo
c

All types from GlobalAlloc allocations

SysAlloc
String

All types from SysAllocString allocations

CoTaskM
emAlloc

All types from CoTaskMemAlloc
allocations

IMalloc All types from allocations tracked by
IMalloc

NetAPI All types from NetAPI allocations
Misc All types from Misc allocations
VirtualAllo
c

All types from VirtualAlloc allocations

VirtualAllo
cEx

All types from VirtualAllocEx allocations

VirtualAllo
cVlm

All types from VirtualAllocVlm
allocations

User
Defined
(API)

All types from allocations reported by
the User Defined Types API

Custom
Hook

All types from allocations tracked by the
Custom Hooks settings

COM All types from COM allocations
Com
AddRef

All types from COM AddRef tracking

OpenGL All types from OpenGL allocations
Crypt All types from Crypt API allocations

Handles All types from handles not represented
by other allocators in this list

GDI
Handles

All types from GDI handle allocations

USER32
Handles

All types from USER32 handle
allocations

Internet
Handles

All types from internet related allocations
(socket, WinHttp...)

Memory Validator Help131

Copyright © 2001-2025 Software Verify Limited

Printer
Handles

All types from WinSpool allocations

Fortran All types from Fortran allocations
Delphi All types from Delphi allocations

.Net
Objects

All types from .Net objects

.Net Large
Objects

All types from .Net large objects (>=
85,000 bytes in size)

.Net
Handles

All types from .Net handles

.Net
VTables

All types from .Net VTables

Filter settings

· Filter... shows the Location Filters settings dialog to edit the filters.

Locations view popup menu

The following popup menu provides options for filtering and examining data in more detail.

Menu option: Paths to Root, Paths from Root

The following options are only active for .Net allocation locations. These options are disabled for native
allocation locations.

· Paths to Root For all live objects allocated at this location displays all the paths from the object
to the most recent heap dump roots.

· Paths from Root For all live objects allocated at this location displays all the paths most recent
heap dump roots to the live objects.

Menu option: Filter by Function, Filter by Size

The following options allow you to remove data from the display using filters.

The User Interface 132

Copyright © 2001-2025 Software Verify Limited

· Filter by Function creates a filter with the selected allocation location function.

· Filter by Size creates a filter with the selected allocation location size.

By default filters prevent data from being displayed. You can change this using the Location Filters.

Filters can be edited using the Filter... button to display the Location Filters.

Menu option: Showing locations - drilling down into the data

The following option opens the Analysis Tab, adding a callstack for every allocation or deallocation of the
selected object size.

This enables a deeper inspection of where and how objects of this size are allocated or freed.

· Show Allocation Locations shows allocations only

For example, showing allocations for the following row in the Locations tab will show the callstacks for
four allocations of 6000 bytes in the Analysis tab below:

3.7.4.4 Generations

The Generations tab summarises all the allocations in the target program by their generation, as
opposed to by type.

Click a part of the image below to jump straight to the help for that area.

Memory Validator Help133

Copyright © 2001-2025 Software Verify Limited

The view lists of all the object types in the program in generation order, with the ability to view a range of
related statistics.

 The features here are roughly a subset of those on the Types tab. If you're going through this help
and already read the about the Types tab, you could skip this topic and go on to the Timeline tab if you
wish.

Generation tabs

Each tab provides a different group of generation statistics:

· Num Objects How many objects of this type in this generation

· Min Objects Minimum number of objects of this type in this generation

· Max Objects Maximum number of objects of this type in this generation

· Allocated Number of objects of this type allocated in this generation

· Collected Number of objects of this type collected in this generation

If you only see 0 values this may indicate leaking objects. For example:

· Delta Difference between number of objects of this type allocated and collected

If you only see positive deltas this may indicate leaking objects. For example:

The User Interface 134

Copyright © 2001-2025 Software Verify Limited

· Object Churn Object churn for this object type for this generation

Percentage of objects collected in the generation divided by the number of objects allocated in the
generation. This number can exceed 100%.

High object churn - objects are being rapidly created and garbage collected

Low object churn - objects are rarely being created and rarely garbage collected. Low churn may
indicate leaking objects.

· Max Churn Maximum churn for this object type for this generation

Percentage of objects collected in the generation divided by the maximum number of objects in the
generation.

· Finalized How many objects of this type have been finalized.

For many objects this will always be zero.

The above values need to assessed together to determine if a particular object type may be leaking. A
collected count of zero, on it's own is meaningless. But if combined with a history of allocations and only
positive deltas, that's a pretty strong hint that this object type may be leaking and that you need to
examine it further.

The generations data columns

The first column is the object type.

All other columns represent each generation of data. The ordering of the generation columns is controlled
by the Display Settings.

The header columns display a total for the column underneath the column name.

The value in each column is determined by which tab of data is being displayed.

Colours used in the display

Each row is coloured according to whether the object has:

 an increasing count for the number of live objects of the size

 a decreasing count

 a static count

 a zero count - i.e. where all allocated objects of the size have been freed

Memory Validator Help135

Copyright © 2001-2025 Software Verify Limited

The importance of each value within the column is highlighted with a percentage bar:

 the object size with the maximum value in a given column (not shown for all columns)

 relative contribution of the value in each column

See also the Data Highlighting settings dialog to customise the first two colours.

Generations tab options

The following options are available:

Sorting columns

Sorted columns are highlighted yellow. Just click on the column header to change the sorting column or
it's sort direction order.

As well as the column headers we also provide explicit sorting controls to provide an extra option that
isn't available from the column headers ("Current generation").

· Sort choose the generation to sort

· Descending choose the sort direction

Updating the display

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds - or never!

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to Never, you'll need to use this Refresh button to update the display.

The User Interface 136

Copyright © 2001-2025 Software Verify Limited

· Display... display the Generation Settings dialog.

Filter settings

· Filter... shows the Generations Filters settings dialog to edit the filters.

Generations view popup menu

The following popup menu provides options for filtering and examining data in more detail.

Menu option: Paths to Root, Paths from Root

The following options are only active for .Net object types. They are disabled for native object types.

· Paths to Root For all live objects of this type display all the paths from the object to the most
recent heap dump roots.

· Paths from Root For all live objects of this type display all the paths most recent heap dump
roots to the live objects.

Menu option: Filter by Function

The following options allow you to remove data from the display using filters.

· Filter by Type creates a filter with the selected object type.

By default filters prevent data from being displayed. You can change this using the Generation Filters.

Filters can be edited using the Filter... button to display the Generation Filters.

Menu option: Showing locations - drilling down into the data

The following option opens the Analysis Tab, adding a callstack for every allocation or deallocation of the
selected object size.

This enables a deeper inspection of where and how objects of this size are allocated or freed.

Memory Validator Help137

Copyright © 2001-2025 Software Verify Limited

· Show Allocation Generations shows allocations only

For example, showing allocations for the following row in the Generations tab will show the callstacks for
4748 allocations of System.String in the Analysis tab below:

3.7.4.4.1 Generation Settings Dialog

The Generation Settings dialog allows you to control how the display looks on the Generations view.

· Display most recent generation first change how the generations are displayed.

Most recent generation first

Most recent generation last

3.7.4.5 Ages

The Ages tab summarises all the allocations in the target program by their age, as opposed to by type.

Click a part of the image below to jump straight to the help for that area.

The User Interface 138

Copyright © 2001-2025 Software Verify Limited

The view lists of all the object types in the program in generation order, with the ability to view a range of
related statistics.

 The features here are roughly a subset of those on the Types tab. If you're going through this help
and already read the about the Types tab, you could skip this topic and go on to the Timeline tab if you
wish.

Age tabs

Each tab provides a different group of generation statistics:

· Objects How many objects of this type are this age

· Object Activity How many objects of this type are this age have any object activity. If an object
has not been used for a long time there is a good chance it has been leaked.

· Stale Objects How many objects of this type are this age are considered to be stale.

Stale objects may be candidates for memory leak inspection. These objects are based upon simple
hueristics guided by some parameters you can set using the settings dialog. The hueristics allow you
to tailor the stale object detection for your application because a good strategy for one application may
not be very useful for another application (compare a word processor to a server process - they both
have different characteristics in memory usage).

Object Activity detection and Stale Object detection is controlled by the Object Activity Settings.

Watching the Ages display as your application runs can give you a very good instantaneous view of
which object types may be candidates for further inspection for memory leaks.

 Note that the Ages display is CPU intensive. If you do not need to view the Ages display you are
advised to view a different display whilst collecting data to maximise the performance of Memory
Validator.

Memory Validator Help139

Copyright © 2001-2025 Software Verify Limited

The ages data columns

The first column is the object type.

All other columns represent each object age. The ordering of the ages columns is controlled by the
Display Settings.

The header columns display a total for the column underneath the column name.

The value in each column is determined by which tab of data is being displayed.

Colours used in the display

Each row is coloured according to whether the object has:

 an increasing count for the number of live objects of the size

 a decreasing count

 a static count

 a zero count - i.e. where all allocated objects of the size have been freed

The importance of each value within the column is highlighted with a percentage bar:

 the object size with the maximum value in a given column (not shown for all columns)

 relative contribution of the value in each column

See also the Data Highlighting settings dialog to customise the first two colours.

Ages tab options

The following options are available:

The User Interface 140

Copyright © 2001-2025 Software Verify Limited

Sorting columns

Sorted columns are highlighted yellow. Just click on the column header to change the sorting column or
it's sort direction order.

As well as the column headers we also provide explicit sorting controls to provide an extra option that
isn't available from the column headers ("Type" and "Inactive").

· Sort choose the generation to sort

· Descending choose the sort direction

Updating the display

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds - or never!

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to Never, you'll need to use this Refresh button to update the display.

· Display... display the Ages Settings dialog.

Filter settings

· Filter... shows the Ages Filters settings dialog to edit the filters.

Ages view popup menu

The following popup menu provides options for filtering and examining data in more detail.

Memory Validator Help141

Copyright © 2001-2025 Software Verify Limited

Menu option: Paths to Root, Paths from Root

The following options are only active for .Net object types. They are disabled for native object types.

· Paths to Root For all live objects of this type display all the paths from the object to the most
recent heap dump roots.

· Paths from Root For all live objects of this type display all the paths most recent heap dump
roots to the live objects.

Menu option: Filter by Function

The following options allow you to remove data from the display using filters.

· Filter by Type creates a filter with the selected object type.

By default filters prevent data from being displayed. You can change this using the Generation Filters.

Filters can be edited using the Filter... button to display the Generation Filters.

Menu option: Showing locations - drilling down into the data

The following option opens the Analysis Tab, adding a callstack for every allocation or deallocation of the
selected object size.

This enables a deeper inspection of where and how objects of this size are allocated or freed.

· Show Allocation Ages shows allocations only

For example, showing allocations for the following row in the Ages tab will show the callstacks for 2634
allocations of System.Collections.DictionaryEntry in the Analysis tab below:

The User Interface 142

Copyright © 2001-2025 Software Verify Limited

3.7.4.5.1 Ages Settings Dialog

The Ages Settings dialog allows you to control how the display looks on the Ages view.

· Display oldest first change how the ages are displayed.

Oldest first

Youngest first

Filtering

Some simple filtering is provided which may be useful in reducing the scope of the types you are
examining to just those types defined by your program.

· Do not include objects allocated inside the .Net framework ignore anything the .Net
framework allocates.

· Do not include objects of types provided by the .Net framework ignore any types the .Net
framework provides.

Memory Validator Help143

Copyright © 2001-2025 Software Verify Limited

3.7.5 .Net

The .Net tab provides three .Net specific tools for identifying where .Net memory is allocated and which
locations may be leaking memory.

Click on an item in the picture below to find out more about each of the tabbed windows, or use the
list further below:

3.7.5.1 .Net Snapshots

Snapshots are a useful way of identifying memory (or handles) that are loitering in memory for longer
than you expected.

These may be leaked, or they may be getting garbage collected later than you expected.

The Snapshots view allows you to create, compare, display and delete snapshots.

Click a part of the image below to jump straight to the help for that area.

The view is split into two halves. The left hand pane manages the creation, comparison, and deletion of
snapshots. The right hand pane displays a snapshot or snapshot comparison.

Managing Snapshots

The controls for managing snapshots are listed at the top of the pane.

The User Interface 144

Copyright © 2001-2025 Software Verify Limited

· Snapshot Create a snapshot. If the snapshot is not automatically named, you will be prompted to
name the snapshot

· Compare... Create a snapshot comparison. If the snapshot comparison is not automatically
named, you will be prompted to name the snapshot comparison

· Delete Delete the selected snapshot

· Delete All Delete all snapshots

· Display... Edit settings related to the naming of snapshots and snapshot comparisons.

The grid below the controls lists each snapshot or comparison, the garbage collection they are related to
and how many objects are represented by the snapshot.

Selecting a snapshot or snapshot comparison in the grid on the left hand pane will display the snapshot
or snapshot comparison on the right hand side.

Displaying Snapshots

The controls for displaying snapshots are at the top of the right hand pane.

· Snapshot dropdown Choose which group of objects to display

For snapshots there is only one option: Snapshot objects.

For snapshot comparisons there are two options: Snapshot new objects and Snapshot survivors.

o Snapshot objects Shows the objects in the snapshot

o Snapshot new objects Shows the objects in the snapshot comparison that are in the second

snapshot but not in the first snapshot.

o Snapshot survivors Shows the objects in the snapshot comparison that are present in the first

snapshot and the second snapshot.

· Expand All Expand all callstacks

Memory Validator Help145

Copyright © 2001-2025 Software Verify Limited

· Collapse All Collapse all callstacks

· Display... Edit settings related to the displaying snapshots and snapshot comparisons.

The top row of the grid will show the snapshot name (or snapshot comparison name). The row below will
indicate what type of objects are present (Objects, New objects, Survivors) and how many.

The remainder of the grid will display callstacks for each object (or group of objects with a common
callstack) that are in the group of objects being displayed.

Snapshots view popup menu

The following popup menu provides options for filtering and examining data in more detail.

The User Interface 146

Copyright © 2001-2025 Software Verify Limited

Menu option: Go to Heap Dump, Paths to Root, Paths from Root

The following options are only active for .Net object types. They are disabled for native object types.

· Go to Heap Dump Find the heap dump entries for the selected objects.

· Paths to Root For the selected objects display all the paths from the object to the most recent
heap dump roots with the Paths to Root dialog.

· Paths from Root For the selected objects display all the paths most recent heap dump roots to
the live objects with the Paths to Root dialog.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu options: Collapse Hotspot, Expand Hotspot, Collapse All, Expand All

· Collapse Hotspot or Expand Hotspot simply shows and hides data item information, the same

as using the or buttons

· Collapse All or Expand All collapses or expands all callstack entries

3.7.5.1.1 .Net Snapshot Creation Dialog

The Snapshot Creation dialog allows you to specify a name for a newly created snapshot.

The dialog is initially displayed with a suggested default name for the snapshot (as shown above).

Memory Validator Help147

Copyright © 2001-2025 Software Verify Limited

If you would prefer a more informative name, type your own snapshot name.

· Automatically name snapshots All future snapshots will be named automatically. You won't see
this dialog again.

If you change your mind and wish to start naming your snapshots again, go to the Snapshots
Display Settings dialog to change the setting.

3.7.5.1.2 .Net Snapshot Comparison Dialog

The Snapshot Comparison dialog allows you to specify a name for a newly created snapshot.

The dialog is initially displayed with a suggested default name for the snapshot comparison (as shown
above).

If you would prefer a more informative name, type your own snapshot name.

· Automatically compare most recent... All future snapshots will be named automatically and
compared automatically.

The comparison will be between the penultimate snapshot and the most recent snapshot. You won't
see this dialog again.

If you change your mind and wish to start naming your snapshot comparisons again, go to the
Snapshots Display Settings dialog to change the setting.

The first and second snapshots default to the penultimate snapshot and the most recent snapshot.

· First snapshot The snapshot to be compared against.

· Second snapshot The snapshot that you think may contain leaked objects.

The User Interface 148

Copyright © 2001-2025 Software Verify Limited

3.7.5.1.3 .Net Snapshot Display Settings Dialog

The Snapshot Display Settings dialog allows you to manage automatic naming and the maximum
number of snapshots.

Automatic Naming

· Auto name memory snapshots All snapshots will be automatically named.

· Auto name memory snapshot comparisons All future snapshot comparisons will be
automatically named and automatically compared.

Snapshots

Snapshots can contain a lot of objects. If you create too many of these Memory Validator might run of
memory.

To keep this manageable we allow you to set a maximum number of snapshots.

When the snapshot limit is exceeded the oldest snapshot is automatically deleted.

· Max Snapshots The maximum number of snapshots to keep.

Memory Validator Help149

Copyright © 2001-2025 Software Verify Limited

3.7.5.1.4 .Net Snapshot Callstack Display Settings Dialog

The Snapshot Callstack Display settings dialog allows you to control how data is displayed on the
snapshot callstacks display.

Display Ordering

The callstacks in a snapshot can be sorted prior to display.

· Allocation Order the order objects were allocated in
· Size by the size of the allocation
· Object Type alphabetical comparison of object type
· Filename alphabetical comparison of filename
· Namespace alphabetical comparison of namespace
· Address the object id of each object

Making the data easier to understand

Some options affect how much data is shown. Displaying less data can sometimes make for a more
readable display.

The User Interface 150

Copyright © 2001-2025 Software Verify Limited

· Display Style determine which objects to display.

o Full information about every allocation and error is displayed (unless filtered)

o Simplified - your source code at root Only traces that have a callstack with your source

code at the top of the callstack are displayed
o Simplified - your source code not at root Only traces that have a callstack with your source

code in the callstack (except for the top position) are displayed
o Simplified - your source code anywhere Only traces that have a callstack with your source

code anywhere in the callstack are displayed
o Simplified - compiler vendor source code at root Only traces that have a callstack with

your compiler vendor source code at the top of the callstack are displayed
o Simplified - compiler vendor source code not at root Only traces that have a callstack with

your compiler vendor source code in the callstack (except for the top position) are displayed
o Simplified - compiler vendor source code anywhere Only traces that have a callstack with

your compiler vendor source code anywhere in the callstack are displayed
o Simplified - no source code Only traces that have a callstack with no source code are

displayed

· Callstack grouping display all callstacks or just unique callstacks

o Full every callstack is shown

o Simplified - Only show unique callstacks Traces that share the same callstack are

displayed once. A summary is shown indicating the number of allocations, how many bytes in
those allocations and the size of the largest allocation.

· Minimum Generation only display objects that were created on or after the specified generation.
This allows you to ignore objects created at startup, or before a particular point in program execution

· Minimum Age only display objects that have survived at least the specified number of garbage
collections. This allows you to ignore objects that are most likely still in use

Callstacks can be displayed in collapsed or expanded form:

· Auto Expand every callstack is displayed expanded so that you can see the callstack as well as
the summary

3.7.5.2 .Net Heap Dumps

Heap dumps allow you to understand the relationship between each .Net memory/handle allocation in
your program.

Heap dumps can be requested manually via the Heap Dump icon or the .Net Tools menu.

Heap dumps can also be requested each time a garbage collection occurs. This is controlled by the
settings dialog.

Click a part of the image below to jump straight to the help for that area.

Memory Validator Help151

Copyright © 2001-2025 Software Verify Limited

Heap dump selection

Some simple heap dump management is provided by controls at the top of the Heap dump view.

· Heap Dump Select the heap dump to display. Click Refresh to the left of the top panel to display
the heap dump.

· Clear Heap Dumps Deletes all heap dumps and removes all data from the display

 After clearing heap dumps any attempts to fetch a new heap dump will fail until enough objects
have been allocated to allow a garbage collection to run.

· Display... Displays the Heap Dump Settings dialog to control the display of heap dumps

How the display works

The User Interface 152

Copyright © 2001-2025 Software Verify Limited

The view is split into two parts horizontally and three parts vertically.

Horizontal

Horizontally the split is between the graph on the left and source code, callstacks and related objects on
the right.

Vertical

Vertically the split is between the data we're looking, objects referencing what we're looking at,
referencing objects and referenced objects. The referencing objects and referenced objects are only
populated when an object is selected in the top heap dump graph. As you change which object is
selected the two lower graphs update, and the information displayed to the right also updates - the
source code, the allocation callstack and any related objects, these are all updated.

In each vertical section the horizontal split is the same; heap dump graph on the left, source code,
callstack, related objects on the right.

How the data relates to each other

Let's take a tour of the user interface by examining each panel. First we need some data to display.
We've already performed a heap dump (or a garbage collection has created one for us). Click Refresh to
cause the user interface to display the selected heap dump. We start the tour in the top left.

Here we can see various objects, some of which are heap dump roots, and an object with 10,000
referenced objects.

Each object is displayed indicating root, or non-root, how many child objects and their size, object id,
age, the generation it was created, it's type and allocation filename and line number. For example:

Memory Validator Help153

Copyright © 2001-2025 Software Verify Limited

Non-root
Referencing 10,000 objects of size 139.740 bytes
Object id 0x000000001101c190
Age 1
Generation created: 0
Type shape (in the module dnmvExample)
Filename e:\om\c\dnMemoryValidator\dnmvExample\Form1.cs and line 405

At the left of the panel are three buttons

· Expand All Expands all the graph nodes

· Collapse All Collapses all the graph nodes

· Refresh Displays the selected heap dump. If the heap dump is already displayed it will be
redisplayed in it's default state.

In the middle left and bottom left panels we can see the objects referencing the selected object, and the
objects referenced by the selected object.

These panels behave in the same way as the top panel, displaying related information on the right. There
is one difference - the Refresh button has been replaced by a Promote button.

· Promote Move all nodes (or just the selected node to the top panel) for exploration.

The panels to the right show source code, the allocation callstack and any related nodes (allocated with
the same callstack). These panels are duplicated for each of the three panels on the left.

The User Interface 154

Copyright © 2001-2025 Software Verify Limited

Memory Validator Help155

Copyright © 2001-2025 Software Verify Limited

Heap dump recursion

A heap dump is represented as a graph showing which objects have a reference to other objects. Some
objects also reference themselves, either directly, or indirectly via intermediate objects, forming a
recursive loop.

In the above image we can see 0x0000000010352a4c points to itself, and 0x0000000010352000 points
to itself indirectly via 0x0000000010352a4c.

Heap dump links

A heap dump has many roots, each with it's own graph of objects beneath it. Because multiple roots
may link to the same subgraph we've decided to represent each subgraph only once and show links to
that subgraph as an arrow.

The User Interface 156

Copyright © 2001-2025 Software Verify Limited

In the above image we can see a link to a subgraph. To visit that subgraph right click on the node to
show the context menu then choose Go to main node entry....

Heap dumps view popup menu

The following popup menu provides options for filtering and examining data in more detail.

Menu option: Promote, Paths to Root, Paths from Root, Go to main node

The following options are only active for .Net object types. They are disabled for native object types.

· Promote Referencing Nodes Promote the nodes referencing the selected object to the top left
panel.

· Promote Referenced Nodes Promote the nodes referenced by the selected object to the top left
panel.

· Paths to Root For the selected objects display all the paths from the object to the most recent
heap dump roots with the Paths to Root dialog.

· Paths from Root For the selected objects display all the paths most recent heap dump roots to
the live objects with the Paths to Root dialog.

· Go to main node entry... Find the heap dump entry for the selected object.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu options: Collapse Hotspot, Expand Hotspot, Collapse All, Expand All

Memory Validator Help157

Copyright © 2001-2025 Software Verify Limited

· Collapse Hotspot or Expand Hotspot simply shows and hides data item information, the same

as using the or buttons

· Collapse All or Expand All collapses or expands all callstack entries

3.7.5.2.1 .Net Heap Dump Display Settings Dialog

The Heap Dump Display Settings dialog allows you to manage how heap dumps are displayed, both
visually and the content of the heap dump.

Click a part of the image below to jump straight to the help for that area.

Data Display

Various attributes related to the each node can be displayed:

· Object ID Object ID.

· Age How many garbage collections since this object was created.

The User Interface 158

Copyright © 2001-2025 Software Verify Limited

· Generation The generation this object was created in.

· Class The object class.

· Number of objects The number of objects this object references.

· Namespace The object namespace.

· Filename The source code filename and line number for the allocation location.

· Path The source code path for the allocation location.

· Thread ID The thread id for the allocation location.

· Size of objects The size in bytes of the number of objects referenced by this object.

Visual Highlighting

To aid identifying long lived objects that may be of interest when trying to find loitering objects that may
be leaked you can highlight objects older than a specified age, and created after a specified generation.
This allows you to ignore objects created during the startup phase of the application. A example of
highlighting is shown below the highlighting controls.

· Highlight long lived objects Turn visual highlighting of loitering objects on / off.

· Highlight objects older than How old do you think an object needs to be for it get your
attention?

Memory Validator Help159

Copyright © 2001-2025 Software Verify Limited

· Ignore first N generations Enter the number of garbage collections it takes for your application
to startup.

Highlighted objects look like this:

Data ordering

When choosing how to order the heap dump there are a few sorting options:

· Num References, Type, Filename Sort by Num References, then by Type, then by Filename.

· Type, Filename, Num References Sort by Type, then by Filename, then by Num References.
This is the default option.

· Filename, Type, Num References Sort by Filename, then by Type, then by Num References.

Making the data easier to understand

Heap dumps can be very complicated to understand. The complexity is increased when there are objects
present that don't really add to your understanding of the heap dump, but which are present all the same.
We've provided some options to allow you to tailor the level of complexity to suit the task.

· Full heap dump Everything in the heap dump is shown.

The User Interface 160

Copyright © 2001-2025 Software Verify Limited

· Simplified heap dump Unimportant nodes in the heap dump are not shown. This is the default
option.

What is classed as unimportant? Any node that references no other nodes and has no source code
(CLR/.Net Frameworkd source code is not included) and any node that has reference nodes that are
classed as unimportant.

· Over simplified heap dump Unimportant nodes in the heap dump are not shown. Additionally
some recursive nodes and some node links are not shown.

The simplified heap dump is easier to display because less data is shown. It includes all recursive nodes
and links to other nodes.

The over simplified heap dump has even less data and for many tasks may be easier to understand. But
because the recursive nodes and links to other nodes are absent you may get an incorrect sense of the
layout of the heap dump.

You need to use the over simplified heap dump with caution.

Auto display

· Refresh the display when the dialog is closed The display will be completely refreshed. Do
not choose this option if you only wanted to change the visual highlighting or data display.

Memory Validator Help161

Copyright © 2001-2025 Software Verify Limited

3.7.5.2.2 .Net Path to Root

The Path to Root dialog shows the path from the selected object to it's root nodes.

The dialog can also show the paths from it's root nodes to the selected object (the Path from Root).

The data displayed in the right hand window is the source code, for selected entry, the callstack and any
related objects.

This is the same information that is displayed in the right hand part of the Heap Dumps view. A more
detailed description is provided in that help topic.

· Show Paths to Root Displays the paths from the selected object to the heap dump roots.

· Show Paths from Root Displays the paths from the heap dump roots to the selected object.

· Expand All Expands all paths to/from roots.

· Collapse All Collapses all path to/from roots.

3.7.5.3 .Net Leak Analysis

Garbage collected programs, in theory, never leak memory. In practice that isn't the case, which is
probably why you're using Memory Validator.

If references to objects are not reset to null the garbage collector will not collect the object, even if it will
never be used again by the program. Such conditions are hard to detect even with tools like Snapshots
and Heap Dumps.

The User Interface 162

Copyright © 2001-2025 Software Verify Limited

To aid in this task we've created a dedicated .Net leak analysis query facility where you can use
predefined queries or design your own query.

Each query is formed from five factors and the display of the results allows for a range of filtering options.

Click a part of the image below to jump straight to the help for that area.

Displaying Data

Data from each query is displayed in the tree control.

Each query is prefixed with a line that describes the query that was run.

The query results are displayed after the description.

Each line has an icon at the left, indicating its type, and has an explanatory tooltip:

The text on each line indicates:

· datatype (if known)
· size
· allocation address/handle value
· source file and line number (if available) where the allocation occurred
· optional event sequence id at the beginning of the line

Memory Validator Help163

Copyright © 2001-2025 Software Verify Limited

There are two types of callstack representation.

The first callstack representation is that of an object that has been allocated on a callstack that has
never had any objects allocated on it that have been garbage collected.

The second callstack representation is that of an object that has been allocated on a callstack that has
had objects allocated on it garbage collected.

This colouring is controlled by the Enhanced callstack colouring option on the Callstack settings of
the settings dialog.

Display Style

Before displaying the data from a query the data needs to meet the criteria specified by the display style.
This is a simple filter based on the availability of source code, and where that source code is on the
callstack. The reason for this is that allocations (causing memory leaks) in your source code are fixable,
whereas allocations in 3rd party code, or allocations that don't have source code are not fixable because
you don't have access to the source code. This doesn't mean you should ignore such allocations as they
may be caused by a side effect of one of your allocations or a reference from an object you control, but
the ability to filter the data this way can greatly simplify the scope of the query results you are examining
and lead to greater insight.

In addition to the display style, data is also displayed according to a callstack group critieria: display all
callstacks, or group similar callstacks together.

Both of these styles can be edited using the .Net Leak Analysis display settings dialog.

The User Interface 164

Copyright © 2001-2025 Software Verify Limited

· Display... displays the .Net Leak Analysis display settings dialog

Defining a Query

A query is defined by five criteria which need to be matched to put each object into the query results.

To use a criteria in a query enable the appropriate check box.

Object count

· Increasing object count increases each generation
· Increasing or stable object count increases or remains stable each generation
· Decreasing object count decreases each generation
· Decreasing or stable object count decreases or remains stable each generation

Object churn

· No Churn There is no object churn
· N Object has no object churn for N generations

[where N is list of numbers representing each generation except the current generation]

Object generation

· Generation > 0 Any object in a generation greater than 0
· N Object generation is greater than the specified generation

[where N is list of numbers representing each generation except the current generation]

Object age

· Age > 0 Any object older than 0
· N Object age is greater than the specified age

[where N is list of numbers representing each generation except the current generation]

Object activity

· No activity No object activity
· N Object has no activity for N generations

[where N is list of numbers representing each generation except the current generation]

Garbage collected

· Collected callstack Object allocated on a callstack that previous deallocated objects were
allocated on

Memory Validator Help165

Copyright © 2001-2025 Software Verify Limited

· Not collected callstack Object allocated on a callstack that no deallocated objects were
allocated on

· Collected (recent GC) Object of a type that has been collected in a recent GC
· Not collected (recent GC) Object of a type that has not been collected in a recent GC
· Collected (any GC) Object of a type that has been collected in any GC
· Not collected (any GC) Object of a type that has been collected in any GC

Predefined Queries

Setting up queries can be time consuming and tedious. To help with this there are some built-in
predefined queries.

· Predefined queries select a query to use. The controls that define a query will be updated to
match the selected query definition.

The default predefined queries are:

o Rising count, no churn

o Rising count, no churn, previous allocations collected on same callstack

o Rising count, no churn, previous allocations not collected on same callstack

o Rising or stable count, no activity

o Rising or stable count, no activity, previous allocations collected on same callstack

o Rising or stable count, no activity, previous allocations not collected on same callstack

o No churn for 1 generation and no activity for 1 generation

o No churn for 2 generations and no activity for 2 generations

o No churn for 3 generations and no activity for 3 generations

o No activity for 3 generations

o Show objects collected by GC

o Show objects collected by any GC

o Show objects not collected by any GC

o Show objects not collected by any GC where object count is increasing

o Show objects not collected by 3 GCs where object count is increasing

o Show objects not collected by any GC where no object activity

o Show objects not collected by 3 GCs where no object activity

· Add query a new query is formed using the selection in the six combo boxes described in the
Defining a Query section. The query is added to the list of predefined queries.

· Reset reset the list of predefined queries to the default predefined queries. All custom predefined
queries will be lost.

Running Queries

The controls at the top left define how queries are run and managed.

The User Interface 166

Copyright © 2001-2025 Software Verify Limited

· Run query all objects in the current generation are compared to the current query definition. If
they match the query they are displayed according to the display style rules.

· Add query a new query is formed using the selection in the six combo boxes. The query is added
to the list of predefined queries.

· Clear all query results are removed

· Auto clear if selected all previous query results will be removed each time a new query is run

Leak Analysis view popup menu

The following popup menu provides options for filtering and examining data in more detail.

Menu option: Go to Heap Dump, Paths to Root, Paths from Root

The following options are only active for .Net object types. They are disabled for native object types.

· Go to Heap Dump Find the heap dump entries for the selected objects.

· Paths to Root For the selected objects display all the paths from the object to the most recent
heap dump roots with the Paths to Root dialog.

· Paths from Root For the selected objects display all the paths most recent heap dump roots to
the live objects with the Paths to Root dialog.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Memory Validator Help167

Copyright © 2001-2025 Software Verify Limited

Menu options: Collapse Hotspot, Expand Hotspot, Collapse All, Expand All

· Collapse Hotspot or Expand Hotspot simply shows and hides data item information, the same

as using the or buttons

· Collapse All or Expand All collapses or expands all callstack entries

3.7.5.3.1 .Net Leak Analysis Display Settings

The .Net Leak Analysis Display Settings control the .Net memory, .Net handles and displayed on the
.Net Leak Analysis.

The default options are shown below:

The display style can be one of the following values:

· Full information about every allocation and error is displayed (unless filtered)
· Simplified - your source code at root Only traces that have a callstack with your source code

at the top of the callstack are displayed
· Simplified - your source code not at root Only traces that have a callstack with your source

code in the callstack (except for the top position) are displayed
· Simplified - your source code anywhere Only traces that have a callstack with your source

code anywhere in the callstack are displayed
· Simplified - compiler vendor source code at root Only traces that have a callstack with your

compiler vendor source code at the top of the callstack are displayed
· Simplified - compiler vendor source code not at root Only traces that have a callstack with

your compiler vendor source code in the callstack (except for the top position) are displayed
· Simplified - compiler vendor source code anywhere Only traces that have a callstack with

your compiler vendor source code anywhere in the callstack are displayed
· Simplified - no source code Only traces that have a callstack with no source code are

displayed

The callstack grouping can be one of the following values:

The User Interface 168

Copyright © 2001-2025 Software Verify Limited

· Full every callstack is shown. This can be slow if there are many unique results.
· Simplified - Only show unique callstacks traces that share the same callstack are displayed

once. A summary is shown indicating the number of allocations, how many bytes in those
allocations and the size of the largest allocation.

· Clear the display and re-run... the display will be cleared and the query re-run if this option is
selected.

Reset

· Reset resets all the display related settings for this tab

3.7.6 Analysis

The Analysis tab provides five tools for inspecting memory usage.

If the Analysis tab isn't visible, use the Data Views menu to set which views are shown.

Click on an item in the picture below to find out more about each of the tabbed windows, or use the
list further below:

3.7.6.1 Hotspots

The Hotspots tab displays areas of high memory and handle allocation activity.

Read on, or click a part of the image below to jump straight to the help for that area.

Memory Validator Help169

Copyright © 2001-2025 Software Verify Limited

Memory hotspots are locations in the target program that are responsible for the highest allocation of
memory or handles.

This view displays those hotspots that have a contribution to the total allocated memory, which is greater
than the threshold setting below.

The tab is split into two resizeable halves, with the left showing the hotspot callstacks and the right
showing the source code for any selected row on the left.

Hotspot display styles

At the top of the Hotspot tab is a combo box containing a list of many display styles, allowing you to
choose what data to examine.

· Native Memory hotspot data for native memory allocations

· Native Handles hotspot data native handle allocation hotspots

· .Net Memory hotspot data for .Net memory allocations

· .Net Handles hotspot data .Net handle allocation hotspots

· All Memory hotspot data for all native and .Net memory allocation hotspots

· All Handles hotspot data for all native and .Net handle allocation hotspots

The User Interface 170

Copyright © 2001-2025 Software Verify Limited

· All Native hotspot data for all native memory and handle allocation hotspots

· All .Net hotspot data for all .Net memory and handle allocation hotspots

· All hotspot data for all native and .Net memory and handle allocation hotspots

The left side of the tab shows three columns of data:

· Size total size of memory or handles allocated within the hotspot area

· Count how many allocations were made within the hotspot

· Hotspots a hierarchical view of the function calls leading to each hotspot location

Hotspot function call hierarchy

To reduce the amount of repeated information, allocations sharing a partial callstack are merged together
in the hotspot function call hierarchy.

As you expand each node in the tree, it shows the function, file and line number, although you can show
more via the display settings.

Intermediate nodes indicate the function's percentage contribution to the total allocation, along with the
size and count information.

These intermediate nodes are only shown at and after the branches, i.e. where a function splits the
allocations between different child callstacks.

Source code

Memory Validator Help171

Copyright © 2001-2025 Software Verify Limited

A short section of the source code around the highlighted allocation line is shown at the end of the
callstack.

You can browse the whole source file (if available) on the right when you click on any row in the
hierarchy.

If you want to edit rather than browse, double clicking a row will open the relevant source code file for
editing, using the editor of your choice.

Hotspot tab options

Similar to the other tab pages, a set of options are found on the left, that control the data displayed in
both the memory and the handles hotspot views.

The choice of lifetime or live data, and the setting of the hotspot threshold are specific to the hotpot tab.

Lifetime data or live data

You can choose to display all recorded allocations or just the live ones.

· All allocations shows cumulative data for all allocations, reallocations and deallocations and
associated hotspots

· Current allocations shows only the live data that has not been freed, and the current hotspots

If the program has ended, this will be the leaked memory, enabling you to see leak hotspots.

The User Interface 172

Copyright © 2001-2025 Software Verify Limited

Be sure to click Refresh after changing this option and others.

Reducing data with watermarks and tag trackers

As with other tabs, you can restrict displayed data to that between two watermarks, or allocations
associated with particular tags.

The Memory tab topic describes use of the Watermark and Tracker options in detail.

Contribution threshold

The threshold of whether a location is regarded as a 'hotspot' is determined by the percentage
contribution to the overall consumption of memory or handles.

· All shows the hotspot hierarchies incorporating all allocations, barring any filtering via watermarks,
tag trackers etc

· X% display only hotspots that contribute at least that much to the overall resources

· Children controls whether hotspots use sub allocations in the hierarchies to meet the hotspot
percentage criteria

Sorting

The data on the display can't be sorted, but you can change the ordering direction

· Ascending swaps the ascending or descending ordering of the hotspots. Don't forget to Refresh!

Memory Validator Help173

Copyright © 2001-2025 Software Verify Limited

Local filters and settings

· Display... shows the Hotspot Tab Display Settings dialog to set the types of data and messages
displayed in the hotspot view.

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

· Clear removes all data from the display

This reduces Memory Validator's own memory usage. If you have lots of data but low memory on
your computer, clearing one view before using another view may help.

· Collapse All completely collapses all hotspot data items, including any source code views that
were open

· Expand All expands all data items down to but not including the source code snapshots

Hotspot view popup menu

The following popup menu is available over the data area

· Edit Source Code... opens the default or preferred editor to edit the source code

· Expand next hotspot expands the hierarchy only as far as the next hotspot, but not the source
code snippet

· Collapse entry collapses the selected hierarchy of hotspots

· Expand entry expands all hotspots in the selected hierarchy

The User Interface 174

Copyright © 2001-2025 Software Verify Limited

3.7.6.1.1 Hotspot Display Settings

The Memory Hotspot Settings dialog controls the type of data that is displayed on the Hotspot tab.

Types of memory to display

The following types of memory allocations can all be optionally displaying in the hotspots view.

· CRT memory
· Win32 heap
· BSTR objects from SysAllocString function
· LocalAlloc()
· GlobalAlloc()
· Virtual memory
· Custom memory allocations using the Custom Hooks functionality
· User memory allocations using the API
· OpenGL
· FORTRAN memory
· Delphi memory
· COM objects

Only CRT Memory allocations are enabled by default.

Memory Validator Help175

Copyright © 2001-2025 Software Verify Limited

 Note that these settings control what is displayed, not what is collected. The data collection
settings may have more information about some of the settings above.

Level of detail displayed

You can choose the level of detail displayed in each entry on the hotspots view:

· Address displays the address as part of a hotspot entry

· Module shows the module load address

· Path includes the full file path or just the filename when showing file and line below

· File and Line shows the filename and line number

· Units gives allocation sizes in Bytes, KB or MB

Allocation behaviour

Memory Validator refers to an allocation as having an allocation behaviour - indicating one of the
following:

· Allocation
· Reallocation
· Deallocation

The default is to include all three behaviours in the hotspot calculations

Empty nodes

When the Memory tab option is set to show only live data rather than lifetime data, it is possible for the
total number of bytes (or handles) displayed to be zero.

· Include empty nodes... include zero byte or zero handle entries in the hotspot listing

Refresh and reset

· Refresh the display... enables updates of the hotspot display whenever this settings dialog is
closed

· Reset revert all these settings to the default values shown in the picture above

The User Interface 176

Copyright © 2001-2025 Software Verify Limited

3.7.6.2 Coverage

The Coverage tab lets you find untested parts of your program's memory and resource allocation.

If the Coverage tab isn't visible, use the Data Views menu to set which views are shown.

Read on, or click a part of the image below to jump straight to the help for that area.

Using the coverage information

Inspecting the coverage tells you which memory allocation, reallocation and deallocation locations are or
are not being tested, including resource handles.

Understanding the coverage helps you plan and improve your regression tests to include areas of code
that allocate memory or deallocate memory but are not yet being visited.

The display shows two resizable panes, one with the coverage data, and the other shows source code
when you click on a row in the table.

 In order to gather coverage statistics, you'll need to switch on the memory coverage setting.

Colours used in the displays

Each file's row is coloured according to whether it has:

 no lines visited

 some lines visited

Memory Validator Help177

Copyright © 2001-2025 Software Verify Limited

 all lines visited

 been filtered out for subsequent sessions (see below)

The % Visited column and the source code view uses:

 for the percentage of lines visited, or visited lines of source code

 for unvisited lines

Coverage data

The data in each column is summarised below

· File
· Num Lines
· Num Visited
· Visit Count
· % Visited
· DLL

the statistics are gathered for each source code file found
number of lines in each file that allocate, reallocate or free memory and handles
the number of those lines that have been visited
total number of visits to those lines
the percentage of relevant lines visited (Num Visited / Num Lines)
the DLL responsible for the file

The Visit Count may be equal to the Num Visited if you have opted to keep the default memory coverage
setting of counting visits to each allocation only once. You can change this setting on the fly to start
counting multiple visits right away.

At the top of the table is a Totals line showing combined results for all files.

 The statistics here only cover lines that affect memory allocation, unlike SoftwareVerify's sister tool
C++ Memory Validator which determines complete code coverage.

Sorting columns

Sorted columns are highlighted yellow in the header. Just click on the header to change the sorting
column or it's sort direction order.

See also the sorting option below.

Source code view

The source code view is syntax-highlighted with green visited and blue unvisited lines.

The columns at the left show line numbers and visit counts for each allocation line which are also
available via a tooltip.

https://www.softwareverify.com/cpp-coverage.php

The User Interface 178

Copyright © 2001-2025 Software Verify Limited

Coverage options

The following controls are displayed to the left of the coverage results

Filters

Unwanted results in the coverage can be excluded via the filters according to filename, directory or DLL.

Filters can be managed in the filters dialog or added via the menu options below.

· Filters... shows the coverage filters dialog

Memory Validator Help179

Copyright © 2001-2025 Software Verify Limited

The filters dialog is the same one as found on the memory coverage page of the global settings
dialog where it is described in detail.

Window orientation

The data and source code panes can be arranged horizontally or vertically with the orientation button.

Sorting

Using the drop down list to select any of the column heading items and using the ascending check box
is exactly the same as sorting using the column header.

Updating the display

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds - or not at all!

Adjust this depending on the complexity of your application.

· Refresh updates the display - as does the button on the Tools menu and toolbar, and the
button on the popup menu

With an update interval set to No Update, you'll need to use this Refresh button to update the
display when you wish.

Display settings

On the coverage tab, there's only the one display option:

· Show Path shows the short file name or the longer file path in the File column of the data

Coverage view popup menu

The following popup menu is available over the data area to add filters, refresh the view or edit source
code.

The User Interface 180

Copyright © 2001-2025 Software Verify Limited

Menu options: Filtering coverage

The first three menu options let you add filters at different levels of granularity.

 Filters become effective at the start of the next session. Adding a filter during a session will show
the row in grey so that you can see which files are filtered, but the coverage results will continue to be
included for the rest of the session.

· Filter coverage data by filename adds a new filter to the Filters dialog, excluding the selected
file from the results of a subsequent session

· Filter coverage data by directory excludes all files in the same directory as the selected file

· Filter coverage data by DLL excludes all files belonging to the same DLL as the selected file

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

3.7.6.3 Query

The Query tab shows groups of search results and allows you to find many types of related data for
different memory allocations.

Click a part of the image below to jump straight to the help for that area.

Memory Validator Help181

Copyright © 2001-2025 Software Verify Limited

If you've read the previous sections then you'll probably have seen menu options referring to showing
results here on the analysis tab.

Think of the analysis tab as a basket where you can send groups of data to inspect at your leisure.

That data will appear in the upper of the two resizable windows and becomes your work ing data from
which you can also find related allocations to display in the lower window.

The Analysis Data

Both the upper and lower views show data in the same format as that found in the Memory tab's
collected data.

Each line has an icon at the left, indicating its type, and has an explanatory tooltip:

The text on each line is the same and indicates:

· datatype (if known)
· size
· allocation address/handle value
· source file and line number (if available) where the allocation occurred
· an optional event sequence id at the beginning of the line

The User Interface 182

Copyright © 2001-2025 Software Verify Limited

The background colour for each line indicates the status of the data - eg, leaked, damaged, or
uninitialized.

To edit the source code, double click on any part of the lines of source code displayed or use Edit
Source Code...

The upper window - working data

The upper window will contain any data sent from other tabs or results of queries made via the buttons at
the left.

This becomes your working data, and will grow (with a header line between each group) as each set of
results is added.

Using the relations option on the popup menu, you can then find related allocations or objects which are
displayed as separate results in the lower window.

The lower window - results within results

Having obtained related data in the lower window you can inspect it in the same way, filter it and promote
it back up to the top window.

Navigation shortcuts

Two navigation keyboard shortcuts are provided. They collapse the current entry, move to the next or
previous entry and then expand that entry to show the full callstack.

To move to the previous top level entry press

To move to the next top level entry press

Analysis tab options - upper window

At the far left of the window are the now familiar options for filtering data using the the Watermark and
Tracker methods outlined for the Memory tab.

Memory Validator Help183

Copyright © 2001-2025 Software Verify Limited

Also familiar, are the filter and display settings:

· Filter... shows the local filters dialog for the memory tab

The filter button also indicates the number of local filters, although not all of these may be
enabled

· Display... shows the Analysis Display Settings dialog

Unlike other tabs, there are no options to update the display here, since the data is always static.

Instead, there are options to change the type of memory allocation you are interested in, and these will
only take effect on any new queries added to the display.

· Behaviour choose to show memory that has reached one or all of the allocation, reallocation and
deallocation stages

· Type choose to show query results for handles, or memory as per the above behaviour, or both

· Clear Results removes all working data from the upper window only as the lower window has its
own clear button

The User Interface 184

Copyright © 2001-2025 Software Verify Limited

Running data queries

The data in the analysis tab is not limited to that sent from other tabs.

From the buttons at the left you can run some common or very targeted queries to search for allocations,
reallocations, and deallocations of memory and resource handles.

Custom queries

Several of the main tabs have some comprehensive methods of querying memory or functions, and which
are accessible from the main query menu and query toolbar.

The Analysis tab has dedicated buttons for two of these queries:

· Memory... Shows the Find Memory dialog to use a wide range of search criteria to find memory

· Functions... Shows the Find Functions dialog but displays the results here in the analysis tab

Predefined queries

There are a selection of common predefined queries available at a single click:

· Damaged finds all damaged memory allocations, such as overwrite, underwrite, double delete,
etc

· Uninitialised shows any detected uninitialised memory if you've switched these hooks and
settings on

· Leaked finds all leaked locations, memory and handles still in use after the application has exited

· Invalid Handles finds all invalid or NULL handles

· Trace Messages shows any trace messages if you've switched the trace hook setting on

Memory Validator Help185

Copyright © 2001-2025 Software Verify Limited

Memory reuse

Memory re-use is not necessarily an error, in fact it almost certainly isn't, as the allocator will provide
previously freed memory addresses as memory allocation addresses.

For certain bugs, memory corruption being an example, you may be interested in knowing which
locations allocated memory allocations at a particular address,
and if that address has been re-used. These are targets for further investigation.

· Memory Reuse searches for reused memory in the application

Because search through all memory may take a long time in a large and active application, you can
instead opt to search within a range of memory:

The start and end addresses for the memory range can be entered in decimal or hexadecimal format with
the leading 0x

 Note that some libraries outside your control may reuse memory, so be aware that not all results
found are necessarily errors in your application.

Analysis tab options - lower window

The lower window has it's own comparatively simple set of options:

The User Interface 186

Copyright © 2001-2025 Software Verify Limited

· Auto Clear clears the lower window before adding a new relations search from the upper window

· Clear when Promote clears the lower window when promoting these results to the upper window

· Clear Results simply empties the lower window

· Filter Results optionally filters the lower window data using the same filters as the upper window

· Use Watermarks on Results applies the upper window's watermark settings to the lower window

· Include search in results brings the upper window item that initiated the relations search along
with the results

· Promote Results pushes all or selected lower window results into the upper window, optionally
adding to or replacing what's there already

Analysis view popup menu

The following popup menu is available over the upper window.

Memory Validator Help187

Copyright © 2001-2025 Software Verify Limited

Menu option: data item summary

· Help on selected item the sub-menu shows a simple one line description of the selected entry:

Menu option: relations

The relations menu has a large sub-menu with many different options for choosing a set of related data to
display in the lower analysis window.

Think of this as a sub-query on the working data - like searching for friends of friends on a social network!

Given an entry in the upper window, available relations are as follows, with allocations generally meaning
any allocation, reallocation or deallocation

· Same address
· Same size
· Smaller
· Larger

Finds any other allocations on the same memory address, for example
previous allocations or frees
Allocations on any memory objects of identical size
 or on smaller
 or larger objects

· Same handle Finds any other allocations of the same resource handle

· Same
object/handle type

Finds any other allocations of the same type

· Same location,
 same callstack
 different
callstack
 all callstacks

Finds other allocations made at the source code location:
 via the same callstack
 different callstacks
 or any callstack

· Same function
· Same source file
· Same DLL

All allocations from the same function...
 or the same file
 or the same DLL

· Class allocations All allocations, reallocations or deallocations from the same C++
class

· Relations to 'this' Finds various other events relating to the selected object:

Allocator of this - only for reallocated objects
Reallocation of this
Reallocation of this address at same address
Reallocation of this address at different address
Deallocation of this
Allocations, reallocations, deallocations
Referenced by this - these two need the target application to still
be running

The User Interface 188

Copyright © 2001-2025 Software Verify Limited

· Same address
· Same size
· Smaller
· Larger

Finds any other allocations on the same memory address, for example
previous allocations or frees
Allocations on any memory objects of identical size
 or on smaller
 or larger objects

Referencing this

· Allocations within For memory allocations, finds all other allocations within a range of 32
bytes up to 4Kb of this one

· Allocations prior
· Allocations after

For memory allocations, finds the previous 5, 10 or 20 allocation events
 or the next 5, 10 or 20 events

· Errors Shows any known damaged memory allocation information relating to
this entry

Menu option: filters

The filter options here are identical to that of the Memory tab menu options.

The three filter options on the menu let you create different types of filters at different scopes, using
various attributes of the selected data item.

The types and scopes of filters in Memory Validator are described in detail elsewhere, but here's a quick
summary:

· Local filters affect the current tab only and are managed locally via the filters button
· Session filters affect all tabs until the end of the session, and are saved with sessions
· Global filters affect all tabs, and are persistent between sessions until removed from the global

filters

For each scope, you can create instant, temporary or custom filters:

· Instant quick and easy - this uses the selected data item and requires no further input from you
· Temporary like instant filters but not saved with any session data
· Custom allows you to define the characteristics of the filter

Finally - for each scope and type of filter, you can use any of the following elements of the selected data
item as the filtering characteristic:

Memory Validator Help189

Copyright © 2001-2025 Software Verify Limited

A fourth option allows you to filter the next run by DLL, either excluding that DLL, or including that DLL,
in the list of DLLs that will be monitored.

The Hooked DLLs settings dialog is displayed.

Menu option: mark as fixed

· Mark as fixed marks the selected item as "I have fixed this"

The User Interface 190

Copyright © 2001-2025 Software Verify Limited

To remove the marking from the event press the shift key at the same time you choose Mark as
fixed on the menu.

Items that have been marked as fixed are shown with a line struck through them.

This allows you to easily identify items that you've worked on and items that have yet to be worked on.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu option: copy special

The copy special sub-menu lets you copy to the clipboard any of the following attributes, (or all the
information):

See the same option on the Memory view menu for more information.

Menu option: bookmarks and watermarks

Bookmarks allow you to find a data item easily at a later date, while watermarks are used above to show
only those items between two points in time

Memory Validator Help191

Copyright © 2001-2025 Software Verify Limited

· Add Bookmark... adds a bookmark for the selected item

· Add Watermark... adds a watermark for the selected item

Menu options: collapse / expand trace

· Collapse or Expand Trace simply shows and hides data item information, the same as using

the or buttons

· Collapse All completely collapses all data items in the upper window, including any source code
views that were open

· Expand All expands all data items down to but not including the source code snapshots

3.7.6.3.1 Analysis Display Settings

The Analysis Display Settings dialog controls the grouping and removal of data shown on the Analysis
view.

Clearing the display with new data

The display can be cleared automatically when new data is added.

· Auto Clear clears the upper window on each new query or when new results are sent from
another tab

· Promote Clears clears the upper window when data is promoted from the lower window

The User Interface 192

Copyright © 2001-2025 Software Verify Limited

Grouping by callstack

You can opt to show allocations from similar callstacks as individual entries or as single summary
entries.

· Group by Callstack displays all allocations having the same callstack as a single entry

For example, in the mvExmple application, choosing the menu option Allocation Test Many Hooks
at once four times would normally show the following

But if entries were set to be grouped by callstack, you'd see this instead:

The summary indicates the number of allocations along with the largest allocation and the total size for
all items.

Removal of purged data

Using the allocation history global settings, you can set how much data Memory Validator keeps for
reallocated or freed memory.

If you are keeping your analysis results around for a while, or you have a large and active application, you
may want to ensure that your analysis results are not affected when older data is purged in this way.

· Auto Update allows older callstacks to be removed if their historical data is purged

 The default is to auto update the results to remove purged data, but note that if you disable
this and have limited memory resources, you should re-enable it when possible, to ensure
memory consumption does not build up unnecessarily.

Reset

· Reset resets the options to the default options shown in the screenshot at the top of this section

Memory Validator Help193

Copyright © 2001-2025 Software Verify Limited

3.7.6.4 Pages

The Pages tab displays all known memory allocations according to the virtual memory page in which
they were allocated.

If the Pages tab isn't visible, use the Data Views menu to set which views are shown.

Click a part of the image below to jump straight to the help for that area.

This tab provides a snapshot of how the memory in use is distributed across virtual memory pages (4K in
size).

By looking at the data, especially the graphical view, you can see the memory fragmentation, and find
out which parts of the application are using each memory page.

The Pages Data

The data lists all virtual memory pages used by the target application, omitting those pages that have no
allocations within or overlapping them.

The first line of data gives an overall summary, for example:

The remaining expandable items are shown in page order:

Each page item shows:

The User Interface 194

Copyright © 2001-2025 Software Verify Limited

· the page address
· the number of allocated objects completely or partially in the page
· the percentage fragmentation within the page
· number of bytes used
· unused bytes

Expanding an item shows details about allocated objects and free space in each page.

Selecting one page in the list may highlight others either side in gray as below. This indicates that those
pages are linked by memory allocations spanning between or across those pages.

Display options allow you to focus either on the objects within each page or on the order of the objects
and free space.

 Note that unlike many of the other data tabs, the pages data is not automatically updated at regular
intervals. You'll have to click Refresh to get an update.

Page tab options

At the far left of the window are some options for updating and viewing the data.

Memory Validator Help195

Copyright © 2001-2025 Software Verify Limited

Display settings

The display option at the top changes how the data is displayed when you expand each page data item:

· Display by Usage orders the information within each page by the objects using it, and then by
the chunks of free space, grouped by size

· Display by Address shows each page's information by the start address of each object or chunks
of free space within that page

· Unused space threshold when displaying by address, free space blocks greater than this
threshold are highlighted as below

Each allocated object in the expanded view shows data type, size, address, and source file with line
number if known.

Below are examples of a page's details expanded for each display method:

By usage:

By address, highlighting free space blocks over the set threshold:

The User Interface 196

Copyright © 2001-2025 Software Verify Limited

Updating the display

· Clear removes all data from the display

This can be useful if you have limited RAM and inspecting large applications as it frees up
resources used by Memory Validator so that you can use another tab view.

· Refresh updates the display - as does the button on the Tools menu and toolbar

· Expand All expand all entries on the display

· Collapse All collapse all entries on the display

Graphical view

· Graphical shows the following dialog visualizing the page data in memory

Memory Validator Help197

Copyright © 2001-2025 Software Verify Limited

This view uses a single coloured pixel for each page of memory, wrapping from left to right and top to
bottom:

· Red very fragmented - 0 to 33% usage
· Blue fragmented - 33 to 66% usage
· Green least fragmented - 66 to 100% usage

Hovering the mouse over any coloured area in the graph shows the address, number of objects, and the
usage as a percentage and number of bytes just below the graph.

The graph has a popup menu giving access to allocations, reallocations and deallocations as follows:

· Page information... allocations in the selected page (pixel)

· Region information... allocations in the same contiguous block of colour (i.e. with the same
fragmentation level)

An example of the page information dialog is below. The region information shows the first and last page
address accordingly.

The User Interface 198

Copyright © 2001-2025 Software Verify Limited

The allocations in the dialog can be expanded, to show the local source code, and double clicking
launches your preferred editor with the source file.

Local filters and settings

· Filter... shows the local filters dialog for the Pages tab

The filter button also indicates the number of local filters, although not all of these may be
enabled

Searching for memory in pages

You can search for items in the displayed data using the button in the toolbar, and the Search
option in the Query menu.

Totals

Memory Validator Help199

Copyright © 2001-2025 Software Verify Limited

At the bottom of the options on the left are two totals:

· Total allocated gives the total memory consumption for all allocated objects

· Max allocated shows the total allocation capacity for all the virtual memory pages currently in
use

This would simply be the number of pages multiplied by 4K, so in the example above 57 pages *
4096 = a capacity of 233,472 bytes

Pages view popup menu

The following popup menu is available over the data area

Menu option: Help on selected item

· Help on selected item the sub-menu shows a simple one line description of the type of data that
has been selected:

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu option: relations

When used over an allocation within a page, the relations sub menu lets you show some related
allocations in the Analysis tab to inspect in more detail.

The User Interface 200

Copyright © 2001-2025 Software Verify Limited

· Show Allocation Location adds only the allocation for the selected item in the page to the
Analysis tab

· Show previous and next... adds the available allocations for the allocations in the specified
event sequence range, relative to the selected item in the page

For example, choosing the previous and next 10 allocations, shows allocations in the range id-
10 to id+10, but only those that are still accessible.

· Show Allocations/Deallocations for type adds all the allocations/deallocations (or both) to the
Analysis tab that match the object type of the selected item in the page

For example, if the allocation in the page is of type BYTE[], this will show every allocation that is
of the same type, including the one you selected.

Menu options: collapse / expand page data

· Collapse or Expand Page Data simply shows and hides the information for the selected page,

the same as using the or buttons

· Collapse or Expand All completely collapses or expands all the pages information in the display

3.7.6.5 Virtual

The Virtual tab shows a graphical or tabulated view of all the memory in the target program, and how it's
being used.

If the Virtual tab isn't visible, use the Data Views menu to set which views are shown.

Click a part of the image below to jump straight to the help for that area.

Memory Validator Help201

Copyright © 2001-2025 Software Verify Limited

The virtual tabs

At the top of the display are three tabbed data views: one graphical, and two tabulated:

· Graphic a graphical visualisation of virtual memory pages, similar to that used on the main Pages
tab

· Pages a tabulated view of each 4K virtual memory page used by the target application

· Paragraphs a tabulated view of each virtual memory paragraph

Each of the three views includes data from Win32 Heaps, CRT heaps, DLLs, Memory mapped files and
thread stacks.

 Note that the view supports an address range of 2Gb, or 3Gb on suitable operating systems if the
target application has been built with the /3GB and /LARGEADDRESAWARE parameters.

Memory usage types

The virtual tab views show the memory type as being one of the following. Default colours are shown
here, but can be changed.

 Commit Commited memory, allocated with VirtualAlloc()

 Reserve Reserved memory, allocated with VirtualAlloc()

 Free Free memory, whether unused or deallocated

 DLL used by EXEs, DLLs and assemblies in the program

 Stack stack space used by threads

http://msdn.microsoft.com/en-us/library/windows/hardware/ff556232(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/wz223b1z.aspx

The User Interface 202

Copyright © 2001-2025 Software Verify Limited

 Mapped memory mapped files

 Heap allocated by HeapAlloc() etc

 CRT allocated by the C runtime: malloc, calloc, new etc

 Stub workspace memory used by Memory Validator

 out of address range

 Normally, the virtual memory manager treats memory only as free, committed, or reserved, since it
doesn't care that a given region of memory is stack space, DLL storage space, a memory heap etc.
Memory Validator adds the additional memory types to make the results more useful.

Graphic view

The graphic view uses a single pixel, coloured as above, to visualise the state of each 4K page of
memory, wrapping from left to right and top to bottom.

If there is no target program being monitored, or the program has closed, the display will appear black.

Hovering the mouse over the display shows information at the top of the view about the region and page
under the pointer.

· Region Address: shows the start and end address of the contiguous coloured region of memory,
and its size (hex and decimal)

· Page Address: shows the page address

· <Memory usage information> shows the memory type (as above) at the end of the line and
optional extra information

For a heap, its handle value is also displayed.
If the region is a process module (DLL, EXE, etc), then its filename is shown.

 If you're testing this display using the supplied example program, you might want to allocate quite a
large block of memory, eg 10Mb or more, to make it significant in the display.

Pages view

The Pages view lists similar data as the graphic view, showing the allocation state of each page and
region of memory in the program.

For each area, the address, size, type, protected state and description of the area are given.

Memory Validator Help203

Copyright © 2001-2025 Software Verify Limited

Unlike the graphical view, if the target program has exited, this view keeps the last known state

A few options are available above the list:

· Sort chooses which column to sort by, the default being to sort by ascending address

This is exactly equivalent to clicking in the header row of columns in the table itself.

· Descending swaps the ascending or descending ordering of the hotspots

· Ignore Colours for Virtual Memory toggles whether to highlight the areas of memory in the list
that are marked as commited, reserved or free

· Export enables the export of virtual memory data in HTML, XML or CSV file formats

Read more about exporting virtual memory data and the format of the exported data.

Paragraphs view

The Paragraph view displays very similar data to the previous Pages view, but using larger chunks of
memory.

A paragraph is defined by dwAllocationGranularity in the SYSTEM_INFO data structure returned from
GetSystemInfo, but is typically 64K.

Virtual tab options

At the far left of the window are the usual options for updating the refresh interval and setting display
colours.

The User Interface 204

Copyright © 2001-2025 Software Verify Limited

Updating the display

· Update Interval (s) automatically updates the display at your choice of interval between 0.1 and
60 seconds, or the default of Never!

Choose an interval suitable for the size of your application, as lots of data may take longer to
draw than the interval itself !

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to Never, you'll need to use this Refresh button to update the display.

Display settings - colours

· Colours shows the Virtual Memory Colours dialog to change the colours used in the views for
each type of memory usage above

Each colour can be changed via the button, or all colours can be reset to their defaults.

Apply updates the colours in the virtual view without closing the dialog.

Memory usage totals

Below the options are the total accumulated amounts for each type of memory usage above.

· Units sets the units for displaying the total values in MB, KB or the number of pages

Virtual view popup menu

Each virtual view has a popup menu giving access to allocations, reallocations and deallocations in a
page or region:

Memory Validator Help205

Copyright © 2001-2025 Software Verify Limited

All views give region information and view data, but only the graphical view also gives page information for
the point under the cursor.

· Page information... allocations in the selected page (pixel)

· Region information... allocations in the same selected contiguous region of memory with the
same type.

 No dialog? Not all pages and regions contain allocations, in which case, no allocation dialog
appears, and you'll hear a beep (if you have speakers on!). If your allocations are generally on the CRT
heap for example, look for the corresponding coloured areas - the CRT memory usage is yellow by
default.

An example of the page information dialog is below. The region information shows the first and last page
address accordingly.

The User Interface 206

Copyright © 2001-2025 Software Verify Limited

The allocations in the dialog can be expanded, to show the local source code, and double clicking
launches your preferred editor with the source file.

· View data... shows the bytes for selected memory region, if that region is readable. CAUTION,
this option can be very slow.

3.7.7 Diagnostic

The Diagnostic tab displays information collected by Memory Validator about the target program.

There are two subtabs. One for Diagnostic information and one for displaying any data captured from
stdout and stderr.

Diagnostic

Memory Validator Help207

Copyright © 2001-2025 Software Verify Limited

Diagnostic information

When Memory Validator's stub is injected into the target program, it logs diagnostic information to the
main window for inspection.

Examples of diagnostic data collected are below, and may be displayed with a message, although you
may not see some of these if all is well:

Hooking information Other information

· Ordinal hook found
· Hook C++ constructor / destructor
· Function hook success or failure
· Delay loaded function hooked
· Possible hook found
· Function already hooked
· Hook at address

· DLL load address
· DbgHelp searching
· Image source line
· Unknown instruction found
· Disassembly of troublesome code
· Failed to find Release/Debug CRT heap
· Symbol reader status

The locations of loaded DLLs are also displayed in the window for each LoadLibrary(),
LoadLibraryEx() and FreeLibrary() in the target program.

 If for whatever reason, you don't want to collect diagnostic information, you can switch it off in the
Advanced > Symbols Misc page of the settings dialog

Filtering diagnostic information

By default, all information is displayed, but you can filter the messages to show only one type:

· All the default
· Information operating system and environment information, etc
· Hooks hooking success and failure messages
· DLLs DLL related information
· Symbols symbol loading status messages
· DbgHelp debug messages from DbgHelp.dll about the DLL symbol search processes
· Symbols and DbgHelp debug both the previous two

 When identifying why symbols are not loading, you'll find it's much easier when showing only the
DbgHelp debug information.

Stdout and Stderr

The User Interface 208

Copyright © 2001-2025 Software Verify Limited

The Stdout tab displays any data collected from stdout and stderr. The option to enable this data
collection is specified on the launch dialog/wizard.

The above image shows some data collected from a program that reverses the characters in each line
passed to it.

· Copy copy all data from the display on to the clipboard. For large amounts of data this can be
time consuming.

· Clear clear the display of any captured data.

· Display Most Recent the display will be scrolled to ensure the most recently captured data is
displayed.

Environment Variables

Memory Validator Help209

Copyright © 2001-2025 Software Verify Limited

Environment variables tab displays environment variables from Memory Validator, environment variables
from the program under test and environment variable substitution errors.

Choose which data you wish to view using the combo box at the top left of the tab.

Memory Validator environment variables

Target application environment variables

If you launched the target application from Memory Validator the target application’s environment
variables will be similar to those in Memory Validator, but with some additional env vars to control .Net
profilers and and some other SVL_ prefixed env vars to communicate various data to Software Verify
components that are loaded.

If you launched the target application as a standalone application, or service and used one of our APIs to
connect to Memory Validator, the environment variables shown will reflect those in force at the time the
application/service was started, and the account that application/service is running on.

The User Interface 210

Copyright © 2001-2025 Software Verify Limited

Environment variable errors

The environment variable errors display shows the name of the environment variable that could not be
found, the string containing the environment variable, a comment indicating where the string came from
(in this example, the command line), and a timestamp.

Child Processes

Information about child processes, and the appropriate launch parameters passed to CreateProcess (and
related functions) are displayed on this tab.

A context menu is provided to allow you to perform some actions with the launched application data.

Memory Validator Help211

Copyright © 2001-2025 Software Verify Limited

· Launch parent application and monitor this application... the launch application dialog is
displayed configured to launch the parent application and monitor this application

· Launch application... the launch application dialog is displayed configured to launch and monitor
this application

· Open directory... Windows Explorer is launched to view the contents of the launch directory (the
directory field is empty nothing will be shown)

· Open application directory... Windows Explorer is launched to view the directory that contains
the application (if the application specification has no path nothing will be shown)

3.7.8 Floating Licence

The Floating Licence view displays information about the computers using the floating licence.

This view is only displayed if a floating licence has been purchased. Evaluation users will not see this
view.

The screenshot above show two computers using the same 2 user floating licence, that has maintenance
id 14675. Both computer users are licenced and can use the software.

On startup the software automatically checks to see if a floating licence is available, and acquires the
licence if possible. This takes a few seconds to process, after startup of the software.

An internet connection is required for floating licences to work. The licence server is managed and
run by Software Verify.

Licence information

The information show in this display allows you to identify which of your colleagues are using the
software and which versions of the software are in use.

· User
The user id (1 to number of licensed users).

· Computer Name
The name of the computer

The User Interface 212

Copyright © 2001-2025 Software Verify Limited

· Computer User
The login name of the user of the computer.

· Identifier
The unique identifier for this licence, used on the licence server.

· ID
The maintenance id for the software.

· Software Tool
The software tool and version of the software that is running on that computer.

· Computer ID
The unique id for this computer.

· IP Address
This computer's IP address.

Unlicenced users

If any additional users are trying to get a licence for the software, but there are not enough licences, they
will also be shown in the display, but with red text on a yellow background.

Please note that on the machine of an unlicensed user the status information will be different.

The software checks to see if a licence has been released on a periodic basis, so that if a licence is
released by another user, it can be acquired by the next waiting user.

Releasing a licence

If you have finished using a licence and wish to let a team mate use the software, you have two choices.

You can close Memory Validator, releasing the licence as it closes.

Or you can keep Memory Validator running by manually releasing the licence. Do this by clicking the
Release Licence button.

Acquiring a licence

If you have released a licence you will need to actively reclaim a licence when you wish to use Memory
Validator again. You can start this procedure by clicking the Acquire Licence button.

Memory Validator Help213

Copyright © 2001-2025 Software Verify Limited

3.8 User Interface Mode

Setting the user interface mode - Wizards or Dialogs?

For some key tasks, there are two user interface modes controlling the way in which options are
presented to you:

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode all options are contained in a single dialog

Experienced users will find this mode quicker to use

To set the user interface mode

 Settings menu User Interface Mode... select the desired mode in the User Interface
Chooser dialog:

The user interface mode affects the following tasks:

· Attaching to an application (Injection)

· Launching an application

· Wait for application to start

3.9 UX Theme

The user interface provides three UX themes.

· Modern. The look and feel of current Software Verify tools.
· Classic. The look and feel of previous Software Verify tools.
· High Contrast. A higher contrast version of the Modern theme.

The User Interface 214

Copyright © 2001-2025 Software Verify Limited

Setting the UX theme

To set the UX theme

 Settings menu UX Theme... shows the UX Theme chooser dialog

Changing the UX theme will update some of the colours that you can modify with the colour settings
dialog.

Setting the Screen Update Rate

The default screen update rate for the Summary view is 10Hz for all graphics and text.

You can change this update to 1Hz, 2Hz, 3Hz, 4Hz, 4Hz, 10Hz using the combo boxes for the statistics
panels and the scrolling timelines.

3.10 Summary Display Layout

The summary display provides several different layout methods

· Adaptive (Mixed)
· Adaptive (Layered)
· Native and .Net (Mixed)
· Native and .Net (Layered)
· Native only
· .Net only (minimal set of panels)
· .Net only (all .Net related panels)

Memory Validator Help215

Copyright © 2001-2025 Software Verify Limited

Setting the summary display layout

To set the Summary display layout

 Settings menu Summary Display Layout... shows the Summary display layout chooser
dialog

Changing the layout changes how the summary display arranges it's panels.

Two of the layouts are adaptive and change in response to the data collected and also to the data
collection settings (when there is no data collected).

Examples of each layout are shown below.

Adaptive (Mixed)

The User Interface 216

Copyright © 2001-2025 Software Verify Limited

The display shows all native and .net panels, arranged so that all the statistics groups are on the bottom
layer and all other statistics are on the top layer.

For mixed mode applications, both native and .Net panels are shown.

For native applications only native panels are shown. For .Net applications only .Net panels are shown.

Adaptive (Layered)

The display shows all native and .net panels, arranged so that all native statistics are on the top layer
and all .Net statistics are on the bottom layer.

For mixed mode applications, both native and .Net panels are shown.

For native applications only native panels are shown. For .Net applications only .Net panels are shown.

Native and .Net (Mixed)

Memory Validator Help217

Copyright © 2001-2025 Software Verify Limited

The display shows all native and .net panels, arranged so that all the statistics groups are on the bottom
layer and all other statistics are on the top layer.

 Types, Sizes and Locations apply to both native data and .Net data.

Native and .Net (Layered)

The User Interface 218

Copyright © 2001-2025 Software Verify Limited

The display shows all native and .net panels, arranged so that all native statistics are on the top layer
and all .Net statistics are on the bottom layer.

 Types, Sizes and Locations apply to both native data and .Net data.

Native only

Memory Validator Help219

Copyright © 2001-2025 Software Verify Limited

The display shows only native panels.

.Net only (minimal set of panels)

The User Interface 220

Copyright © 2001-2025 Software Verify Limited

The display shows only .Net panels. A minimal selection of panels has been selected so that they fit on
one line.

.Net only (all .Net related panels)

The display shows only .Net panels. All relevant .Net panels are shown, resulting in a two line display.

3.11 Delete Cache Files

The Delete Cache Files dialog provides a one-stop-shop for deleting cache files used by Memory
Validator.

This is simpler and easier to use than finding each of the various cache control settings and deleting
each cache from there.

Deleting cache files

To delete the cache files

 Settings menu Delete Cache Files... shows the Delete Cache Files dialog

Memory Validator Help221

Copyright © 2001-2025 Software Verify Limited

· Memory coverage cache files Cache files used for memory coverage

· Symbol cache files Cache files used for symbol names

· Data member cache files Cache files used for C++ object data member names and types

3.12 Settings

Memory Validator allows extensive control over which data is collected and how that data is displayed.
Additional options control the way the application behaves.

The settings can generally be grouped as either global or local.

Global and local settings

Global settings affect all data collected and its display throughout Memory Validator. Global settings are
changed via the Settings Dialog and the following 40 or so pages describe each available group of
settings.

Local settings apply to controls and data displayed in each of the main display windows.

Local settings are found on the left side of each relevant tab:

· Memory display settings
· Types display settings
· Sizes display settings
· Hotspots display settings
· Analysis display settings

The User Interface 222

Copyright © 2001-2025 Software Verify Limited

Other settings

There are a few more settings not included in the global settings dialog such as:

· User permissions warnings
· User interface mode
· Session settings

3.12.1 Global Settings Dialog

The settings dialog allows you to control all the global settings in Memory Validator that affect the way
data is collected and displayed. There are also local settings on each main tab.

 This page has a warning about use of the Reset button.

Opening the settings dialog

To view the settings dialog, choose Settings menu Edit Settings...

Or use the option on the Session Toolbar:

Using the settings dialog

The dialog has a scrolled list on the left hand side, grouping the topics. When a topic is clicked, its
related controls are displayed on the right hand side.

The default display of the dialog is shown below with the first topic selected.

Memory Validator Help223

Copyright © 2001-2025 Software Verify Limited

After selecting a topic, you can also use the cursor up and down arrow keys to change the selected item

 Too many settings? It may seem that there is an overwhelming number of settings to worry about.
Don't panic! The good news is that for new users, very few (if any) settings actually need to be changed
to use the application in most cases, and even for experienced users, many groups of settings will not
be needed. However, Memory Validator remains flexible for all our users in many different scenarios.

Click on any item in the picture below to find out more about the settings for that group.

The User Interface 224

Copyright © 2001-2025 Software Verify Limited

Memory Validator Help225

Copyright © 2001-2025 Software Verify Limited

Restoring the default settings

The settings dialog has Reset All and Reset buttons near the bottom left of the dialog which you can
use to reset all global settings back to their default values.

 The Reset All button resets all global
settings in Memory Validator, not just the settings
visible on the current tab of the dialog.

 The Reset button resets just the settings
visible on the current tab of the dialog.

3.12.1.1 Native

Enter topic text here.

3.12.1.1.1 Collect

The Collect tab allows you to specify which groups of hooks are installed in the target program when a
session starts.

Changing the hooks that will be installed

Once installed, the group of installed hooks cannot be changed, so changing these settings is only
effective on the next session with the target program.

The following image shows all the default options:

The User Interface 226

Copyright © 2001-2025 Software Verify Limited

 Hooks specified here will be overridden by inclusion in the process modules list of the Hooked DLLs
settings.

Each of the Memory, Handles and Other checkboxes includes or excludes the relevant hooks for
tracking the following items

Memory hooks

· C / C++ install hooks for C runtime heap
· Delphi Delphi runtime heap
· Fortran 95 Fortran runtime heap
· Open GL Open GL handles

· Heap Memory install hooks for HeapAlloc, HeapRealloc, HeapFree functions
· Local Memory LocalAlloc, LocalReAlloc, LocalFree functions
· Global Memory GlobalAlloc, GlobalReAlloc, GlobalFree functions
· Virtual Memory VirtualAlloc, VirtualFree, VirtualAllocEx, VirtualFreeEx groups of

allocation functions

 Using VirtualAlloc(Ex)?

Note that your call to VirtualAlloc/VirtualAllocEx should include the flag MEM_RESERVE or
MEM_COMMIT.

If including MEM_COMMIT without MEM_RESERVE, either:

Memory Validator Help227

Copyright © 2001-2025 Software Verify Limited

· the first page of the proposed address range should be non-reserved

or

· your proposed address should be NULL allowing the operating system to choose the address for
you

· CoTaskMemAlloc CoTaskMemAlloc group of allocation functions

The preferred way of allocating memory in COM objects.

· SysAllocString SysAllocString group of allocation functions

Allocates, reallocates and deallocates BSTR objects (OLE Strings).

· DCOM an additional group of SysAllocString hooks are inserted for use in DCOM transactions

Only available when SysAllocString is selected above, and not required for most applications.

· Misc. Allocations miscellaneous allocation functions

· IMalloc IMalloc functions

The old way of allocating memory in COM objects, prior to the introduction of CoTaskMemAlloc.

See also, notes about IMallocSpy below.

· NetApi Memory NetApi allocation functions

· Marmalade Marmalade game SDK allocation functions

s3eMalloc, s3eRealloc, s3eFree, s3eBaseMalloc, s3eBaseRealloc, s3eBaseFree

· Custom Hooks hooks for allocation functions tracking custom memory

Default settings are with all memory hooks selected, except for IMalloc.

 Marmalade?

For more information about working with Marmalade read Working with Marmalade game SDK.

 IMallocSpy?

We do not recommend using the IMallocSpy option.

We have noticed that some functions (SysAllocString) cause many allocations to be reported by
IMallocSpy, and yet the equivalent deallocation function SysFreeString does not cause the same
allocations to be reported as deallocated by the IMallocSpy interface. This results in Memory

The User Interface 228

Copyright © 2001-2025 Software Verify Limited

Validator displaying misleading information. We recommend that the memory hooks for
CoTaskMemAlloc, SysAllocString and Misc Allocations are used rather than IMallocSpy.

Handle hooks

· Kernel install hooks for handles allocated in Kernel32.dll
· Advapi handles allocated in Advapi32.dll

· GDI handles allocated in gdi32.dll
· User handles allocated in user32.dll

· Shell handles allocated in shell32.dll
· Common Control handles allocated in comctl32.dll

· Winspool printer spool handles
· Winsock socket handles
· WinHttp http handles

Default settings are with all handle hooks selected.

Other hooks

· COM Reference Counting install hooks for tracking COM object creation and reference count
tracking.

See section below regarding possible erratic behaviour when using COM reference counting
hooks.

· Trace Messages tracking TRACE() messages and OutputDebugString()

· Delay loaded function hooking functions which are delay loaded will be hooked as the
functions are resolved by the delay loading process

 What is 'delay loading'?

Delay loading a DLL is when it it is implicitly linked, but not actually loaded until your
code references a symbol contained in the DLL.

Delay loading can speed up startup time, but unhandled exceptions may cause your
program to terminate if the DLL can't be found when needed during the run time.

Not all DLLs are delay loaded, but typical examples are COMCTL32.DLL and some COM
libraries.

If this option is not selected then any functions that would normally be hooked, but which have
been delay loaded, will end up not being hooked.

· Hook functions via GetProcAddress() calls that are made to functions via a pointer obtained
from GetProcAddress() will be hooked.

Memory Validator Help229

Copyright © 2001-2025 Software Verify Limited

· User Defined Memory calls to the Memory Validator API to track user defined calls will be
allowed to send data to the user interface

Default settings are with only Delay loaded function hooking enabled.

 GetProcAddress() Hooking?

If a function that is looked up via GetProcAddress() is also a function that would normally be hooked
via Import Address Tables, turning this option on will mean that that function will be hooked even if it is
called via pointer returned from GetProcAddress(). This is typical source of unreported leaks in many
memory leak detection tools, they don't detect calls via pointers from GetProcAddress().

 COM Reference Counting?

Selecting COM Reference Counting can cause erratic program behaviour if a hook gets inserted
incorrectly.

This is because the COM hooks alter the machine code of the program and can get confused by the
program structure. This is not typical of user written COM objects, but is typical of Microsoft® COM
objects which appear to share entry and/or exit points between common functions.

Random crashes: If a program crashes randomly at start up, or seems to get stuck in an infinite
loop (cpu at 99%) try disabling COM Reference Counting and check to see if the program behaves
normally.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.1.2 Allocation Range

The Allocation Range tab allows you to restrict Memory Validator to only tracking allocations in a
specified size range.

This can be very useful for identifying specific leaks in an application that otherwise makes a large
number of allocations.

The User Interface 230

Copyright © 2001-2025 Software Verify Limited

Allocation size range

The default option is Track all memory allocations, regardless of size.

Alternatively you can restrict collection according to the size of the allocation:

· Choose Track only memory allocations inside the range specified Enter Minimum and
Maximum sizes enables the collection of memory allocation data based on allocation size

Caveats of restricting collection of data by size range

If you enable collection of data for a range of data sizes, it is possible for memory allocations that are
reallocated, that the allocation, reallocation or deallocation of that memory size may not be recorded by
Memory Validator. This is because the size of the allocation may be too small, even though a previous or
subsequent allocation/reallocation is in range.

This can cause incorrect memory leak reports, please bear this in mind if you choose to use this option.

If your program never using realloc(), _expand(), HeapReAlloc() and so forth, this should not be an issue.

Allocations of unknown size

Whether you are collecting all allocations, or only allocations in a specific size range you need to decide
how to handle allocations that have an unknown size.

Some allocations have an unknown size because they are returned from allocators where the size of the
object is not disclosed (it's not an input parameter to the function), or where the function hook is unable

Memory Validator Help231

Copyright © 2001-2025 Software Verify Limited

to acquire the size data. The are not many functions that fall into this category, but it is important to
mention them as ignoring such allocations may result in allocation data not being recorded.

· Don't Track allocations of unknown size memory allocation data will not be collected when the
allocation size is not known

· Track allocations of unknown size memory allocation data will be collected when the allocation
size is not known

· Convert allocations of unknown size to a known size memory allocations that have an
unknown size will have a synthetic size calculated for them

This option is provided so that unknown size allocations can be visualized in the memory timeline,
even if the visualization isn't correct in the sense that the sizes are unknown. Without a valid size
these allocation won't show in the summary status or the allocation timeline. The synthetic size is
calculated from the length of the filename of the allocation location. For example, if allocated in file
e:\om\c\test\main.cpp the synthetic length is 21.

This option is provided for both the collect all allocations and collect size restricted options.

The default for both options is that allocations of unknown size will be recorded.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.1.3 Error Reporting

The Error Reporting tab allows you to check for a few special conditions that can stop the target
program using a warning dialog or breakpoint

Read on, or click on a setting in the picture below to find out more

The User Interface 232

Copyright © 2001-2025 Software Verify Limited

Memory Errors

When allocating CRT memory Memory Validator looks for two conditions that may indicate a
programming error, or programming oversight.

· Report allocations of zero size enable the detection of zero size allocations showing the
warning dialog in the breakpoints topic

Zero byte allocations are valid, but not normally something that is done. Bugs come about for
example because memory blocks of zero length are allocated and then used, or perhaps not
deallocated because the logic looks for a byte count rather than a non NULL pointer.

An example report in the Memory tab:

· Report unused memory enable the detection of memory which is allocated, but later deallocated
without actually having been used

This sometimes happens due to the logic of the function in which it occurs. Or maybe the
memory was once required but the source code has changed and the person that changed the
code has forgotten to remove the allocation and deallocation code.

An example of what you might see in the Memory tab:

Memory Validator Help233

Copyright © 2001-2025 Software Verify Limited

Improving application performance: for each of the above cases, if this either of these conditions is
detected it may be possible to modify the code to remove the allocation and deallocation and thus
improve program performance by reducing the use of the heap manager and reducing memory
consumption.

· Report partially unused memory enable the detection of memory allocated, but which is then
later deallocated without all of it having been used

· Report mismatched malloc / free / new / delete enables detection of an inappropriate
deallocation method compared to that used for allocation

Allocated memory must be freed with the correctly paired deallocator:

· new delete
· new [] delete []
· malloc free

On detection of mixed use, a report will appear in the Memory tab as below:

· Report VirtualAlloc() calls that implicitly waste memory enables detection of VirtualAlloc()
calls that implicitly waste memory because the allocation size requested is smaller than the
minimum allocatable size for VirtualAlloc().

On detection of implicitly wasted memory the wasted memory will be reported in the Memory tab
when you refresh the display.

There are two entries. The first entry (469 below) is for the VirtualAlloc() allocation. It also describes
any implicitly leaked memory in the allocation - memory up to the next page boundary. The second
entry (470 below) describes the free memory that follows the allocation (starts on the page boundary
following the allocated memory).

The User Interface 234

Copyright © 2001-2025 Software Verify Limited

False positives: note that Memory Validator detects unused blocks of memory by looking for an
entire memory block with the uninitialized data signature. There may be rare occasions when the
software has filled the entire memory block with the same signature. This will result in a false error
report, but inspection of the source code should allow this to be validated.

Other conditions which are checked

In addition to the above conditions, the following conditions are also checked for:

· Zero size allocation
· Negative size allocation
· Bad reallocation
· Bad deallocation
· Bad pointer to C heap
· Bad start of C heap
· Bad node in C heap
· Damage in C++ heap
· Damage in Release CRT heap

InitializeCriticalSection

· Report multiple initialisation of Critical Sections checks if CRITICAL_SECTION objects are
initialized more than once

This error typically does not cause a problem in any program execution, but you may wish to find and
remove the cause of these errors.

You may also find that some third party DLLs cause these errors. DLLs by nVidia often seem to
generate these errors.

Memory Validator Help235

Copyright © 2001-2025 Software Verify Limited

Functions

· Report when abort is called sets a signal handler will be called when raise(SIGABRT) is
called, and if found reports a callstack showing where this happens

· Report when a pure virtual function is called sets a purecall handler that will be called if a
pure virtual call is made, and if found reports a callstack showing where this happens

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.1.4 Trace Hooks

The Trace Hooks tab provides controls for:

· how TRACE hooks are installed
· tracking duplicate or invalid handles
· controlling maximum duration of the memory timeline

Trace message monitoring

Memory Validator can optionally collect the output from AfxTrace(), TRACE macros and the
OutputDebugString() function.

The User Interface 236

Copyright © 2001-2025 Software Verify Limited

OutputDebugString() sends a string to the debugger for display:

OutputDebugString(msgbuf);

TRACE messages are macros, for example:

TRACE("This is a TRACE statement\n");

The TRACE macros ultimately get routed via OutputDebugString(), so to prevent duplicate messages,
we don't allow both to be collected at the same time.

· Collect trace messages enables collection of either OutputDebugString() or TRACE messages

OutputDebugString collect OutputDebugString() messages

To collect the relevant callstacks, select Collect OutputDebugString() call stack

Trace (TRACE(), AfxTrace()...) collect TRACE messages

To collect the callstacks, select the Collect TRACE call stack

Example of trace statements collected in the Analysis tab:

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Memory Validator Help237

Copyright © 2001-2025 Software Verify Limited

3.12.1.1.5 Allocation History

The Allocation History tab allows you to control how much memory Memory Validator uses to perform
its work.

Depending on the task you are performing you may want to allow Memory Validator to use more (or less)
memory than for other tasks.

 The less information on deallocations, reallocations and freed data that Memory Validator keeps,
the smaller the memory requirements placed on your computer.

Historical Data - discarding older deallocated data

Depending on the following:

· the task you are trying to complete using Memory Validator
· your computer's RAM capacity
· virtual memory storage
· the target program being inspected

...you may want to discard some types of data rather than keep it all.

You can optionally discard stack traces for deallocations, reallocations and freed memory, and in each
case specify just how much information is kept, with oldest deallocated data being discarded first.

· Discard stack traces for free memory discards information about memory and handle
deallocations

The User Interface 238

Copyright © 2001-2025 Software Verify Limited

· Discard stack traces for reallocated memory discard information about reallocated memory
and handle allocations

· Discard stack traces for freed memory discard information about deallocated memory and
handle allocations

The default is to keep only the most recent 1000 stack traces in each case, but deselecting each option
will keep all the data instead.

COM reference counts

Normally Memory Validator keeps information about COM Reference counts even after the reference
count for a particular object reaches zero. This can be very useful for examining the reference count
history when a COM object is deleted because its reference count is Release'd too many times or not
AddRef'd enough times.

· Discard COM reference count data when reference count gets to zero discards the relevant
data to the freed list (see option above)

Discarding this data is useful when your application is correctly AddRef-ing and Release-ing large
numbers of COM objects and you are only concerned with leak ing COM objects rather than COM
objects being deleted too soon.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.2 .Net

Enter topic text here.

3.12.1.2.1 .Net Collect

The .Net Collect tab allows you to specify which .Net data is monitored and which is ignored when a
.Net or .Net mixed mode program is run.

Memory Validator Help239

Copyright © 2001-2025 Software Verify Limited

Data Collection

There are three categories of data that can be monitored. By default they are all enabled.

· .Net memory data monitor all .Net memory allocations

· .Net handle data monitor all .Net handle allocations

· COM Classic VTable data monitor COM object creation

A lot of objects are created and destroyed in a .Net application. Some of these objects may not be of
interest. We've put them into four categories so that you can easily exclude them if you want to.

· No source code for allocation location If there is no source code for the allocation location,
ignore these allocations. Disabled by default.

· Allocated in the .Net Framework If the object is allocated in the .Net Framework, ignore the
allocation. Disabled by default.

· Declared in the .Net Framework If the object is declared in the .Net Framework, ignore the
allocation. Disabled by default.

· Native allocations in .Net runtime DLLs Ignore native allocations in the .Net runtime DLLs.
Enabled by default.

Object Churn

The User Interface 240

Copyright © 2001-2025 Software Verify Limited

Object churn is a measure of how frequently objects of a specific type are garbage collected after being
created. Objects with low churn rates may be leaked objects.

When calculating object churn the results can be influenced by how many of the recent generations of
objects you inspect.

· Churn generations How many recent generations to consider when calculating churn.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.2.2 .Net Stale Object Detection

The .Net Stale Object Detection tab allows you to specify how Memory Validator detects .Net objects
that haven't been used recently.

Objects that haven't been used may be leaked objects.

Object Activity Data

Memory Validator Help241

Copyright © 2001-2025 Software Verify Limited

Object activity data describes which objects have had methods called on them in a given timespan.
Objects in use will get called often, whereas leaked objects will not get called at all.

There is a performance penalty for this monitoring. It can be quite expensive - how expensive depends on
your application's behaviour.

· Collect object activity data monitor all calls to .Net objects.

The data is can be reported to the GUI with each garbage collection, or in real time. Real time provides
more info, but is more expensive in terms of performance hit.

Stale Object Detection

Once we have object activity data we can then interpret that data to provide stale object detection -
detecting objects that haven't been called recently, where recently can be defined as a fraction of the
application lifetime, or within the most recent N garbage detections.

There are four controls that influence which objects are identified as possibly stale. Depending upon your
application behaviour and the settings you select you can make all objects appears stale or no objects
appear stale, and many states between. How you set these values will affect what values you see in the
Stale Objects subtab of the Ages view. The values are suggestions only, they are not guaranteed to be
stale objects.

Before choosing your settings you need to be aware of a two things about garbage collected
applications.

· Objects allocated early in the application lifetime often survive the entire application lifetime.

· Most objects do not survive many garbage collections.

Using these two facts and the knowledge of the application being monitored you can set the stale object
detection settings. The settings come as two preconditions and two optional conditions (thresholds). The
preconditions are described first.

Startup garbage collections

Typically you don't want to perform stale object detection during the starting up your application - specify
the number of startup garbage collections to ignore.

Set this value to the number of garbage collections that you notice happen during your application
startup. You can see this by watching the Generations tab and counting the number of generations that
are present once your application has started but before it has commenced any work.

GUI application: this would be the point at which the GUI had opened and the menu system was
ready to accept commands.

Webserver: this would be the point at which the webserver was ready to accept connections
from clients.

Recent garbage collections

The User Interface 242

Copyright © 2001-2025 Software Verify Limited

You may also want to ignore contemporary garbage collections - if so specify the number of recent
garbage collections to ignore.

Set this value to the number of garbage collections that you think most objects will survive for. For
example if you think most objects will be created, used, finalized in 3 garbage collections set this value
to 3.

Thresholds

· Application lifetime threshold Consider objects that have not had activity for longer than the
specified fraction of the application lifetime to be stale.

· Garbage collection threshold Consider objects that have no had activity for more garbage
collections than specified to be stale.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.2.3 .Net Heap Dump

The .Net Heap Dump tab allows you to specify how Memory Validator collects and manages .Net Heap
Dumps.

Memory Validator Help243

Copyright © 2001-2025 Software Verify Limited

Heap Dump

Everytime the .Net runtime performs a garbage collection the CLR provides a heap dump.

Memory Validator can't record every heap dump that happens - eventually we'd run out of memory to
store them.

· Collect .Net heap dumps at each garbage collection collect .Net Heap dumps when a
garbage collection happens

Caution, enabling this option may cause large programs to run slowly. You may be better served
by creating heap dumps manually, when you want them.

· Collect .Net heap dump at profiler shutdown collect .Net Heap dump when the profiler
shutsdown

Caution, enabling this option may cause large programs to close slowly. You may be better
served by creating heap dumps manually, when you want them.

· Number of heap dumps the maximum number of heap dumps that will be kept

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.2.4 .Net Snapshots

The .Net Snapshots tab allows you to specify how Memory Validator collects and manages .Net
snapshots.

The User Interface 244

Copyright © 2001-2025 Software Verify Limited

Snapshots

.Net memory snapshots can be performed manually and automatically. These settings control how the
automatic snapshots are managed.

Each snapshot uses memory. If you keep too many snapshots you will run out of memory.

· Automatic snapshot policy when snapshots are created
o None No snapshots will be created

o Snapshot before GC A snapshot will be created before each garbage collection

o Snapshot after GC A snapshot will be created after each garbage collection

o Snapshot before and after GC A snapshot will be created before and after each garbage

collection
o Snapshot before and after GC, compare before and after A snapshot will be created

before and after each garbage collection, then they will be compared with each other

· Snapshots to keep maximum number of automatic snapshots that are kept.

· Comparisons to keep maximum number of automatic snapshot comparisons that are kept.

Snapshot disposal

Snapshots and comparisons are disposed oldest first.

For example if you had a threshold of 3 snapshots and you created 5 snapshots A, B, C, D, E, the
snapshots remaining would be C, D, E.

Memory Validator Help245

Copyright © 2001-2025 Software Verify Limited

A
A B
A B C
B C D (a disposed)
C D E (b disposed)

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.3 Data Collection

3.12.1.3.1 Callstack

The Callstack tab allows you to specify how the callstack is collected, and how information about it is
displayed, via four groups of settings:

· callstack monitoring
· callstack display
· timestamp display
· advanced callstack optimization

The following image shows all the default settings:

An example of a callstack on the Analysis page:

The User Interface 246

Copyright © 2001-2025 Software Verify Limited

Callstack monitoring - full or partial callstacks

The Memory Validator stub collects callstacks for each hooked function to display on some of the main
tabs such as Memory, Analysis and Pages.

Callstacks can be very long and consume more resources:

· collecting stack traces and converting all the addresses in the stack trace to symbol names takes
more time

· collecting longer stack traces makes the target program slower
· longer stack traces consume more memory in the user interface

Opting to collect only part of the stack trace helps reduce that load:

For partial callstacks, deselect Collect complete call stack and set the depth of the callstack as
required, using Call stack depth. The default depth is 10.

Otherwise, select Collect complete call stack to collect the entire callstack.

Callstack shorter than expected?

Enhanced callstack colouring

The callstack can optionally be coloured in shades of green to indicate if objects previously allocated (or
reallocated) on this callstack have been deallocated or garbage collected.

This colour coding can be used as a hint that memory/handles allocated at this location may not leak.

Here is an example callstack showing the enhanced callstack colouring.

Memory Validator Help247

Copyright © 2001-2025 Software Verify Limited

· Enhanced callstack colouring display callstacks in shades of green when this allocation
callstack is known to have been used to create memory/handles that have been deallocated or
garbage collected.

Callstack display

The callstack can be displayed with optional parameter names and may be auto expanded when a data
item is opened

· Expand call stack when trace expanded When a data item is expanded, the whole recorded
callstack will also be expanded

· Show reallocation locations When displaying a stack trace for a reallocation, you can show a
sequence of stack traces for previous related allocation locations

This allows you to 'walk' the memory reallocation chain.

The options are Some (with a maximum set below), All or None (disables the feature).

Choosing All, can result in unwieldy data if the reallocation chain is very long.

· Number of locations to show Sets a maximum number of locations when choosing Some above
(the default is 5)

· Discard <UNKNOWN> modules at start of callstack hides those unknown items where no
useful data can be displayed

Event sequence ID

· Display event sequence ID Shows each data collection event with an ID that is incremented
each time data is collected

Displaying this ID for each data item allows you to see the order in which allocations, reallocations and
deallocations are made.

Example of a callstack showing the event sequence id:501:

The User Interface 248

Copyright © 2001-2025 Software Verify Limited

Changing the display of the event sequence id immediately updates existing displays in the current
session.

Instruction address

· Display instruction address Shows or hides the address in memory of each callstack item

Example of a callstack entry showing the address 0x004066d9:

Timestamp display

Each callstack has a timestamp as seen in the screenshot above. You can choose how to display that
timestamp:

· Milliseconds since application start Time is displayed in milliseconds only. For example:
3897ms

· Local time (MM/DD HH:MM:SS XXms) Time is displayed as Month/Day Hour/Minute:Second
Milliseconds. For example: 11/21 13:16:21 897ms

· UTC time (MM/DD HH:MM:SS XXms) Shows Coordinated Universal Time (Essentially GMT)
displayed in the same format as Local time

Reset All - Resets all global settings, including those on the Advanced Stack Walk Dialog (below),

not just those on the current page.

Reset - Resets the settings on the current page, including those on the Advanced Stack Walk Dialog

(below).

As the title below suggests, the remaining options are for advanced use! An example might be if you find
your program has a problem that can be identified, but for which the callstack cannot be collected
properly.

Advanced callstack settings

· Callstack walk helper size Specify the size of the cache used to optimize callstack walking

Memory Validator uses a cache to help it optimize the callstack walking process. The cache is
used to avoid calling operating system functions to walk the callstack when the result has been
previously calculated.

For applications generating many unique callstacks, this size may need to be increased.

http://en.wikipedia.org/wiki/Coordinated_Universal_Time

Memory Validator Help249

Copyright © 2001-2025 Software Verify Limited

All sizes are prime numbers, and the default size is 100003 which is large enough for most
applications. If in doubt leave it at the default value of 100003

Callstack walking

Memory Validator provides three different methods of collecting callstacks for functions which you can
choose to tailor callstack collection to the task at hand.

1) The standard Microsoft® DbgHelp StackWalk() function

This function is optimised for walking standard Intel i386 stack frames where the EBP register is
pushed on to the stack at function entry and popped from the stack when the function exits. This is
the typical stack frame for a program built in debug mode.

The DbgHelp StackWalk() function is also capable of reading frame pointer omission data
(FPO_DATA) included in a PE file. FPO_DATA is included in optimised binaries that do not use the
EBP register to identify the stack frame - this is typical of a program built in release mode.

Missing data in your callstack?Although Microsoft have provided a very capable stack walking
function, there are occasions when the StackWalk() function cannot continue walking along the
stack, from one frame pointer to the next. When this happens collected stack traces often appear to
have data missing, or look "too short". You may have noticed this when debugging release mode
programs in Visual Studio®.

2) Alternative (custom) StackWalk() function

This method, although slower than Microsoft's stack walker, does not use stack frames to walk the
stack, and so enables the stack walker to walk callstacks that DbgHelp StackWalk() cannot.

This is a proprietary method invented by Object Media Limited and licensed to Software Verify
Limited.

What's different about this method?A detailed technical discussion of how this algorithm works
is not appropriate here, but suffice to say that all addresses found on the stack are checked for
validity, both for code sections, likelihood of CALL instruction taking place, target and source
addresses of CALL instructions, removal of duplicate data, and so forth. The resulting callstacks
often contain some bogus stack entries, which are obvious to the end user, but not possible to
detect by the callstack verification algorithm (this is often due to CALL instructions relying on indirect
indexes held in registers which have been changed by the time the stack walker has walked to this
point in the callstack - such entries must be taken at face value because they may be valid).

3) Hybrid of the two

The third stack walk type is a hybrid of the other two.

The first method is used to collect all callstacks. Any callstacks that are too short (defined by a
callstack length threshold) then have the callstack collected by the second method.

The User Interface 250

Copyright © 2001-2025 Software Verify Limited

This provides the speed and power of the standard Microsoft stack walker, with the flexibility to
collect callstacks that would otherwise be uncollectible when DbgHelp StackWalk() fails to collect
the callstack.

The Advanced Stack Walk dialog shown below is accessed via the Advanced... button and is used to
choose one of the three callstack collection options above:

· DbgHelp StackWalk use the DbgHelp.dll StackWalk() function to walk all callstacks

You may have problems collecting some callstacks in release mode programs, and in some
special cases in debug programs depending on your program.

· Alternative StackWalk use the alternative stack walking function to walk all callstacks

All callstacks will be collected in both debug and release mode programs, but you may find that
some callstacks contain incorrect entries.

· Hybrid StackWalk use the hybrid method outline above

When the alternative stack walk is used you may find that some callstacks contain incorrect
entries.

Memory Validator Help251

Copyright © 2001-2025 Software Verify Limited

To specify when to use the alternative stack walking function, set a callstack depth.

Any standard callstacks that are shorter than the depth specified, will be collected using the
alternative stack walking function.

See also - recommended usage below

Alternative stack walk method - fast or slow?

· When using alternative stack walk, use fast option uses a faster address verification scheme
(recommended) or a slower one

Do extra consistency checks When using the fast option, consistency checks can
optionally be performed (recommended) to reduce the amount of incorrect addresses included in
the callstack.

Alternative stack walk method - range of relative addresses

When the alternative stack walk is used, relative address CALL instructions have their target address
computed to test if the target address is within a threshold of the previous callstack address.

This provides a form of source address to target address integrity to prevent invalid addresses be placed
in the callstack.

· Relative CALL instruction byte range set the threshold which the target address must be
within, to fine tune the stack walk

A larger threshold reduces the accuracy of the stack walk by allowing too many invalid
addresses into the stack.

A smaller threshold reduces the accuracy of the stack walk by rejecting valid addresses from
being placed in the callstack.

The default is reasonably large 8192 bytes.

Alternative stack walk method - caveats

When the alternative stack walk is used you may notice some unusual data on the display:

· <UNKNOWN> symbols in the middle of call stacks

This happens rarely, because the address is not valid but for some reason was not rejected by
the alternative stack walk.

· Symbols in the middle of callstacks that you know cannot be correct

This may happen because the address is valid, but not for this position in the callstack, and the
address passed the alternative stack walk address verification tests - this address was most

The User Interface 252

Copyright © 2001-2025 Software Verify Limited

probably the target of an indirect CALL instruction, and as such, could not be verified.

· Callstacks for data that make no sense

This again is rare, but occurs due to Memory Validator monitoring its own behaviour (which can
happen in a few limited circumstances). These callstacks are filtered in both stack walk
methods, correctly in the standard one, but not perfectly in the alternative method!

Recommend usage

We recommend that in all situations the stack walking method used is either DbgHelp StackWalk or
Hybrid StackWalk.

Only if you find your program has a problem that can be identified, but for which the callstack cannot be
collected, do we recommend using Hybrid StackWalk or Alternative StackWalk as appropriate.

C++ Builder / Delphi

If you are using C++ Builder or Delphi to build your applications and you are statically linking the normal
method for walking callstacks returns very poor results.

To handle this and allow you to choose between callstack accuracy and speed of execution we've
provided the ability to choose the type of callstack walk for both allocations and deallocations. Because
deallocation callstacks are less likely to be inspected we think you may wish to choose a less accurate
call stack walk for deallocations in return for speed.

The C++ Builder / Delphi Advanced Stack Walk dialog shown below is accessed via the C++ Builder /
Delphi... button and is used to choose the stack walk options for allocations and deallocations in
statically linked C++ Builder and Delphi applications.

Memory Validator Help253

Copyright © 2001-2025 Software Verify Limited

· For allocations choose the callstack walking method for allocations

· For deallocations choose the callstack walking method for deallocations

The values that can be choosen for the callstack walking method are:

· Very fast. very fast stack walks, but mainly return callstacks that are incomplete and inaccurate

· Slow but thorough slow stack walks, checks every location on the stack

· Fast slow stacks walks until a stack frame is found, then walks stack frames, continues checking
every location when no stack frames found

· Fast, thorough if no frames same as Fast, but if no frames found also does a Slow but thorough
stack walk

· Fast, half thorough if no frames same as Fast, but if no frames found also does a Slow but
thorough stack walk for half the stack

· Faster, EBP only slow stacks walks until a stack frame is found, then walks stack frames until
no more stack frames

· Faster, EBP only, thorough if no frames same as Fast EBP only, but if no frames found also
does a Slow but thorough stack walk

· Faster, EBP only, half thorough if no frames same as Fast EBP only, but if no frames found
also does a Slow but thorough stack walk for half the stack

 You may wish to choose a not very accurate callstack method for deallocations as deallocation
callstacks are not often inspected when monitoring memory issues.

Reset

The Delphi Advanced Stack Walk dialog has a button labeled Reset at the bottom left of the dialog. This
resets only the settings on this dialog back to their default values.

The Advanced Stack Walk dialog has a button labeled Reset at the bottom left of the dialog. This resets
only the settings on this dialog back to their default values.

3.12.1.3.2 Memory Coverage

The Memory Coverage tab allows you to control how Memory Validator gathers coverage statistics for
memory and handle allocations.

The default options are shown below:

The User Interface 254

Copyright © 2001-2025 Software Verify Limited

What is memory coverage?

Calculating memory coverage involves parsing your source code to determine all allocation and
deallocation locations and matching that information with information from the callstacks of each
allocation in your session.

Some of these activities are time consuming, so the default is not to collect memory coverage data, but
you can control the behaviour as below.

Controlling memory coverage data collection

· Collect memory coverage data enables the collection of memory coverage data

The Coverage tab (example shown below) shows the memory coverage statistics for each file that
contains memory or handle allocation statements. This allows you to check how well you are testing
your memory allocation/deallocation code.

When the collection of memory coverage data is enabled, the are some options to tune the performance.

· Count visits to allocation locations once only count line visits once per line when this is
selected (default)

Memory Validator Help255

Copyright © 2001-2025 Software Verify Limited

Normally each line is counted just once (faster). Although they can be counted for all visits to
each line, this will be noticeably slower for large applications.

· Cache memory coverage data enable caching of coverage statement information (default)

Calculating the coverage statements for each file can be time consuming, especially for large
applications as it requires parsing the source code each time the application is run to determine
where the allocation and deallocation locations are.

Caching the coverage statement information improves this by only recalculating it when the
source code is modified.

· Clear Coverage Cache... delete any existing memory coverage cache files stored on your
computer

· Include 3rd party files in memory coverage statistics include 3rd party files as specified in
File Locations

For most activities you will want to keep this option deselected

· Include files with no memory coverage statements in statistics includes relevant source code
files

Some source code files do not allocate or deallocate memory or handles. As such these files
may be viewed as unwanted data on the coverage report, so the default is not to include these

· Include files that cannot be read in statistics includes source code filenames referencing files
that do not exist on your computer

Typically these are third party files in pre-built DLLs. By default they are not included in the
statistics.

Memory coverage filters

Memory coverage calculation is quite likely to include some third party source files or header files that
are out of your control, e.g. from STL, third party files in pre-built DLLs, etc.

If you don't want results to include such files, you can specify a number of filters to exclude them.

Coverage filters need to be set before the session starts in order to affect results.

· Configure Filters... shows the Memory Coverage Filters dialog that lets you manage the list of
filters...

The User Interface 256

Copyright © 2001-2025 Software Verify Limited

This dialog is the same one accessed via the local Filters button on the Coverage tab.

The Filters dialog has some basic controls for managing the filters:

· Add... adds a new filter, as in the example above

· Edit... or double click an item in the list opens the Memory Coverage Filter dialog to modify the
enabled state, type or target of the selected filter item

You can also enable/disable an item via the yellow checkbox on each item in the list

· Remove deletes all selected filters in the list, or press Delete

· Remove All clears the list of filters

· Enable All sets all filters active

· Disable All sets all filters inactive (but does not remove them from the list)

Each filter can only be one of the three types: filename, directory or DLL. However, you can mix and
match multiple filters of any type.

For example, to add a new filter:

· Configure Filters... Add... choose a filter type filename, directory or DLL Browse... (or
enter a path directly) choose a relevant item to add OK OK

Memory Validator Help257

Copyright © 2001-2025 Software Verify Limited

To help recognise types of filters in the list, each item is prefixed by some bracketed flags as follows

[E] - enabled
[X] - disabled

[F] - file
[d] - directory
[D] - DLL

[File] - file
[Dir] - directory
[DLL] - DLL

Memory coverage auto merge

Different runs of your application may execute different parts of your application, in which case you might
want to merge the results of one run with the results of another.

· Configure Auto Merge... shows the Auto Merge dialog that lets you configure merging of
memory coverage results

The User Interface 258

Copyright © 2001-2025 Software Verify Limited

The automatic merging works by merging the results of each individual memory coverage session into a
central session.

The central session is stored on disk in a file you specify, or in a file using the name of the session, e.g.
TestThis.exe would get saved in TestThis.mvm in the same directory as Memory Validator resides.

· Enable auto-merging of memory coverage statistics switches the merging feature on (default
is off)

Depending on how many applications you are performing memory coverage on, you may want your
memory coverage data to go to one central location or to a different location for each application under
test.

· Name of auto-merge session is based on the name of the application under test saves the
central session in a file named according to the application under test in this session (the default)

By default, the auto-merge session will be stored in the same directory as Memory Validator,
but you can change this:

Directory for auto-merge session saves the auto-merge session in the specified directory

For example, if you run the application nativeExample.exe, and specify a central session
directory of e:\memoryCoverageResults, the central session will be saved in a file named e:
\memoryCoverageResults\nativeExample.mvm.

· Name of central session is specified save the auto-merge session in a filename and path of
your choice (enter or Browse... to a file)

Auto-merge session reset

Memory Validator Help259

Copyright © 2001-2025 Software Verify Limited

The auto-merge results can be automatically cleared by certain triggers, or not cleared at all.

When performing memory coverage analysis sometimes you will uncover a bug in your software and
need to modify the software, and/or run different executables. When this happens, line numbers and/or
files often change, and you usually wouldn't want to merge memory coverage data from the modified
software with existing coverage data.

The triggers for clearing the merged session results are:

· When any source file is modified (the default)

· When the application under test changes

· No clearing of merged session results occurs under any circumstance

Reset All - Resets all global settings, not just those on the current page. Any memory coverage filters

added as above are also removed.

Reset - Resets the settings on the current page. Any memory coverage filters added as above are also

removed.

3.12.1.3.3 Applications to Monitor

If your target program launches other child applications then the Applications to Monitor page lets you
choose which ones to monitor.

Monitoring child applications

The User Interface 260

Copyright © 2001-2025 Software Verify Limited

You may have a case where the program you need to start is not the one you are interested in.

Your program may launch child applications and it may be one of those that you want to monitor with
Memory Validator.

An example might be for unit testing where a test program spawns one or more child applications, or it
might launch the same application multiple times.

The applications to monitor

The main list of Applications to monitor shows programs you may want to launch and the child
applications they subsequently start - i.e. the you may be interested in monitoring.

Once a definition has been added, you can then use the Application to Monitor setting on the Launch
Dialog or wizard to choose which of these child applications you actually want to monitor in a given
session.

Managing the applications to monitor

The list contains a set of definitions - each one being for a different launch program.

For each launch program you can set the child applications you might want to monitor later.

An application is defined by its type (native and .Net, or .Net Core), the application executable name,
and for .Net Core applications an additional application DLL that is used to identify the application.

· Add add a new module definition using the Application to Monitor dialog below

· Edit modify a selected definition in the list, using the Application to Monitor dialog again

· Remove removes any selected definitions in the list

· Remove All clears the list

· Set Defaults reset the list of known applications to those as configured with a new install of
Memory Validator

The defaults are currently setup for Microsoft's Visual Test software vstest.console.exe.

The Application to Monitor dialog

The Application to Monitor dialog lets you define or edit a launch program and it's child applications.

The values you specify here are the ones used on the launch dialog and launch wizard to customize
which application actually gets monitored.

Memory Validator Help261

Copyright © 2001-2025 Software Verify Limited

· Application to Launch Edit... to select the initial starting application that will be launching the
applications you want to monitor

Any executable names found in the selected program will automatically be displayed in the list of
Applications to Monitor.

If you don't wish to use these automatic names you can Remove them.

· Add add an additional application that you know will be started by the launch program

Child applications that you add are used without the path.

Excluding the path gives more scope for matching launched application names if they are
launched with a different path.

· Remove removes any selected applications in the list

· Remove All clears the list

· Default application to monitor choose the appropriate item to be the default item

The default application will be selected on the launch dialog (or wizard) whenever the start program
is specified as the one at the top of this dialog.

The Application and DLL dialog

The User Interface 262

Copyright © 2001-2025 Software Verify Limited

The Application and DLL dialog lets you define or edit a launch program and a launch DLL.

· Application type choose the type of application

o Native and .Net

o .Net Core (Framework Dependent)

o .Net Core (Self Contained)

· Application to monitor edit or Browse... the application EXE to monitor.

This can be an executable name or the full path to the executable. For example test.exe or c:
\unitTests\test.exe.

For native applications this is the application executable.

For .Net Framework applications this is the application executable.

For .Net Core Framework-dependent applications this is most likely going to be c:\program
files\dotnet\dotnet.exe.

For .Net Core Self-contained applications this is the application executable.

· DLL to monitor edit or Browse... the application DLL to monitor. This field is only needed for .Net
Core applications.

This can be an executable name or the full path to the executable. For example test.dll or c:
\unitTests\test.dll.

For native applications this is not used.

For .Net Framework applications this is not used.

For .Net Core Framework-dependent applications this is the application dll. (the name of the dll that
you would pass to dotnet.exe on the command line).

For .Net Core Self-contained applications this is the dll that has the same name as the application
executable. (for theApp.exe, the dll name is theApp.dll).

Memory Validator Help263

Copyright © 2001-2025 Software Verify Limited

Example Dialogs

Native

.Net

.Net Core (Framework-dependent)

.Net Core (Self-contained)

The User Interface 264

Copyright © 2001-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4 Advanced

3.12.1.4.1 Failed Allocations

The Failed Allocations tab allows you to control how Memory Validator responds to allocations that fail
to allocate memory or fail to allocate handles.

The picture below shows the default settings:

Memory Validator Help265

Copyright © 2001-2025 Software Verify Limited

Duplicate handles

Some handle allocation functions return the same value as a previous handle, even though the previous
one hasn't been deallocated.

Memory Validator can accommodate this, but cannot guarantee to match up the correct allocation and
deallocation location for these handles (since they are duplicates).

You can choose if the values are resolved first in first out (FIFO), or last in first out (LIFO). This will affect
how duplicate handle deallocation and allocation stack traces are related.

· Track duplicate handles enable the tracking of duplicate handles (default)

Duplicates removed LIFO resolves duplicate deallocation handle values in a last in first out
manner (default)

Only enabled if tracking duplicate handles.

NULL/invalid handles

Memory Validator can collect or discard NULL and INVALID_HANDLE_VALUE handles. If you are having
problems with bad handle values, you may want this option enabled.

· Collect NULL and invalid handles enable collection of invalid handle values

Preventing CloseHandle() from being called with bad values

When handles are closed using CloseHandle(), some non-valid handles can cause your application to
crash if they are passed in. Memory Validator detects if the handle is not a valid handle and reports
errors.

· Don't call CloseHandle... prevent non-valid handles from being passed to CloseHandle()

The recommended setting is off, meaning that CloseHandle() will always be called

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.2 Breakpoints

The Breakpoints tab allows you to control how Memory Validator responds to error conditions it detects
in your application, such as prompting for dropping into a debugger.

The picture below shows the default settings:

The User Interface 266

Copyright © 2001-2025 Software Verify Limited

Breakpoints

Memory Validator can cause the target program to display warning dialogs or stop at a breakpoint when
various conditions are met during the allocation or deallocation of an object.

· Display an Abort/Retry/Ignore warning dialog when errors are detected shows the warning
dialog below (disabled by default)

The warning dialog message varies according to the error encountered
Abort lets the program to terminate at this point
Retry enter the debugger
Ignore lets the program to continue as normal
Don't show this again prevents seeing warning dialogs (whatever the message) for the
duration of this session

· Drop into debugger when errors are detected forces a breakpoint instruction (int 3) to be
executed causing the program to stop in the debugger, if attached (disabled by default)

If the program is not attached to a debugger, the standard Microsoft® attach to debugger dialog
will be displayed.

Memory Validator Help267

Copyright © 2001-2025 Software Verify Limited

If both the above options are selected, the first one will be used as it allows the user to action the
breakpoint by choosing Retry.

· When program execution reaches ExitProcess(), drop into debugger forces a breakpoint
instruction to be executed on exit, showing a dialog as below

Debug enter the debugger and determine what caused the process to exit
Continue allow the program to exit as normal

Exit without warning!

Some bugs manifest themselves by the process suddenly exiting without any particular reason.

There are two common causes of this:

· The program encountered a serious error, did not warn the user and called exit() or
ExitProcess()

If the program calls exit(), the code will still be routed via ExitProcess().

· The program exhausted its stack space and could not continue

It's possible there's not even enough stack space to warn the user that the stack space has
been exhausted!

When the program runs out of stack space, Memory Validator can't help.

Just-In-Time debugging and exception handling

If your program has an exception handler that catches exceptions and closes the application, enabling
these options may cause your program to terminate instead of causing the debugger to attach to your
program. Otherwise, the options described here will perform correctly.

For breakpoints triggered by Memory Validator to work, your debugger (Microsoft® Visual Studio® or
other) must have Just-In-Time debugging enabled.

In older versions of Microsoft® Visual Studio®:

Tools menu Options... Debug tab select the Just-in-time debugging

The User Interface 268

Copyright © 2001-2025 Software Verify Limited

In newer versions of Visual Studio®:

Tools menu Options and Settings... select Debugging in the list Just-in-time tick
the relevant checkbox(es)

'Stop When' conditions

An ID, an address or a size can be checked at various times to cause either a warning or breakpoint, as
designated in the breakpoints settings:

Memory Validator Help269

Copyright © 2001-2025 Software Verify Limited

· Stop When Delete Request With ID enter an ID to be used for the delete request to trigger the
warning dialog

This is similar to using the Microsoft® _crtBreakAlloc variable in the debugger. See also
_CrtSetBreakAlloc() .

· Stop When Delete Address enter a specific address for deletion to trigger the warning dialog

· Stop On Allocation Greater Than enter a size theshold above which allocation will trigger the
warning dialog

All three conditions can be active at the same time, and leaving any of the above fields blank resets that
condition.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.3 Heap

The Heap tab allows you to choose how Win32 Heaps are managed.

The picture below shows the default settings:

Checking for damaged memory before HeapReAlloc / HeapFree

http://msdn.microsoft.com/en-us/library/w2fhc9a3(VS.80).aspx
http://msdn.microsoft.com/en-us/library/4wth1ha5.aspx

The User Interface 270

Copyright © 2001-2025 Software Verify Limited

Memory Validator can run background checks on the input pointers to HeapReAlloc() and HeapFree()
for validity and report any errors.

· Enable checks on HeapReAlloc and HeapFree enables detection (off by default)

When this is enabled you may wish to prevent those functions from being called when an invalid
pointer is detected.

· Don't call function when error detected prevent Win32 heap checking breakpoints from
being triggered when an error is detected

The reason you might not want to call the functions is that the Win32 heap checking code
will force a debugger breakpoint instruction to be executed, which will either terminate your
program or start a debugger to attach to the program. Avoiding these heap checks when
Memory Validator already knows about the error will prevent the program run from being
interrupted by a breakpoint.

How to handle non-deallocated memory when you destroy a Win32 heap using
HeapDestroy

Memory Validator can interpret the call to HeapDestroy() in two ways.

· Mark all non-deallocated memory as deallocted. use this if you are ignoring calls to
HeapFree() because you will be calling HeapDestroy() at the end of the function. An example use
case would be implementing a linear heap.

· Mark all non-deallocated memory as leaked. use this if you are using Win32 heaps as the
backing store for your own memory allocator.

The default option is to mark non-deallocated memory as leaked as this is the most common usage
pattern.

Ignoring CRT calls after detecting damaged memory

Memory Validator inspects the memory pointers passed to realloc(), _expand(), free(), delete and
delete [].

Any damage to the part of the heap that contains the memory pointer is reported, and normally, the
intended CRT function call is ignored to prevent the application from the typically resulting crash.

· Call the CRT function... allows the CRT function call to proceed anyway even if damaged
memory has been detected (switched off by default)

Reset All - Resets all global settings, not just those on the current page.

Memory Validator Help271

Copyright © 2001-2025 Software Verify Limited

Reset - Resets the settings on the current page.

3.12.1.4.4 Instrumentation

The Instrumentation tab allows you to choose how Memory Validator monitors memory.

The picture below shows the default settings:

· Memory Buffer overrun detect The standard CRT memory management functions (memset,
strcpy, etc) are monitored for overruns and underruns.

There are four options to choose from. Each option is slower than the previous option.

· Normal Memory allocations and handle allocations are monitored. No other checks are
performed.

· Detect uninitialised data in C++ objects When objects are created they are checked to ensure
all data members are initialised. Debug mode applications only.

· Detect "deleted" this objects When methods are called the "this" pointer is checked to ensure it
is valid.

· Detect memory corruption The CRT heap is scanned every N function/method calls to check it's
integrity. Debug mode applications only.

The User Interface 272

Copyright © 2001-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.4.1Uninitialised Data

The Uninitialized Data tab provides controls for determining how uninitialized data detection hooks are
installed.

The default settings are shown below:

Uninitialized data detection

By default, uninitialized data checking is switched off, but you can turn it on and control how it works

· Enable detection of uninitialized data detects uninitialized data in C++ objects in your
application

Once enabled the additional options are

Memory Validator Help273

Copyright © 2001-2025 Software Verify Limited

· Uninit check once only check each object type once (the default), rather than every time their
constructors are called

· Uninit count until uninit check an object type for uninitialized data only until uninitialized data is
detected

The recommended option is to disable this and always check for uninitialized data irrespective of
when an instance is found.

· Detect for uninitialized HeapAlloc() enables detection of uninitialized data in C++ objects
which have overridden the new operator and instead allocate from a heap using HeapAlloc()

Your overridden new operator will need to initialise any allocated memory with the DWORD value
0xbaadf00d for uninitialized data to be detected.

See the source code for the example program that ships with Memory Validator for an
implementation example in the class heapNewBaseClass.

Uninitialized data size

When Memory Validator is looking for uninitialized memory, it searches for bit patterns in memory that
match the default value assigned by the debug Microsoft® C runtime heap:

· 0xCD for BYTEs
· 0xCDCD for WORDs
· 0xCDCDCDCD for DWORDs and 32 bit pointers
· 0xCDCDCDCDCDCDCDCD for QWORDs and 64 bit pointers

It may not be that uncommon to find a byte that has actually been initialised to 0xCD - a 1 in 256 chance
for random data for example.

It's less likely to find words similarly initialised to 0xCDCD and really very unlikely to find such DWORDS
(1 in 4 billion for random data) and QWORDS (1 in 16 quintillion).

If you are finding false positives however, where an initialised value is the same as the uninitialized
default, you can choose which data size Memory Validator uses to detect uninitialized memory:

· Data size when checking for unitialised memory choose a data size to match against from
the list - BYTE, WORD, 32 bit pointer or 64 bit pointer

The default is 32 bit pointer (same size as a DWORD) which normally minimizes the chance of
random false positives.

If you want to detect uninitialised pointers on 64 bit machines choose the 64 bit pointer option.
Option only available on 64 bit machines.

Data member detection

Choose to use data member names or member offsets.

The User Interface 274

Copyright © 2001-2025 Software Verify Limited

By default, the reporting of uninitialised data uses data member names which are cached between
sessions, being recalculating only when the module containing the class is rebuilt.

However, it's not always possible to determine data member names, so on these occasions data
member offsets are displayed.

You can choose to always display the offsets rather than the names:

· Use data member names... unchecked: displays offsets all the time and doesn't use member
names at all

When use of data member names is enabled, you can control the caching:

Cache data member information unchecked: recalculates data member names every
session, rather than the default of caching data on disk

Delete all cached data removes all cached data member information from disk

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.4.2Deleted "this" Pointer

The Deleted "this" Pointer tab provides controls for determining how some deleted object hooks are
installed relating to track functions called for deleted, NULL, or invalid 'this' pointers.

The default setting is not to detect such errors.

The default settings are shown below:

Memory Validator Help275

Copyright © 2001-2025 Software Verify Limited

Tracking the 'this' pointer

Calling functions that belong to a deleted object is a common error, especially if different parts of the
application are holding the object pointer.

Memory Validator can check the this pointer of every C++ class member function to ensure that it is:

· not a pointer to a deallocated object
· not NULL
· does not point to a memory address that is not accessible

These checks are not enabled by default because it can significantly affect performance speed and
memory usage.

 Note that uninitialised data detection is disabled when this feature is enabled

· Detect calling of functions for deleted C++ objects on the CRT heap enables detection of
functions being called for deleted C++ objects

When enabled you can additionally check for the following:

· Report NULL this pointers and Invalid this pointers enables detection of functions being
called for NULL and invalid this pointers

An Invalid this pointer is defined as one that does not point at the stack, memory in any
DLL, or any other allocated memory.

The User Interface 276

Copyright © 2001-2025 Software Verify Limited

You may want to see NULL this pointers for the specific MFC functions designed to receive
NULL pointers (see list below):

· Report NULL this pointers for MFC functions designed to receive NULL this pointers
enables the relevant reporting (disabled by default)

This option is not generally recommended as you will typically see many such reports. However,
there may be uses for this in specific cases, and we like to give you the option!

Some example error scenarios can be found at the end of this section.

Displaying reported errors

When a deleted object has a function called and has been detected, the display in the Memory tab
shows an entry to indicate where the error occurred.

The trace can be expanded to show the callstack and the source code.

In the example shown here, the ex->exampleMethod() has just been called, which has triggered the
error report.

Memory Validator Help277

Copyright © 2001-2025 Software Verify Limited

Some examples follow, and a list of MFC functions that are designed to be called with NULL this
pointers.

Examples

Two examples are illustrated below which demonstrate common scenarios in which these errors occur.

Example 1 - calling a function for a deleted object:

Consider the following much simplified example code:

myObj *obj;

// create an object, do some work and then destroy the object

obj = new myObj();

obj->doWork();

delete obj;

// at this point 'obj' is no longer valid,

... application does some more work

// another part of the application incorrectly uses the object that was deleted

earlier on (because

// the pointer wasn't reset to NULL, or more than one copy of the pointer

existed).

obj->doSomeMoreWork();

There is no guarantee that the call to doSomeMoreWork() will actually crash, which would otherwise alert
you to the error.

If the memory pointed to by obj is still a valid memory address, then:
· reads of data will read undefined values
· writes may corrupt existing data, or
· writes may write to memory locations that will never be accessed by the application again, or that

may be overwritten by any following memory allocation.

Enabling the features outlined above will help detect these errors.

Example 2 - MFC functions designed for NULL this pointers:

Consider the following snippet of example code that demonstrates an error:

CWnd *wnd;

wnd = getMyWindow(); // function that should return a valid window, but sometimes returns NULL;
wnd->GetSafeHwnd();

The User Interface 278

Copyright © 2001-2025 Software Verify Limited

The above code looks unsafe, as there is the potential to call GetSafeHwnd() with a NULL this pointer.

However, if you examine the MFC source or documentation for CWnd::GetSafeHwnd() you will see that
this function is designed to allow it to be called with a NULL this pointer. See just below for a list of such
functions.

As described above, Memory Validator allows you to detect functions being called with NULL this
pointers, whilst also allowing you to ignore the selected MFC functions that are designed to be called
with NULL this pointers.

MFC functions designed to be called with a NULL 'this' pointer

The list below details those MFC functions are designed to be called with NULL this pointers.

· CHandleMap::DeleteTemp
· CImageList::GetSafeHandle

· CGdiObject::operator HGDIOBJ

· CGdiObject::GetSafeHandle

· CPen::operator HPEN

· CBrush::operator HBRUSH

· CFont::operator HFONT

· CBitmap::operator HBITMAP

· CPalette::operator HPALETTE

· CRgn::operator HRGN

· CDC::operator HDC

· CDC::GetSafeHdc

· CMenu::operator HMENU

· CMenu::GetSafeHmenu

· CWnd::operator HWND

· CWnd::GetSafeHwnd

· CWinThread::operator HANDLE

· CWinApp::DoMessageBox

· CDC::DPtoHIMETRIC

· CDC::HIMETRICtoDP

· CWnd::AttachControlSite

· CWnd::GetParentFrame

· CWnd::GetTopLevelParent

· CWnd::GetTopLevelOwner

· CWnd::GetParentOwner

· CWnd::GetTopLevelFrame

· CPlex::FreeDataChain

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Memory Validator Help279

Copyright © 2001-2025 Software Verify Limited

3.12.1.4.4.3Memory Corruption Detection

The Memory Corruption Detection tab provides controls for detect memory corruption effectively while
reducing the performance hit involved

 The picture below shows this tab with the setting enabled, but the default setting is not to enable
detection of memory corruption

How is memory corruption tested for?

Memory corruption is detected by visiting every memory allocation in the CRT heap and checking the
entries in each location to see if the guard blocks on either side of the allocation are still valid.

In addition, any free blocks the CRT heap is still holding are also checked, to ensure that they have not
been written to.

 Note that this only works for DEBUG builds as information in the DEBUG heap is required
to enable this detection.

Detecting memory corruption

Memory Validator can detect memory corruption at the entry and exit points of functions in your
application.

The User Interface 280

Copyright © 2001-2025 Software Verify Limited

· Detect Memory Corruption enables detection

 Note that uninitialised data detection is disabled when this feature is enabled, and also
callstacks for memory and handle allocations will not display correctly

The default setting is not to detect memory corruption as it can significantly affect performance
speed.

 Why does detecting memory curruption affect performance so much?Enabling detecting
memory corruption will cause a serious performance degradation for your application. This is
because, in general, the longer your application executes, the more memory the application has
used. This means the CRT heap has more allocations in it, and thus the task of checking the
CRT heap for corruption takes longer. For small applications, or applications that allocate small
amounts of memory the performance hit will not be too great. For other applications the
performance hit will be quite high.

Once detection is enabled, the other settings help lower the impact on performance by reducing
frequency of checks:

· Check for memory corruption every N functions calls reduces the performance hit by less
frequent corruption checks

The default is every 500 calls, but you can change it in the range 1 to 100,000.

See below for how to use this setting effectively with the memory corruption filters which are
also described below.

· Disable detection when errors found in heap stops detecting more memory corruption errors
once an error has been found.

The default is continue detection even after errors are found (i.e. the checkbox is off by default)

· Check for memory corruption when function is...

...entered perform checks before executing a function

...exited perform checks after execution

Understanding the memory corruption results

When a memory corruption is detected, the main Memory tab shows the following items:

· some data to indicate the memory allocations that have been corrupted (one line may relate to one
or more corruptions)

· a last known callstack prior to this corruption being detected
· a callstack of the location when the corruption was detected

The two callstacks help to identify the area of the program between them as the potential cause of the
memory corruption.

In the example below line id:482 shows that two objects of 10 bytes were corrupted, followed by a last
known good and bad callstack for each corruption detected.

Memory Validator Help281

Copyright © 2001-2025 Software Verify Limited

The known good callstack at line id:484 will show the last location in the program at which the CRT heap
was known not to have been corrupted (or if already corrupted, then at least not corrupted any more!).

Finally, the known bad callstack at line id:485 is shown expanded and indicates the location at which
the memory corruption was detected. Note that this is not necessarily the point at which memory was
actually corrupted, as this depends on the value of N described above.

Because line id:482 related to two corruption detections, another good and bad callstack would be
displayed below those shown here.

Memory corruption filters

Because of the performance hit of detecting memory corruption, it can be advisable to constrain
detection to only part of an application.

To do this, you specify 'detectors' that switch the checking on and off.

A detector specifies a function name to which it applies and a status that applies when the program
reaches the detector. When the program leaves the detector function, the previous status is applied.

Using the yellow check box, detectors can be disabled so as not to affect the detection status.

· Memory Corruption Filters... display the Memory Corruption Filters dialog (see below)

The User Interface 282

Copyright © 2001-2025 Software Verify Limited

Using memory corruption filters

· Detection of memory corruption is normally ON / OFF until modified by a detector sets the
default detection state

· Add... enter function, or class::method in column 1 Click column 2 to add the state (default is
Detect), double click to change it to Don't Detect.

Detectors are initially enabled. To disable a detector, use the yellow check box.

The function name can take the forms below - no need to specify return types or argument types

· className::methodName Matches class name and method name exactly
· className:: Any method in class className
· ::methodName Matches method methodName in any class
· functionName Matches function name only

· Remove removes selected detectors from the list
· Remove All removes all detectors from the list

· Enable All enables all detectors
· Disable All disables all detectors

These don't affect the Detect status in column 2

 Note that data collection is still subject to the global data collection flags, so turn global data
collection off also turns off memory corruption detection

Memory Validator Help283

Copyright © 2001-2025 Software Verify Limited

Example of using memory corruption filters

Consider an application where only the myApp::sortThisData() function, and all functions called from it
are of interest:

Choose Detection of memory corruption is normally OFF until modified by a detector sets
default checking state to OFF

Then Add... enter myApp::sortThisData() in first column of the table click in the second
column to choose Detect

When the application reaches myApp::sortThisData() the detection of memory corruption is turned ON
because of the Detect status.

The application runs as normal, and memory corruption is detected, until myApp::sortThisData()
finishes executing.

At this point the previous detection status (OFF) is restored.

Using the filters and the 'check every N functions' settings together

Setting N to 1 checks the CRT heap at every function entry and exit and corruption will be detected very
close to the actual line of source code that caused the problem. However, the performance hit will be
high - huge in fact, for larger applications.

Setting N to, say 100, means the performance hit will be lower, but up to 100 functions may have been
called between the memory corruption and its detection.

One strategy might be to start with a high value for N to get a feel for which part of the application is
causing the corruption.

Then hone in on the corruption by using the memory corruption filters to focus on that part of the
application, and decrease N to 1 so that every function entry and exit is monitored inside the area
covered by the filters.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.5 Timeline

The Timeline page allows you to control how much data Memory Validator will store for displaying on
the Timeline.

The default settings are shown below:

The User Interface 284

Copyright © 2001-2025 Software Verify Limited

Memory timeline duration

The memory and handle timeline samples data every second while your application is running. For long
running programs, that can mean storing a large amount of data.

To prevent too much storage being used, you can specify the maximum as a time duration in Days,
Hours, and Minutes for the most recent group of samples.

Once more samples have been collected than fit in that time duration the oldest samples will be
discarded. The default is 1 hour.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.6 Allocator Alias

The Allocator Alias tab allows you to specify any custom or in-house MACROs used to wrap C/C++
keywords and functions such as new, delete, malloc, realloc, free, etc.

This feature was added to improve source code parsing for the case when users have wrapped the
keywords.

The default behaviour is to have no aliases set, and if you don't wrap the C/C++ keywords in this
way, you won't need to define any allocator aliases here.

Memory Validator Help285

Copyright © 2001-2025 Software Verify Limited

The image above shows an example where MY_NEW, MY_NEW_ARRAY, MY_DELETE and MY_DELETE_ARRAY
have been used to wrap the C/C++ keywords new, new [], delete and delete [].

Note: when using allocator and deallocator alias macros, ensure that the macro and all arguments to
the macro are on the same source code line. Macros that span lines will not be parsed correctly. This
is because the current parser works a line at a time.

Allocators

To add a custom allocator, use the top table:

· Add enter your custom macro name in the Allocators column double click in the Type column
 Choose the matching Allocator Type from the list

The allocator type can be one of the following:

· NEW - new()
· NEW [] ARRAY - new []
· MALLOC - malloc()
· CALLOC - calloc()
· REALLOC - realloc()
· EXPAND - _expand()
· HEAP_ALLOC - HeapAlloc()
· HEAP_REALLOC -
HeapReAlloc()

· GLOBAL_ALLOC -
GlobalAlloc()

· GLOBAL_REALLOC -
GlobalReAlloc()

· LOCAL_ALLOC -
LocalAlloc()

· VIRTUAL_ALLOC - VirtualAlloc()
· VIRTUAL_REALLOC - VirtualReAlloc()
· COTASKMEM_ALLOC - CoTaskMemAlloc()
· COTASKMEM_REALLOC - CoTaskMemReAlloc()
· SYS_ALLOC_STRING - SysAllocString()
· SYS_ALLOC_STRING_BYTE_LEN -
SysAllocStringByteLen()

· SYS_ALLOC_STRING_LEN - SysAllocStringLen()
· SYS_REALLOC_STRING - SysReallocString()
· SYS_REALLOC_STRING_LEN -
SysReallocString()

· USER_ALLOC - see below
· USER_REALLOC - see below
· USER_ALLOC_ARG1...10 - see below

The User Interface 286

Copyright © 2001-2025 Software Verify Limited

· LOCAL_REALLOC -
LocalReAlloc()

USER_ALLOC - is a substitute for a user specified alloc where your macro simply replaces a keyword
(such as new, malloc, etc)

USER_REALLOC - is for user specified realloc
USER_ALLOC_ARG1...10 - is for a user specified alloc where your macro takes arguments and one of

the arguments 1...10 is the allocation. See the end of this topic for example code.

Deallocators

Managing deallocator alias works in the same was as allocators above, but via the lower table, with
deallocator types being one of the following:

· DELETE - delete
· DELETE [] ARRAY - delete []
· FREE - free()
· HEAP_FREE - HeapFree()
· GLOBAL_FREE - GlobalFree()
· LOCAL_FREE - LocalFree()

· VIRTUAL_FREE - VirtualFree()
· COTASKMEM_FREE - CoTaskMemFree()
· SYS_FREE_STRING - SysFreeString()
· VARIANT_CLEAR - VarianctClear()
· USER_FREE - user specified free

Removing aliases

You can remove either selected alias or all aliases from each table

· Select one or more items in the list Remove removes all selected allocator aliases
· Remove All removes all the allocators in the table

Reset All - Resets all global settings but does not remove the allocator and deallocator aliases set

on this page of the settings dialog.

Reset - Resets the settings on the current page.

Example use of the USER_ALLOC_ARG1...10 allocator alias

For the USER_ALLOC_ARG1...10 allocator aliases, you would use these in the situation where you have
defined a macro that takes arguments, one of which is the allocation.

For example, consider the following code:

#define PROTECTED_ALLOC1(_allocExpression, _p, dummyArg) \

try \

{ \

(_p) = (_allocExpression); \

} \

Memory Validator Help287

Copyright © 2001-2025 Software Verify Limited

catch(...) \

{ \

(_p) = NULL; \

}

#define PROTECTED_ALLOC2(_p, _allocExpression, dummyArg) \

try \

{ \

(_p) = (_allocExpression); \

} \

catch(...) \

{ \

(_p) = NULL; \

}

allocateInSideThis *ec1;

allocateInSideThis *ec2;

char *someData;

PROTECTED_ALLOC1(new allocateInSideThis, ec1, false);

PROTECTED_ALLOC1(new allocateInSideThis[4], ec2, false);

PROTECTED_ALLOC1((char *)malloc(31), someData, true);

// do some work...

MY_DELETE ec1; // this one was a single value

MY_DELETE [] ec2; // this one was an array

MY_FREE(someData); // this one was malloc

PROTECTED_ALLOC2(ec1, new allocateInSideThis, false);

PROTECTED_ALLOC2(ec2, new allocateInSideThis[4], false);

PROTECTED_ALLOC2(someData, (char *)malloc(31), true);

// do some work...

MY_DELETE ec1; // this one was a single value

MY_DELETE [] ec2; // this one was an array

MY_FREE(someData); // this one was malloc

To use the above macros, you would:

· define PROTECTED_ALLOC1 as a USER_ALLOC_ARG1 since it uses the first argument for the
allocation

· define PROTECTED_ALLOC2 as a USER_ALLOC_ARG2, since it uses the second argument

3.12.1.4.7 C Runtime Setup

The C Runtime Setup tab allows you to control whether hooking of statically linked applications is
enabled, or even specify a custom CRT build

Read more about dynamic and statically linked CRT libraries, map fles, and related compiler options
in the before you start section.

The User Interface 288

Copyright © 2001-2025 Software Verify Limited

 Note that where possible, we recommend that you link your program with the dynamic C
runtime library for use with Memory Validator.

Statically linked C Runtime Hooks

Just to reiterate from above: when monitoring programs written with Microsoft Visual Studio, the best
performance is achieved when those programs are dynamically linked to the C runtime libraries.

For applications built using the statically linked C runtime libraries, support is provided by using the
debugging symbol table to locate the functions.

· Enable hooking of statically linked applications (.EXE and .DLL) enables use of the static C
runtime library support (the default)

Caveats with using statically linked C runtime libraries

When running Memory Validator with applications using statically linked C runtime libraries:

· Buffer overrun detection is not available

· Buffer underrun detection is not available

· For release builds using the statically linked C runtime library, Microsoft do not emit symbols for all
memory allocators/deallocators - making it impossible to monitor them in such builds

· Performance of applications will be slower, since the hooking mechanism is more complex

Memory Validator Help289

Copyright © 2001-2025 Software Verify Limited

Requirements for using statically linked C runtime libraries

Using Microsoft?

For Microsoft runtimes, we always use the PDB file where possible, only using a map file if no PDB file
containing symbols is available.

In the event PDB files are not available, you'll need to generate a map file for each statically linked
DLL/EXE that you wish to monitor. The map file must have the same name as the DLL/EXE with the
extension ".map". For example, if you are building the DLL "example.dll", the map file name should be
"example.map".

Using Borland Dephi, Borland C++?

This topic does not apply. Memory Validator can handle statically linked applications correctly. Just
ensure you create appropriate TDS symbols and detailed map files.

Using Metrowerks C/C++, Visual Basic, or Fortran95?

This topic does not apply.

Custom CRT DLL

If you have rebuilt your Microsoft C Runtime DLLs, you can specify the names (just names, no path) of
the Debug and Release DLLs in the two fields provided.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.8 Warning

The Warning page allows you to control warnings that Memory Validator can display.

The default settings are shown below:

The User Interface 290

Copyright © 2001-2025 Software Verify Limited

LoadLibrary Warnings

When you want to know if a module is failing to load and why, you can be informed on the diagnostics
tab or via a message box:

· Display message on Diagnostic tab informing about failed LoadLibrary(Ex) call shows
diagnostic message (on by default)

· Display message box informing ... shows warning message dialog (off by default)

This message box is launched in the target application as a convenience for attaching your
debugger before clicking the OK button.

Static CRT Warning

Memory Validator instruments the C runtime heap by monitoring calls to the dynamically linked CRT.

· Warn if dynamically linked CRT is not present ... shows a warning dialog (example below) if
the application starting up is using static rather than dynamically linked CRT

 See the before you start section for more information about the dynamic and static CRTs.

Memory Validator Help291

Copyright © 2001-2025 Software Verify Limited

WinSxS MFC80/MSVCRT80 Warning

This warning applies to all MFC/VC++ from MFC80 (Visual Studio 2005) onwards through to Visual
Studio 2014 (MFC140(u)(d).dll/APPCRT140(U)(D).DLL)

When working with these versions, dlls are installed as side by side DLLs in the c:\windows\WinSxS
folder (or equivalent).

The symbols for these DLLs are not kept in the same folder and will not be found automatically by
Memory Validator.

A warning is optionally shown indicating the PDB symbol search path may be incomplete if the c:
\windows\symbols\dll folder (or equivalent) is not part of the PDB symbol path when VC or MFC DLLs
are used.

· Warn if WinSxS symbols not in PDB symbol path ... shows a warning that the PDB symbol
search path may be incomplete (on by default)

In-place Memory Leak Detect Warning

This warning is displayed when an in-place memory leak detection is started. The warning informs you
how many pointers and/or handles will be checked (the more there are, the longer it takes).

· Show warning dialog prior to performing ... shows a warning that an in-place memory leak
detect is about to take place.

Reset All - Resets all global settings, not just those on the current page.

The User Interface 292

Copyright © 2001-2025 Software Verify Limited

Reset - Resets the settings on the current page.

3.12.1.4.9 Don't Show Me Again

The Don't Show Me Again page allows you to control warnings that Memory Validator displays.

The default settings are shown below:

Debug Information

Debug Information Failure Warning

When there is a failure collecting debug symbols a warning can be displayed. The options are:
· Always show dialog
· Never show dialog
· Show dialog when symbol fetches throw exceptions

Display Debug Information Warning

When no debug information is available for at least one module a warning can be displayed. The options
are:
· Always show dialog
· Never show dialog
· Show dialog when debug information is missing

Memory Validator Help293

Copyright © 2001-2025 Software Verify Limited

Services API

· Service not linked to Software Verify NT Service API warning will be shown if you try to
monitor a service not linked to the Software Verify NT Service API. (on by default)

When trying to monitor a service Memory Validator can detect if the service is not linked to the NT
Service API and display a warning.

It is possible to use the service API without linking to it (use GetProcAddress() to lookup the
functions and call them) - in this case you would want to turn this warning off.

· Application may be linked to Win32 Service API warning will be shown if you try to start an
application that appears to be a service - it uses Win32 Service APIs. (on by default)

ISAPI

· IIS ISAPI extension not linked to NT Service API warn when using an ISAPI not linked to the
NT Service API

When trying to monitor ISAPI extensions Memory Validator can detect if the ISAPI is not linked to the
NT Service API and display a warning.

It is possible to use the NT Service API without linking to it (use GetProcAddress() to lookup the
functions and call them) - in this case you would want to turn this warning off.

· ISAPI has no debug information warn when using an ISAPI that has no debug information

Memory Validator can warn if the ISAPI has no debug information. There may be cases where you
don't want to see this warning.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.10.Net Warnings

The .Net Warnings page allows you to control .Net related warnings that Memory Validator displays.

The default settings are shown below:

The User Interface 294

Copyright © 2001-2025 Software Verify Limited

Object Activity Warning

Collecting object activity statistics to help determine which .Net objects have not been used and
therefore might be leaked is an expensive activity. It will slow your program performance. Because of this
Memory Validator can warn you when you enable this option so that you don't enable it and then wonder
what happened to your application's performance.

· Display a warning dialog when user enables object activity tracking does what it says on
the tin!

When this warning is enabled and the user tries to enable object activity tracking they are shown this
warning as a reminder of the performance penalty.

ASP.Net Warning

There are a couple of useful ASP.Net configuration warnings which Memory Validator can display.

Memory Validator Help295

Copyright © 2001-2025 Software Verify Limited

· Display a warning if ASP.Net web.config cannot be found The web.config affects how your
ASP.Net website behaves. If this isn't present the website may not display correctly.

· Display a warning if ASP.Net web.config does not contain debug configuration Without
the debug configuration debug information won't be available.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.11MFC Message Map Checks

The MFC Message Map Checks tab support validation of function signatures for functions called by
MFC message map processing.

 This option is not relevant if using Visual Studio .Net or VC++ 7.0 or above.

The default settings are shown below:

Checking MFC message map parameter counts

Enabling message map stack corruption detection will check message map function parameter counts
called in release mode and debug mode.

· Check MFC message maps for correct parameter passing enable the message map
parameter checks (off by default)

The User Interface 296

Copyright © 2001-2025 Software Verify Limited

If enabled, ensure you also choose the correct Visual C++ version from the list to ensure errors
are reported correctly

Message map error dialog

When an error is detected, a dialog is displayed. An example is shown below. The example shows that a
handler called OnMemoryerrorsMessagemaperror with 2 parameters was called when 0 were expected.
If a file and line number for the function can be identified, they will be displayed.

If you choose Retry, an int 3 breakpoint instruction will be executed, causing the program to either stop
in the debugger, or start the debugger if Just-In-Time debugging is enabled.

You may not be able to see the full callstack, and will need to step out 3 or 4 levels (out of
SvlMemoryValidatorStub.dll) before the full callstack is displayed.

 This option is not relevant if using Visual Studio .Net or VC++ 7.0 or above. In the test example
application, the Message Map Error button in the Memory Errors menu will be disabled for builds with
newer compilers

How MFC message map can be a problem

Memory Validator Help297

Copyright © 2001-2025 Software Verify Limited

If you specify the wrong function signature (by specifying too many or too few parameters), the code will
execute without error in Debug mode, but will crash with a corrupt stack in Release mode.

For example, a button handler would be specified in the message map as:-

BEGIN_MESSAGE_MAP(CtheDlg, CDialog)

//{{AFX_MSG_MAP(CtheDlg)

ON_BN_CLICKED(IDC_BUTTON_BROWSE, OnButtonBrowse)

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

The function prototype would be:

void OnButtonBrowse();

and the implementation would be

void CtheDlg::OnButtonBrowse()

{

// do stuff here

}

Consider if however, this was specified as:

void OnButtonBrowse(void *anArg);

void CtheDlg::OnButtonBrowse(void *anArg)

{

// do stuff here

}

A crash would happen with a corrupted stack after the function OnButtonBrowse executes. This is
because the anArg argument is popped off the stack by the OnButtonBrowse() function, although the
calling MFC message map dispatcher did not push the parameter onto the stack.

This causes very hard-to-identify "release only" bugs.

In debug mode, the error is still present, but the way MFC processes message maps means that in
debug mode, this error does not result in a crash.

Diagnostics

Collection: A lot of diagnostic information is collected and displayed on the diagnostic tab when
attaching to a target program.

Some of this information is always sent to Memory Validator, but if you may not want to see it all.

· Enable diagnostic data collection displays all diagnostic information in the diagnostic tab (on
by default)

The User Interface 298

Copyright © 2001-2025 Software Verify Limited

Disassembly: When hooking functions, some functions cannot be hooked due to the object code that
corresponds to the source code location.

· Send disassembly for failed hooks shows the disassembly for function lines that cannot be
hooked (off by default)

Use caution when enabling this as it can increase startup time and memory usage.

Missing functions: If the wrong version of DbgHelp.dll is loaded certain functions will not be available.

· Display DbgHelp missing function warning dialog show a warning when some functions are
not available (on by default)

Use caution when enabling this as it can increase startup time and memory usage.

 To see the order in which the DbgHelp.dll process checks directories to find symbols, see the
diagnostic tab with the filter set to DbgHelp debug.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.12CoInitializeEx

The CoInitializeEx tab allows you to set the default behaviour used to initialize COM if Memory
Validator needs to initialize COM to acquire symbols for .Net modules.

The default settings are shown below:

Memory Validator Help299

Copyright © 2001-2025 Software Verify Limited

CoInitializeEx

In some situations the Validator needs to get .Net symbols and to do that COM needs to be initialized.
This normally isn't a problem, but if your program also performs COM initialization and the sequence of
events results in your COM initialization coming after the Validator's COM initialisation rather than getting
the expected ERROR_SUCCESS return code you'll get either ERROR_INVALID_FUNCTION or
RPC_E_CHANGED_MODE.

If you get ERROR_INVALID_FUNCTION this is OK, this just means you've called CoInitialize() or
CoInitializeEx() multiple times with the same flags. Your code needs to handle
ERROR_INVALID_FUNCTION as not an error.

If you get RPC_E_CHANGED_MODE this means you need to change the Validator's default value to the same
value your program is using. That's what this dialog allows you to do.

If you also wish to disable OLE DDE or favour speed rather than memory use we've provided appropriate
options for you to select to add those flags to the threading mode.

See the Microsoft documentation for additional information on the behaviour of CoInitialize() and
CoInitializeEx().

Runtime detection of CoInitializeEx conflict

When the above scenario happens, that the Validator has initialized COM before your code initializes
COM and your call returns RPC_E_CHANGED_MODE, we display a dialog to warn you about this failure
and provide you with the option of editing the default value for subsequent runs of your application.

https://docs.microsoft.com/en-us/windows/win32/api/objbase/nf-objbase-coinitialize
https://docs.microsoft.com/en-gb/windows/win32/api/combaseapi/nf-combaseapi-coinitializeex

The User Interface 300

Copyright © 2001-2025 Software Verify Limited

· Edit Settings... opens the CoInitializeEx dialog shown above

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.4.13Data Transfer

The Data Transfer tab allows you to specify the overall behaviour of data transfer between your
application and Memory Validator.

The default settings are shown below:

Memory Validator Help301

Copyright © 2001-2025 Software Verify Limited

Data Transport

Choose the type of data transport you wish to use.

· Automatic. Applications and services use shared memory to transfer data. IIS uses disk based data
transfer.

· Disk. Applications, services and IIS use disk based data transfer.

· High Volume. Data transfer has no data throttling applied to it. This mode is for use with applications
that generate very high volumes of data rapidly. They typically exceed the buffering capabilities of
Memory Validator when working with shared memory. The High Volume setting uses a data transport
that doesn't have a data-throttling requirement allowing the high volume application to continue without
waiting.

Automatic

Under most circumstances data transfer between Memory Validator and the target program (desktop,
service, etc) is via shared memory. This is handled automatically.

Disk Data

Some applications and services don't allow shared memory access. For these occasions we use a file
based data transfer, where the files are stored in a directory of your choice.

The User Interface 302

Copyright © 2001-2025 Software Verify Limited

We provide two options for this, one for most applications and services (Disk Directory), and one for
Internet Information Server (IIS Disk Directory), as this operates in a very restricted environment.

Both options are configured automatically, but you can override either by typing the path to a suitable
directory or using the Microsoft directory browser.

The ISS path you enter will be determined by the settings you have configured for IIS using the Internet
Information Services Manager tool. We won't discuss that here because if you're using IIS we assume
you already know how to configure IIS correctly.

Advanced

Shared memory data transfer can also be configured but we strongly recommend that you leave
these settings alone.

 The Data Transfer Helper is a separate application supplied in the installation directory.

· Advanced... opens the data transfer settings dialog.

Here be dragons!

 Caution: Modifying the settings on this page and using the data transfer helper application can
prevent Memory Validator from working correctly.

· Set To Defaults if you have modified the settings, this resets them

See also the Reset to default buttons on the data transfer helper application below

If in doubt, don't modify these settings. If you promise to be careful, read on!

Memory Validator Help303

Copyright © 2001-2025 Software Verify Limited

Delayed data transfer

Delayed data transfer is the process of throttling data rates in the stub so that the slower user interface
can keep up with processing the data received.

In the stub, as an event occurs, data is queued and then sent to the user interface.

In the user interface, data from the stub is received and queued again for processing.

Any delay is usually in the slower user interface, but still not a problem for most applications.

However, some data intensive applications can generate so much data that the user interface gets
swamped and can't process it all before running out of memory.

Temporarily limiting the data rate in the stub allows the user interface to stabilize the data processing.

Managing data rates

We recommend the default settings as shown above:

· disable delay data transfer for most applications

· enable automatic delay data transfer at a threshold of between 100,000 and 1,000,000 data items

If delayed data transfer is enabled all the time, the automatic options don't apply.

If you have more than 1GB RAM, you can raise these thresholds.

Data transfer helper application

A separate data transfer helper application is supplied in the installation directory.

The helper application can be used to modify low level settings that apply when delay data transfer is
activated as above.

 The helper should be used with care. We already warned of dragons above, but here we are, warning
you again!

An HTML help page for this application is available by clicking the Help button on the helper application.

You can also find the help page directly as dataTransferHelp.html.

Please do take a moment to read the help before use.

The User Interface 304

Copyright © 2001-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.5 Symbol Handling

3.12.1.5.1 Symbols Misc

The Symbols Misc tab allows you to set miscellaneous symbols loading and resolving settings and
some diagnostic options.

The default settings are shown below:

Memory Validator Help305

Copyright © 2001-2025 Software Verify Limited

Immediate or deferred symbol loading

When converting program addresses to symbol names, you can choose immediate or defer loading until
each symbol is needed.

· Use deferred symbol loading uses deferred symbol loading rather than 'all at once' (on by
default)

Microsoft® recommend deferred symbol loading, claiming it is the fastest option. We give you
the choice.

Symbol Reader Logging

Symbols are fetched from symbol servers using a helper process svlDbgHelpSymbolReader.exe. We log
the command line and behaviour of this helper tool. This is displayed on the diagnostic tab.

If you wish the log files can be kept for later analysis. By default this option is turned off.

· Keep svlDbgHelpSymbolReader log files keep the log files after Memory Validator has finished
processing them

The path to the directory containing the log files is shown.

· Clean delete all svlDbgHelpSymbolReader log files

Reset All - Resets all global settings, not just those on the current page.

The User Interface 306

Copyright © 2001-2025 Software Verify Limited

Reset - Resets the settings on the current page.

3.12.1.5.2 Symbol Lookup

The Symbol Lookup tab allows you to specify how and where symbolic information is retrieved for your
application or service.

The default settings are shown below, although the Visual Studio version may vary.

Compiler / IDE Choice

Use the first combo box to choose which compiler / IDE you used to build your software.

Memory Validator will use the appropriate methods to read your symbols.

The choices are:

· Visual Studio
· Visual Basic 6
· Delphi or C++ Builder
· MingW
· Rust
· Dev C++
· Metrowerks CodeWarrior
· Salford Fortran 95
· Other

Symbol lookup for Microsoft / Intel compilers

Memory Validator Help307

Copyright © 2001-2025 Software Verify Limited

· We can provide a Dbghelp.dll choose one of Memory Validator's known good DbgHelp.dll's
based on the version of Visual Studio you are using

Memory Validator fetches symbols for your application using an appropriate symbol handler for the
type of debugging information you have.

For Microsoft Visual Studio users each version of Visual Studio provides different debugging formats
which are readable by the appropriate DbgHelp.dll supplied by Visual Studio. A given version of
DbgHelp.dll is usually able to read earlier formats of Microsoft debugging information but is not able
to read a future format. For example Visual Studio 2005 (version 8) can read Visual Studio 6 debug
information but cannot read Visual Studio 2008 debug information.

Visual Studio 6.0 doesn't supply a DbgHelp.dll so we have provided one for use with Visual Studio
6.0.

Visual Studio 10 is unusual in that the DbgHelp.dll (6.12) supplied by Visual Studio cannot read the
debug information created by Visual Studio. To solve this problem we have supplied DbgHelp.dll
(6.11) as an alternative.

Memory Validator will choose the appropriate (most recent) version of Visual Studio automatically.
You can override Memory Validator's choice by choosing the Visual Studio version from the Visual
Studio combo box.

Specify your own DbgHelp.dll

· Or, you may locate a version of DbgHelp.dll specify your own DbgHelp.dll to use with Memory
Validator

If you wish to explicitly specify which DbgHelp.dll to use choose the Or, you may locate a version
of DbgHelp.dll option enter the path in the DbgHelp.dll edit field or use the Browse... button to
select the dbgHelp.dll.

Note that the directory that contains DbgHelp.dll should also contain symsrv.dll if you wish to use
symbol servers with Memory Validator.

Don't update DbgHelp.dll

· You're providing your own DbgHelp.dll use the DbgHelp.dll that ships with your application

If your application needs to use a specific version of DbgHelp.dll that you're already providing with
your application you should choose the You're providing your own DbgHelp.dll option to prevent
Memory Validator from overwriting your DbgHelp.dll.

Note that the directory that contains DbgHelp.dll should also contain symsrv.dll if you wish to use
symbol servers with Memory Validator.

Visual Studio DbgHelp.dll version compatibility

The User Interface 308

Copyright © 2001-2025 Software Verify Limited

For Microsoft Visual Studio users, each VS version provides different debugging formats which are
readable by the appropriate DbgHelp.dll supplied with Visual Studio.

These handlers are usually backwards compatible, but not forwards compatible. For example Visual
Studio 2005 (version 8) can read Visual Studio 6 debug information but cannot read Visual Studio 2008
debug information.

Visual Studio 6.0 doesn't supply a DbgHelp.dll so we have provided one for use with Visual Studio 6.0.

Visual Studio 10 is unusual in that the DbgHelp.dll (6.12) supplied by Visual Studio cannot read the
debug information created by Visual Studio! To solve this problem we supply version 6.11 as an
alternative.

 To see the order in which the DbgHelp.dll process checks directories to find symbols, see the
diagnostic tab with the filter set to DbgHelp debug.

Symbol lookup for other compilers

If you are using another compiler click the link to see information about configuring debug information for
that compiler.

After selecting the compiler, clicking the link will show a dialog box containing information relevant to the
selected compiler.

For example:

Memory Validator Help309

Copyright © 2001-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.5.3 Symbol Servers

The Symbol Servers tab allows you to specify Symbol Servers to retrieve symbols used in your
application.

 You do not need to specify symbol servers if you do not wish to, and Memory Validator will work
correctly without them.

Read on, or click on a setting in the picture below to find out more.

Symbol servers

Symbol servers are entirely optional, but are useful for obtaining symbols from a centralized company
resource or for obtaining operating symbols from Microsoft.

The default symbol server is the Microsoft symbol server used for acquiring symbols about Microsoft's
operating system DLLs. You may also wish to add some symbol servers for any software builds in your
organisation.

A symbol server is defined by at least the following:

· the symbol server dll to be used to handle the symbol server interaction

The User Interface 310

Copyright © 2001-2025 Software Verify Limited

· a directory location where symbol definitions are saved
· the server location - a url

Each symbol server can be enabled or disabled allowing you to keep multiple symbol server
configurations available without constantly editing their definitions.

You can define up to four symbol servers and more than one can be enabled at a time.

Symbol Server Errors

Any symbol server entry shown in red indicates there is a problem with parts of the definition of that
symbol server.

In the image shown above the symbol server at http://127.0.0.42:8000 cannot be reached. It is either
offline or does not exist.

Managing symbol servers

· Add... displays the symbol server dialog described below

· Remove remove selected symbol server(s) in the list
· Remove All remove all symbol servers

· Enable All enables all symbol servers in the list
· Disable All disables all symbol servers

You can also enable or disable an item in the list via the yellow check box at the left of each
row.

To edit the details for a symbol server, just double click the entry in the list to show the symbol server
dialog again.

Symbol server dialog

The dialog initially appears pre-populated with some default values and allows you to set up or edit the
definition of a symbol server. Some of the default values can be changed.

http://127.0.0.42:8000

Memory Validator Help311

Copyright © 2001-2025 Software Verify Limited

· Enable Symbol Server enable or disable this server

The following three entries must be set to enable the OK button and define the symbol server.

 OK button not enabled?The OK button will only be enabled when the following entries have a
valid value: - Symbol Server DLL names a dll present in the Memory Validator install
directory. - Symbol Store Directory has been specified and exists. - Symbol Server URL
has been specified (this value will not be checked for correctness).

· Symbol Server select a predefined public symbol server or enter the URL of the symbol server
you wish to use - the Microsoft server is initially set as the default

· Symbol Store Directory enter or Browse to set the directory that will contain local copies of the
downloaded symbols

· Create Dir creates a directory if you entered a directory name that does not exist yet

The Symbol Server DLL is set based on the Symbol Lookup settings you have chosen.

You can optionally associate a directory to scan when you are prefetching symbols (below)

· Prefetch Directory specify the directory to scan for symbols

Environment variables related to symbols

If you wish, you can set some environment variables to supply symbol paths.

· Configure Symbol Handling Environment Variables opens the dialog below

The User Interface 312

Copyright © 2001-2025 Software Verify Limited

Check the desired options - if any.

Pre-fetching symbols

To avoid delays when using symbol servers, you can trigger the retrieval of symbols (by running
SymChk.exe) to collect symbols for all executable files specified in the exe/dll which you associated
with each symbol server.

· Prefetch Symbols... open the Prefetch Symbols dialog below to continue

Prerequisites for pre-fetching symbols

The pre-fetching of symbols requires the installation of Microsoft's Debugging Tools .

You may already have Debugging Tools if you've previously installed the Windows Driver Kit (DDK or
WDK) or the Windows SDK.

· Install Debugging Tools for Windows opens a web page (as above) to download and install the
x86 or x64 Debugging Tools for Windows

After installing the Debugging Tools, you must specify the location of SymChk.exe from the installed
area.

https://msdn.microsoft.com/en-us/windows/hardware/hh852365

Memory Validator Help313

Copyright © 2001-2025 Software Verify Limited

· SymChk.exe enter or Browse to SymChk.exe location

A typical path might be C:\WinDDK\7600.16385.1\Debuggers\symchk.exe

Getting the symbols

 Note that prefetching symbols may consume a large amount of disk space and download
bandwidth.

You should ensure that you have at least 2 or 3Gb of disk free space, because of the total size of the
download packages.

· Prefetch Symbols... runs SymChk.exe to get all the symbols

The symbols for each symbol server are stored in the associated symbol store directory.

 If no symbol servers are specified in the symbol server settings above, you'll see a warning dialog
and no symbols will be fetched.

Command line pre-fetching of symbols with the SymChk utility

The section on Pre-fetching symbols above is a convenient alternative to manually using the
SymChk,exe utility.

To avoid delays when using symbol servers, you can pre-fetch symbols using the SymChk.exe
command line tool that is part of Microsoft's Debugging Tools .

You may want to add the folder of the Debugging Tools for Windows package to the PATH environment
variable on your system so that you can access this tool easily from any command prompt.

Example:

To use SymChk.exe to download symbol files for all of the components in the c:\windows\System32
folder, you might use the command:

symchk.exe /r c:\windows\system32 /s SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

where
/r c:\windows\system32 finds all symbols for files in that folder and any subfolders

/s SRV*c:\symbols*http://msdl.microsoft.com/download/symbols specifies the symbol
path to use for symbol resolution.

In this case, c:\symbols is the local folder where the symbols will be copied from the
symbol server.

To obtain more information about the command-line options for SymChk.exe, type symchk /? at a
command prompt.

http://msdn.microsoft.com/en-US/windows/hardware/gg463009/

The User Interface 314

Copyright © 2001-2025 Software Verify Limited

Other options include the ability to specify the name or the process ID (PID) of an executable file that is
running.

Reset All - Resets all global settings, not just those on the current page. This includes removing any

symbol servers added.

Reset - Resets the settings on the current page. This includes removing any symbol servers added.

3.12.1.5.4 Symbol Load Preferences

The Symbol Load Preferences tab allows you to configure which debug information types are looked
for and which are ignored.

This can save some time fetching symbols each time a DLL is loaded.

· Select your compiler / IDE... choose a preset definition for a compiler / IDE, or edit one of four
custom symbol load preferences

The present definitions are:
o I don't know which compilers choose this if you don't know which compilers were used to

build the software
o All compilers choose this to let Memory Validator fetch the symbols

o Visual Studio choose this if you're only using Visual Studio

o Visual Basic 6 choose this if you're only using Visual Basic 6

Memory Validator Help315

Copyright © 2001-2025 Software Verify Limited

o Delphi choose this if you're only using Delphi

o C++ Builder choose this if you're using C++ Builder on 32 bit Windows

o C++ Builder 32 bit choose this if you're using C++ Builder to build 32 bit applications

o C++ Builder 64 bit choose this if you're using C++ Builder to build 64 bit applications

o MingW / gcc / g++ / QtCreator / Dev C++ choose this if you're using MingW / gcc / g++

o QtCreator / Dev C++ choose this if you're using QtCreator

o Dev C++ choose this if you're using Dev C++

o Rust choose this if you're using Rust

o Salford Fortran 95 choose this if you're using Salford Fortran 95

o Custom 1 choose this to edit a definition you can reuse

o Custom 2 choose this to edit a definition you can reuse

o Custom 3 choose this to edit a definition you can reuse

o Custom 4 choose this to edit a definition you can reuse

Editing a definition

Once a definition has been selected the appropriate check boxes next to each debug information type
are populated.

You can edit these selections, for example to include or exclude PDB debug information for operating
system DLLs, or allow Memory Validator to search for COFF debug information, whatever is optimal for
the way you are working.

Custom definitions

Only the custom definitions will be remembered if they are edited.

The four custom definitions will be remembered, so the next time you choose them you'll get the
definition you edited. If you choose one of the preset definitions and edit it, you'll use the edited
definition, but if you then change to a different preset (or a custom definition) and then back to the
original preset you'll get the preset definition, not your edited version of the preset definition.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.5.5 Symbol Caching

The Symbols Caching tab allows you to set settings for caching, ordinal handling and resolving
symbols that are "not-in-a-dll.dll".

The default settings are shown below:

The User Interface 316

Copyright © 2001-2025 Software Verify Limited

Symbol Caching

Retrieved symbols for each DLL are normally cached, only being refetched if the DLL is rebuilt or the
version of DbgHelp.dll changes.

· Enable caching of symbol data enable symbol caching (the default)

Caching the symbols is slightly faster as calls to DbgHelp.dll can be omitted and symbol
information accessed directly.

· Delete all cached data removes all cached data member information from disk

Convert ordinals into symbols

· Convert DLL exported function ordinals to symbols enable the ordinal to function name
mapping

 You'll need to tick this to enable the use of mapped names defined in the list. If you don't,
you won't see the names being used.

· Manage Ordinals... shows the Ordinal Handling dialog to manage which .def files are associated
with which DLLs

Premature module unloading and not-in-a-dll.dll

Memory Validator Help317

Copyright © 2001-2025 Software Verify Limited

In some situations a module will be unloaded by the target program before any addresses for the DLL
have been resolved into symbols, causing the symbols to be shown as not-in-a-dll.dll.

This can be prevented by ensuring all data is processed before a module is unloaded:

· Send all waiting data when FreeLibrary is called avoid scenarios where symbols get
displayed as not-in-a-dll.dll (off by default)

There is a performance hit with this option as the target program will be waiting until all symbols
have been sent.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.6 Filters

3.12.1.6.1 Callstack Trim

The Callstack Trim tab allows you to specify symbols that should not appear in callstacks collected by
Memory Validator.

The default options are shown below:

Callstack trim filters

The User Interface 318

Copyright © 2001-2025 Software Verify Limited

Callstack trim filters can help simplify the display of callstacks, making it easier to see effective rather
than actual allocation locations.

There are two principal use case for this feature:

1. when an inline function definition allocates memory which is then used by your application.

2. when some functions wrap a function that is allocating memory but you don't want the wrapper
functions appearing in your callstack. An example of this might be an in-house memory allocator
that wraps the malloc/realloc/free functions.

By removing the symbol from the callstack, the memory appears to be allocated at the point of calling
the inlined function, not inside it.

By way of example, the two images below show a callstack for allocating a BSTR using an inline function
A2BSTR which calls another inlined function A2WBSTR, defined in the ATL header file atlconv.h.

The second version has had the inline functions (A2BSTR and A2WBSTR) filtered out so as not to appear in
the callstack.

Using callstack trim filters

Add a symbol to the list of symbols to be filtered out of the beginning of callstacks:

Memory Validator Help319

Copyright © 2001-2025 Software Verify Limited

· Add An entry is added to the list enter the name of the symbol press return or click
anywhere outside of the field to confirm (or press escape to cancel)

· Remove removes any select entries in the list

· Remove All removes all symbol names, clearing the list

To edit an existing symbol, double click the list entry.

Batch adding of callstack trim filters

For a couple of specific cases, you can add multiple callstack filters at once, although note that these
are already in the list by default.

· ATLconv add the default inline symbols used in the atlconv.h header file (T2BSTR, A2BSTR etc)

· MinGW add the default memory allocation and deallocation symbols used in the MinGW compiler
(__Znwj, __Znaj, and __ZdlPv)

· C++ Builder add the symbols used in the C++ Builder compiler (_ClassCreate, and
@ClassCreate$)

When will the callstack trim filters take effect?

The callstack trim filters will be used the next time you monitor an application using Memory Validator.

Trim existing callstacks

If you need to trim the callstacks in the current session you can do that using the Apply Trim option.

· Apply Trim apply the callstack trim filters to callstacks that have already been collected. This will
cause any displays with callstacks to refresh.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.6.2 Hooked DLLs

The Hooked DLLs tab allows you to specify hooks for functions that Memory Validator does not initially
know about.

The default settings are shown below:

The User Interface 320

Copyright © 2001-2025 Software Verify Limited

Read on, or click on a setting in the picture below to find out more.

Which DLLs to hook - the hooking rule

By default, Memory Validator will try to hook all DLLs and .EXEs used by your application, but you can
choose to list only those which should be included or excluded

· Hook all DLLs hook everything - ignoring the settings in the list

· Hook the enabled DLLs in the list hook only the ticked modules listed

· Do not hook the enabled DLLs in the list ignore all the ticked modules in the list, and hook
everything else

Populating the process modules list

The process modules list should specify the following items to be included or excluded from hooking in
the target application

· DLLs
· .EXEs
· folders containing DLLs and .EXEs

Initially the list is empty as the default option is to hook all DLLs and ignore the list. You can add
modules to the list by:

· automatically adding modules on which your application is dependent
· manually adding modules or folders

Memory Validator Help321

Copyright © 2001-2025 Software Verify Limited

· editing modules or folders already in the list

 modules whose inclusion is controlled by this list will override the hook insertion settings on the
Data Collection > Collect tab.

Automatic module addition

You can automatically populate the list with all the dependent modules for your application:

· Choose Exe... navigate to your application and click Open all the process modules appear in
the list

Manual module addition

You can also manually add one or more modules or a folder to the list.

· Add Module navigate to the DLL or EXE and click Open all the selected items are added

· Add Folder navigate to the folder and click OK the folder is added to the list

Manual addition might be useful for example if you use LoadLibrary() to load a DLL rather than linking it,
as this would not be picked up automatically by the Choose Exe... method.

By default, all the modules are ticked in the yellow checkboxes.

Note that ticked modules or folders are either included or excluded depending on the hooking rule
above

Altering existing module names

The User Interface 322

Copyright © 2001-2025 Software Verify Limited

Although you can't add blank entries to the list and edit them, you can edit existing items in the list by
double clicking on an entry:

· enter only the module name, not the path
· you can use wildcards like MFC*.dll, but only for DLLs, not folders

Managing the process modules list

The usual controls apply for removing or changing the enabled state of items in the list:

· Remove removes selected items in the list

· Remove All removes all items, clearing the list

· Enable All ticks all items in the list for applying to the hooking rule

· Disable All unticks all items in the list, meaning they won't apply to the hooking rule

Alternatively, press to delete selected items, and + to select all items in the list first.

Exporting and importing

Since the list of hooked DLLs (and the rule being applied) can be quite complicated to set up and
optimise, you can export the settings to a file and import them again later. This is useful when switching
between different target applications.

· Export... choose or enter a filename Save outputs the hooking rule and the list of modules
to the file

· Import... navigate to an existing *.mvx file Open loads the hooking rule and the list of
modules

 The exported file can be used with the -dllHookFile command line option.

Optionally hooking delay loaded DLLs

· Don't hook delay loaded DLLs prevents hooking of delay loaded DLLs. The default is to hook
these.

 What is 'delay loading'?

Delay loading a DLL is when it it is implicitly linked, but not actually loaded until your code
references a symbol contained in the DLL.

Delay loading can speed up startup time, but unhandled exceptions may cause your program to
terminate if the DLL can't be found when needed during the run time.

Launching new Applications

Memory Validator Help323

Copyright © 2001-2025 Software Verify Limited

When specifying DLLs to hook, and launching different applications, it can be quite easy to forget to
change the hooked DLLs for the new program. This might be the case when performing unit tests, for
example.

Using the wrong list of hooked DLLs for a program will likely cause incorrect coverage results, so you
can opt to be warned about the DLLs being hooked whenever the target application changes between
sessions (using the dialog below).

The choices in the drop down list are only applicable when the application changes:

· Ask about DLLs to Hook settings if some DLLs defined

You'll only be asked about the settings if you defined some DLLs in the list and if the hooking
rule is not set to hook all DLLs

· Always ask about DLLs to Hook settings

You'll always be asked about the settings - whatever the other settings are.

· Never ask about DLLs to Hook settings

The 'Launch Different Application' dialog

When being asked about the hooked DLL settings, you'll see the following dialog:

You can update the settings; ignore them and launch anyway, or just cancel the launch:

· Update Settings and Launch edit the settings click OK the application will be launched

· Ignore Settings and Launch the application will be launched without updating the settings

· Cancel won't launch the application

To change when you are asked this question, just choose the appropriate option in the dialog.

The User Interface 324

Copyright © 2001-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page. This includes removing any

process modules added here.

Reset - Resets the settings on the current page. This includes removing any process modules added

here.

3.12.1.6.3 Load Settings Pattern Match

The Load Settings Pattern Match tab allows you to configure loading of different settings depending on
the executable being launched (or relaunched).

The grid shows one pattern match per line.

The buttons alongside allow you to Add, Edit and Remove patterns that you have created. You can also
enable and disable them all.

· Add... display the pattern match dialog to create a pattern to match.

· Edit... display the pattern match dialog to edit the selected pattern.

· Remove... delete the selected pattern.

· Remove All... delete all selected patterns.

· Enable All... enable all patterns.

Memory Validator Help325

Copyright © 2001-2025 Software Verify Limited

· Disable All... disable all patterns.

Pattern Match Dialog

The pattern match dialog allows you to create and edit pattern matches.

· Enable enable or disable this pattern.

· Action how to evaluate if this pattern is matched.

§ Load settings for first executable... the first executable that matches a pattern causes the
settings to be loaded.

§ Load settings for each executable... each executable that matches a pattern causes the
settings to be loaded provided it is not the same executable that previously loaded the settings.

§ Load settings for every executable... every executable that matches a pattern causes the
settings to be loaded.

When a different pattern matches the first/each status is reset.

· Pattern a text pattern, including the * wildcard, to match an executable path.

Examples:
 \examples\nativeExample
 c:\tests*
 e:\dev\myProject\release*.exe

· Settings the full path to the settings you want to load if the action and pattern match an
executable.

How does the pattern matching work?

The User Interface 326

Copyright © 2001-2025 Software Verify Limited

It is probably easiest to demonstrate how pattern matching works with some examples.

Let's assume we have two patterns:

\examples\nativeExample that will load e:\settingsExamples.mvs
coverageValidator that will load e:\settingsCV.mvs.

We'll cover each of the possible action criteria for a sequence of application launches, showing which
settings are loaded and why.

· Load settings for first executable... the first executable that matches a pattern causes the
settings to be loaded.

Launched application Settings loaded Reason
e:\examples\nativeExample\release\nativeExample.exe e:

\settingsExamples.
mvs

1st application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe repeat application,
same pattern

e:\examples\nativeExample\debug\nativeExample.exe 2nd application, same
pattern

c:\program files (x86)\software verify\Memory Validator
x86\coverageValidator.exe

e:\settingsCV.mvs 1st application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe e:
\settingsExamples.
mvs

1st application, new
pattern

· Load settings for each executable... each executable that matches a pattern causes the
settings to be loaded provided it is not the same executable that previously loaded the settings.

Launched application Settings loaded Reason
e:\examples\nativeExample\release\nativeExample.exe e:

\settingsExamples.
mvs

new application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe repeat application,
same pattern

e:\examples\nativeExample\debug\nativeExample.exe e:
\settingsExamples.
mvs

new application, same
pattern

c:\program files (x86)\software verify\Memory Validator
x86\coverageValidator.exe

e:\settingsCV.mvs new application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe e:
\settingsExamples.
mvs

new application, new
pattern

· Load settings for every executable... every executable that matches a pattern causes the
settings to be loaded.

Launched application Settings loaded Reason
e:\examples\nativeExample\release\nativeExample.exee:

\settingsExamples.
mvs

Every application

e:\examples\nativeExample\release\nativeExample.exee:
\settingsExamples.

Every application

Memory Validator Help327

Copyright © 2001-2025 Software Verify Limited

mvs
e:\examples\nativeExample\debug\nativeExample.exe e:

\settingsExamples.
mvs

Every application

c:\program files (x86)\software verify\Memory Validator
x86\coverageValidator.exe

e:\settingsCV.mvs Every application

e:\examples\nativeExample\release\nativeExample.exee:
\settingsExamples.
mvs

Every application

Warning

When a pattern is matched and the action criteria are satisfied the specified settings will be loaded.

A warning can be displayed at this point to remind you that the settings are being changed.

· Display warning dialog... the warning dialog will be displayed when the pattern match criteria
are met.

The warning dialog looks like this:

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7 Data Display

3.12.1.7.1 Display Behaviour

The Display Behaviour tab allows you control how which displays are shown when a program starts
executing and when a program finishes executing.

The default options are shown below:

The User Interface 328

Copyright © 2001-2025 Software Verify Limited

Memory Validator can change the current display to any of the following displays.

· Summary the main display
· Memory : Native display native memory allocations
· Memory : .Net display .Net memory allocations
· Timeline timeline of all memory and handle allocations
· Statistics : Types statistics about allocation types
· Statistics : Sizes statistics about allocation sizes
· Statistics : Locations statistics about allocation locations
· Statistics : Generations statistics about allocation generations
· Statistics : Ages statistics about allocation ages
· .Net : Snapshots .Net snapshots
· .Net : Heap Dumps .Net heap dumps
· .Net : Leak Analysis .Net leak analysis
· Analysis : Hotspots allocation hotspots
· Analysis : Coverage allocation coverage
· Analysis : Query allocation query
· Analysis : Pages memory layout information
· Analysis : Virtual virtual memory data and visualisation
· Diagnostic : Diagnostic diagnostic information
· Diagnostic : Stdout text collected from stdout
· Diagnostic : Environment Variables environment variables from the program under test
· Diagnostic : Child Processes processes launched by the program under test

Program Starts Executing Behaviour

When Memory Validator starts monitoring the behaviour of an application the current display can
automatically be switched to any of the displays listed above.

There is also the option not to change the display.

Memory Validator Help329

Copyright © 2001-2025 Software Verify Limited

Program Finished Executing Behaviour

When Memory Validator has finished processing all the information from the target application the
current display can automatically be switched to any of the displays listed above.

There is also the option not to change the display.

The type of display that may interesting for collected data depends on the type of program that was
executed. Native, .Net or Mixed mode. To accommodate this we provide one setting for each of the three
program types.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.2 Colours

The Colours tab lets you choose the colours used to display each type of data item collected by
Memory Validator.

The default colours are shown below:

Changing display colours

For each colour you can choose a predefined colour or make your own:

The User Interface 330

Copyright © 2001-2025 Software Verify Limited

· Use the drop-down list pick one of 16 predefined colours below

· Click the button edit the colour using the standard colour dialog:

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.3 User Interface

The User Interface tab allows you to change some user interface characteristics including those that
may help with using Memory Validator on devices with a smaller display.

The default settings are shown below:

Memory Validator Help331

Copyright © 2001-2025 Software Verify Limited

Restoring window size when starting up

If Memory Validator is closed while minimized to the taskbar, the default behaviour when restarting is to
restore the main window to normal size.

You can choose to keep it minimized on restart instead:

· Restore Memory Validator to normal size if closed when minimized unticking will restart in
the same state as it was closed

Restrict dialog size

When using small display devices, for example an 800x600 screen, some of the larger dialogs will not fit
on the screen, but you can restrict dialog sizes in such environments:

· Use small dialogs restrict dialog sizes

For example, the images below show the relative sizes of the Filter dialog where the height reduces from
730 to 592 pixels when using small dialogs:

The User Interface 332

Copyright © 2001-2025 Software Verify Limited

Memory Validator Help333

Copyright © 2001-2025 Software Verify Limited

GDI object stub viewer

From the menus on the Memory or Types tab, you can view a GDI resource in a dialog. This is enabled
by loading a GDI Viewer into the stub in the target application.

This GDI stub viewer can be loaded at startup; when needed, or not at all:

· Load Type choose when the GDI Viewer is loaded, the options are:

· Always the viewer is loaded when first attaching to the target application

· On Demand the viewer is loaded when the first request to view a GDI object is made, if at
all

· Never the GDI stub is never loaded and requests to view GDI objects will be blocked using
the following message

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.4 Data Highlighting

The Data Highlighting tab allows you to change how data is displayed and highlighted on the various
grid and tree displays.

The default settings are shown below:

The User Interface 334

Copyright © 2001-2025 Software Verify Limited

· Click the button edit the increase and decrease colours using the standard colour dialog:

These colours are used to colour the background of highlighted lines.

· Highlight non zero counts lines with values > 0 are highlighted with a light grey background

· Highlight changing counts lines with increasing values are highlighted with the increasing
colour. Lines with increasing values are highlighted with the decreasing colour

Memory Validator Help335

Copyright © 2001-2025 Software Verify Limited

· Toggle colour for alternate lines alternate lines have the background colour subtly changed so
that longer lines are easier to read

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.5 Source Browsing

The Source Browsing tab allows you control how much source code is displayed and some basic
formatting.

The default options are shown below:

Source browsing

When expanding a callstack to view the source code, you can choose to see the whole function or a few
lines either side of the line of interest.

· Show entire function shows the whole function source as shown here:

The User Interface 336

Copyright © 2001-2025 Software Verify Limited

· Show lines shows a given number of lines before and after the point of interest:

· Lines before trace number of lines before, from 0 to 100

· Lines after trace number of lines after, from 0 to 100

The default is to show 5 lines above and below, as shown here

 Changing these settings will affect any new callstacks which are expanded, but will not reformat any
that have already been opened.

Memory Validator Help337

Copyright © 2001-2025 Software Verify Limited

Source browsing - how much to show?

Showing the entire function is more likely to show the full context of the allocation or deallocation line,
but if you have particularly long functions it may become cumbersome to browse the callstack data!

Because of the unpredictable lengths of showing entire functions, this is not the default setting.

Showing a set number of lines reduces the amount of source display to something that is consistent and
manageable, but you may see parts of neighbouring functions that are not relevant (as above), and you
may not see enough of the preceding lines to determine the allocation context.

Tab size formatting

When formatting the source code being displayed you can control the tab size

· Tab width set the tab size between 1 and 16 characters

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.6 Source Parsing

The Source Parsing tab allows you control how source code is parsed and what the default behaviour is
when symbol debugging information is not found.

The default options are shown below:

The User Interface 338

Copyright © 2001-2025 Software Verify Limited

Source lookup

When debugging information is missing or unavailable, you can choose one or more of the following
methods to try and resolve the symbols:

· Use map files to find file and line numbers use linker .map files . Faster than using .Bsc
files

· Map Ordinals to function names use linker definition .def files . Fast, though not usually
needed in addition to the other two options

· Use Bsc files to find file and line numbers use compiler .Bsc source code browser files

See also: topics on File Locations and Ordinal Handling,

Source parsing for data types

Normally Memory Validator can get data type information from the debug heap, but this is not always
possible (see below for reasons why parsing may be necessary).

Parsing the source code is an alternative way to determine the data type of an allocation, and the
following settings are then used:

· Lazy source code parsing the data type will be determined when it needs to be displayed rather
than at the time of detecting the allocation

With 'lazy' parsing, the object type statistics on the Types page will be incorrect, but Memory
Validator may appear to execute faster.

· Prefer cast to type... uses the cast type at the source code location in preference to the original
type

When parsing source code, a few lines before and after the specified line will be examined to try and
detect the appropriate type. This is because the debug information doesn't always align exactly with the
line in the source code that would be considered correct by a person viewing it.

· Lines before / after trace specify how many lines of source around the allocation point are
examined in order to try and determine the data type

Why source code parsing may be necessary

As mentioned above, Memory Validator can normally get data type information from the debug heap.

However, the type information in the debug heap is not always present, depending on how the source
code was compiled, and in particular, that information is of no help for allocations made using non CRT
functions such as HeapAlloc().

http://msdn.microsoft.com/en-us/library/k7xkk3e2.aspx
http://msdn.microsoft.com/en-us/library/e7tsx612.aspx
http://msdn.microsoft.com/en-us/library/95ws11cy(v=vs.100).aspx

Memory Validator Help339

Copyright © 2001-2025 Software Verify Limited

For some Win32 handle functions, the handle type is defined by the function, so the type doesn't need to
be determined, but for those allocations where a type could not be found, Memory Validator will try to
ascertain the type by examining the source code.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.7 Editing

The Editing tab allows you to configure which editor Memory Validator will use for editing source code.

The default settings are shown below:

Editing source code

There are several places in Memory Validator where you can choose to edit source code, for example,
while viewing callstacks or other source code fragments.

By default, source code is opened in a provided source code editor using syntax colouring, but you can
change where you edit code via the drop-down menu:

The User Interface 340

Copyright © 2001-2025 Software Verify Limited

When choosing one of the editors listed, you can request a currently open instance (e.g. the same one
you are using to develop your application), or to open a new instance.

SCiTE is included in the list of editors, but there are many text editors that can be used for source
code on windows. Wikipedia has a comparison of editors including their programming feature support

Editing with your preferred editor

We've all got our favourite editors! To use yours:

· Select User defined editor from the list of options enables the fields below

· Enter the Editor path and filename or just Browse choose the executable for your preferred
editor

Now when you want to edit source code, that editor will be opened, but typically you'll need to specify
some command line arguments with which to start the editor.

Starting your preferred editor with command line arguments

By default, just the file name is passed as a command line argument to the editor.

http://en.wikipedia.org/wiki/SciTE
http://en.wikipedia.org/wiki/Comparison_of_text_editors
http://en.wikipedia.org/wiki/Comparison_of_text_editors#Programming_features

Memory Validator Help341

Copyright © 2001-2025 Software Verify Limited

Depending on the editor, you may need to tailor the arguments, especially if you want the file opened at
the allocation line for example.

The arguments can be specified by adding them to the table provided, one at a time and in the order
required

· Add adds a row to the Editor arguments table select an argument Type from the following
options

The possible arguments include

· (Space) Filename appends a space followed by the filename
· Filename appends just the filename
· (Space) Line Number a space followed by the line number
· Line Number just the line number.
· Space a space.
· Other appends the text typed in the Value column of the list. Press return after entering the

value.

Only the last option needs an entry in the Value column

 The Other option is currently also prefixed by a space. You will need to press Return after entering
the value otherwise the entry won't get recognized.

The example below configures NotePad++ to edit a file at the required line using the -n switch

The User Interface 342

Copyright © 2001-2025 Software Verify Limited

As you modify the arguments an example command line is shown below the list.

Managing the command line arguments

Edit a Type or Value by double clicking the entry. The usual controls apply for removing list items:

· Remove removes selected arguments in the list

· Remove All removes all arguments, clearing the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.8 File Locations

The File Locations tab allows you to specify which directories Memory Validator should look in for
source code files, PDB files, and others.

The default settings are shown below:

File locations

Memory Validator Help343

Copyright © 2001-2025 Software Verify Limited

Sometimes the information Memory Validator has access to consists of the file name, but not the
directory.

When this happens Memory Validator scans a set of directories that it knows about in order to find the
file.

The options below allow you to specify those directories that should be searched for source files, PDB
files, MAP files, etc.

If a file can't be found, you'll get prompted for its location, but you can control this below as well.

Setting directories for a path type

There are five path types, and a separate list of directories to scan for each one.

· Path Type select the type of file with which you want to modify the list directory

 You don't have to specify any directories if you don't want to or if you just don't have them. Nor do
you have to give directories for all the path types.

Prompting for file locations

Whenever a file still cannot be found, then the default action is for a dialog to ask you where it is.

To avoid frequent user interruption, it is recommended that the directories for source code files (yours
and third party) are specified, enabling Memory Validator to browse source code and detect data types in
the background.

If however, you don't want to be prompted for locations, you can disable that too.

· Ask for location of file... untick to stop prompting for file locations

When prompting is switched on, it can happen that the line in question is invalid anyway!

The default is not to prompt for invalid lines, but if you want to know when that happens, just switch that
behaviour off.

· don't ask for location of file if line number is not valid... untick to be prompted for invalid
lines anyway

The User Interface 344

Copyright © 2001-2025 Software Verify Limited

PDB (program database) file paths

Normally PDB search paths are automatically generated, based on the same directories that .exe and
.dll files are found in:

· Automatically detect PDB paths automatically detect PDB locations (the default)

However, it is recommended that you specify paths for PDB (program database) files, especially if your
build environment dictates that PDB files are kept in different directories to their binaries.

If you don't automatically generate PDB paths and you don't specify any paths for PDBs, the search path
will be defined as the current directory plus any paths found in the following environment variables:

· _NT_SYMBOL_PATH
· _NT_ALTERNATE_SYMBOL_PATH
· SYSTEMROOT

MAP file paths

Normally MAP search paths are automatically generated, based on the same directories that .exe and
.dll files are found in:

· Automatically detect MAP paths auto-detect MAP locations - the default, and strongly
recommended

 Note that you must also enable the use of MAP files on the Source Parsing settings.

Manually adding path type directories

Once you have chosen your path type you can modify the list of files for each path type in the following
ways:

· Add appends a row to the directory list enter the directory path

Edit a directory path by double clicking the entry. The usual controls apply for removing list items:

· Remove removes selected items from the list

· Remove all clears the list

· Remove invalid removes all items that are not valid directories from the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Scanning for directories to add

The File Scan... button displays the File Search dialog to provide three ways of specifying the files to
scan.

Memory Validator Help345

Copyright © 2001-2025 Software Verify Limited

· Visual Studio Search choose the version of Visual Studio OK starts a scan for directories
related to that version of Visual Studio

· Directory Search Browse... displays a directory browser navigate to a location you want to
scan within OK starts a scan for directories

· File System Search OK starts a scan of all drives for directories containing files

All options will bring up a File Scan dialog indicating number of relevant directories found, and giving you
a chance to Stop or Cancel the scan at any time:

Once the scan is complete you'll see the File Paths dialog showing you the scan results:

The User Interface 346

Copyright © 2001-2025 Software Verify Limited

You can modify the list of resulting directories by adding, removing or editing, exactly as for the path
type list above.

Once you're happy with the scan results, either append or replace the path type directories with the scan
results.

· Add To List adds the scan results list to the path type directories and closes the File Paths
dialog

· Replace List replaces the path type directories with the scan results

· Cancel discard the scan results and close the dialog

Exporting and Importing

Since the list of path types and their file locations can be quite complicated to set up and optimise, you
can export the settings to a file and import them again later. This is useful when switching between
different target applications.

· Export... choose or enter a filename Save outputs all the path types and their file locations
to the file

· Import... navigate to an existing *.mvx file Open loads the hooking rule and the list of
modules

 The exported file can be used with the -fileLocations command line option.

Export file format

The file format is plain text with one folder listed per line. Sections are denoted by a line containing
[Files] (for source code files), [Third] (for third party source code files), [PDB] etc.

Example:

[Files]
c:\work\project1\

Memory Validator Help347

Copyright © 2001-2025 Software Verify Limited

[Third]
d:\VisualStudio\VC98\Include
[PDB]
c:\work\project3\debug
c:\work\project3\release
[MAP]
c:\work\project3\debug
c:\work\project3\release

Checking directory scanning order

To see the order in which the DbgHelp.dll process checks directories to find symbols, see the diagnostic
tab with the filter set to DbgHelp debug.

Reset All - Resets all global settings, not just those on the current page.

Currently, the four checkbox items at the bottom of this page are not reset as part of the global settings.

Reset - Resets the settings on the current page.

3.12.1.7.9 Path Substitutions

The Path Substitutions tab allows you to specify file path substitutions to handle copying builds from
build machines to development or test machines .

The default settings are shown below:

The User Interface 348

Copyright © 2001-2025 Software Verify Limited

Path Substitutions

Some software development schemes have multiple rolling builds of their software, often enabled by
using substituted disk drive naming schemes.

When you download the build to your development machine for development and testing, debugging
information may reference disk drives that don't exist on your machine, for example, drive X: while your
machine only has C:, D:, and E: drives.

Or you may just be copying a build from a drive on a development machine to a subdirectory on a drive
on your test machine.

These options let you remap the substitution so that the Memory Validator looks in the correct place for
the source code.

· Add adds a row to the File Paths Substitutions table enter the new path that will replace the
old path in the New Path column click in the Old Path column enter the path that is being
replaced

For example, you might enter c:\users\stephen\documents for the new path and f:\dev\build
for the old path.

You can double click to edit drives and paths in the table, or remove items:

· Remove removes selected substitutions from the list

· Remove All removes all substitutions from the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Example: Changed disk drive
Project originally located at m:\dev\build\testApp
Project copied to e:\dev\build\testApp
New Path e:\
Old Path m:\

Example: Project copied to a new location
Project originally located at f:\dev\build\testApp
Project copied to C:\Users\Stephen\Documents\testApp
New Path C:\Users\Stephen\Documents
Old Path f:\dev\build

 The slashes do not have to match, a forward slash will match a backslash when comparing path
fragments. This is deliberate - to improve ease of use with libraries built by different compilers (LLVM and
compilers that use it use forward slashes, whereas Visual Studio etc use backslashes).

Path Substitution Method

Memory Validator Help349

Copyright © 2001-2025 Software Verify Limited

Path substitution can be turned off, use only manually specified paths, perform automatic path
substitution based on best guesses based on information in the executable, or a combination.

Use the combo box to choose the appropriate path substitution method. The default is automatic path
substitution and if that fails to try path substitution using the manually specified paths.

· No path substitution path substitution does not happen
· Only substitute specified paths path substitution uses the manually specified paths
· Automatic substitution only path substitution is performed automatically using information in the

executable
· Automatic substitution, specified paths if substitution fails an attempt at automatic path

substitution is made, if this fails path substitution is performed using the manually specified paths

The default is Automatic substitution, specified paths if substitution fails.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.10File Cache

The File Cache tab allows you to specify where cached information is stored and when it gets cleared.

The default settings are shown below:

Caching file locations

The User Interface 350

Copyright © 2001-2025 Software Verify Limited

Memory Validator keeps a cache of known locations for files for which it needed to search, improving the
speed at which files can be found.

· Cache Directory type directly or Browse to find a directory for Memory Validator to cache its
information

By default, the cache is only flushed when the executable changes between sessions

· Flush cache at each new session tick to flush the cache every session

This slightly slows down relaunch of the same executable, as the cache needs rebuilding.

· Flush cache when executable changes untick to prevent the cache being flushed at all

When not automatically flushing, you can manually flush the cache if necessary

· Flush Cache flush the cache now

 This is only possible when no sessions are in the session manager.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.7.11Datatypes and Enumerations

The Datatypes and enumerations tab allows you to:

· scan headers to look for datatypes including typedefs, structs and enumerations
· define or edit data not able to be determined automatically

The Show data at... feature of the Memory tab uses these definitions to inspect allocated memory using
a meaningful interpretation of the data.

 If you don't define any datatypes or definitions here then memory inspection will just show the same
format as the Show Data at (bytes)... option.

Memory Validator Help351

Copyright © 2001-2025 Software Verify Limited

· Edit datatypes... shows the Datatypes dialog to edit existing datatypes or add new ones

· Edit enumerations... shows the Enumerations dialog to edit existing enums or add new ones

· Scan for datatypes and enumerations... shows the Scan for Datatypes dialog to extract
definitions from header files

· Reset datatypes and enumerations clears any definitions previously defined or found in headers

Don't accidentally click the Reset button at the bottom of the page as that will reset all
settings!

You can define standalone datatypes and enumerations, as well as those to be used in more complex
datatypes.

Make sure you click OK not Cancel on the global settings dialog when you're done or you'll lose any
changes.

Definitions will persist between sessions.

Datatypes Dialog

The User Interface 352

Copyright © 2001-2025 Software Verify Limited

· Add... shows the Define Data dialog to add a new definition

· Edit... opens the Define Data dialog to modify or just review an existing definition

· Remove removes any selected datatypes from the list

· Byte packing sets the number of bytes into which the datatype is to be packed and aligned

Enumerations dialog

The enumerations dialog is almost identical to the Datatypes dialog above:

· Add... shows the Define Enumeration dialog to add a new definition

· Edit... opens the same dialog to modify or just review an existing enum

Memory Validator Help353

Copyright © 2001-2025 Software Verify Limited

· Remove removes any selected enumerations from the list

Defining a new datatype

To define a new datatype you need to enter the name of the structure, and details about each member.

You'll need to define any referenced types first before you define a structure that uses it.

We'll demonstrate the datatype definition with the following examples:

enum VehicleType

{
 VehicleType_Car = 0,
 VehicleType_Bus = 1,
 VehicleType_Van = 2,
 VehicleType_Lorry = 3,
 VehicleType_Bicycle = 4,
 VehicleType_Motorbike = 5,
 VehicleType_Scooter = 6,
 VehicleType_Skateboard = 7
};

struct VehicleDataType

{
 int numWheels;

 char* strMake;

 double realEngineSize;

 enum VehicleType enumType;

 CObject* ptrOwner;

};

· Edit datatypes... Datatypes dialog Add shows the Define Data dialog

· Name specify the name of the datatype, VehicleDataType

The User Interface 354

Copyright © 2001-2025 Software Verify Limited

· Add appends a new row to the data to define a new member

Double click to show the drop down list in the Type column if not already shown.

The list has many core datatypes and will include any datatypes you've already defined.

If the type is an enumeration, you'll be prompted for the name of the enumeration which you
should have already defined.

Enter the name of the data member in the Name column.

If more than one, Specify how many items the member represents in the Count column, e.g. for
an array.

 Values in the Offset column will be calculated automatically.

· Remove removes any selected data members from the list

Defining a new enumeration

· Edit enumerations... Enumerations dialog Add shows the Define Enumeration dialog

 Any enumerations defined here can be used in the Define Data dialog above.

· Name specify the name of the enum, VehicleType

· Add appends a new row to the data to define a new member

Enter the name of the member in the Enumeration column.

Memory Validator Help355

Copyright © 2001-2025 Software Verify Limited

Set the corresponding value in the Value column

· Remove removes any selected members from the list

Scanning for datatypes

You can scan header files to find definitions for datatypes or enumerations which are not otherwise
detectable.

· Scan for datatypes and enumerations... shows the Scan for Datatypes dialog

· Browse... type or browse to enter a directory or drive to scan for header files from which to extract
datatypes

Leave this blank to scan all available drives.

· Search... start header file scanning

· Stop stop the search at any time

· Cancel discard the results of the search and close the dialog

Any datatypes found during the scan are added to the lists in the datatypes dialog or the enumerations
dialog.

 At the time of writing, scans don't detect datatypes inside classes and 64 bit datatypes are not
supported.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

The User Interface 356

Copyright © 2001-2025 Software Verify Limited

3.12.1.8 Hooks

3.12.1.8.1 Memory Allocation Hooks

The Memory Allocation Hooks tab allows you to enable and disable every hook or group of hooks that
Memory Validator uses to track memory allocations.

The picture below doesn't show all the options, but the default is to have everything enabled (ticked):

Memory hooks

Enable or disable a hook by ticking or unticking the yellow boxes.

Note that because the C runtime is provided in both Release and Debug, some function names are
present twice, with their status indicated in brackets.

· Enable All ticks all the hooks, enabling everything

· Disable All unticks everything

Memory hook groups

All the hooks in the following groups can be enabled and disabled at once by ticking the group checkbox

· CRT the C runtime hooks for release and debug libraries MSVCRT.DLL / MSVCRTD.DLL

· Memory allocation the HeapAlloc, VirtualAlloc, GlobalAlloc and LocalAlloc function
groups

Memory Validator Help357

Copyright © 2001-2025 Software Verify Limited

· LocalAlloc allocations by other functions functions that use LocalAlloc to allocate
workspace that should be freed by the caller

· GlobalAlloc allocations by other functions functions that use GlobalAlloc to allocate
workspace that should be freed by the caller

· CoTaskMemAlloc allocations by other functions functions that use CoTaskMemAlloc to
allocate workspace that should be freed by the caller

· COM/OLE Allocators CoTaskMemAlloc function group and IMallocSpy

· BSTR Allocations SysAllocString function group and VariantClear

· Net API Allocations NetApiBufferAllocate function group

· Misc Allocations miscellaneous functions that allocate and deallocate objects for various API
areas such as security and encryption

· Fortran 95 Allocations

· Delphi allocations

For details on the contents of each of these hook groups consult the Hook Reference.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.8.2 Handle Allocation Hooks

The Handle Allocation Hooks tab allows you to enable and disable every hook or group of hooks that
Memory Validator uses to track handles.

The default is to have everything enabled (ticked):

The User Interface 358

Copyright © 2001-2025 Software Verify Limited

Handle hooks

Enable or disable a hook by ticking or unticking the yellow boxes.

· Enable All ticks all the hooks, enabling everything

· Disable All unticks everything

Handle hook groups

All the handle creation and deletion hooks in the following groups can be enabled and disabled at once
by ticking the group checkbox next to the group name

· Kernel32

· Advapi32

· GDI32

· User32

· Shell32

· COMCTL

· Sockets

· WinHttp

· Printer

Memory Validator Help359

Copyright © 2001-2025 Software Verify Limited

For details on the contents of each of these hook groups consult the Hook Reference.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.8.3 Buffer Manipulation Hooks

The Memory Allocation Hooks tab allows you to enable and disable every hook or group of hooks that
Memory Validator uses to track buffer overruns and buffer underruns.

The default is to have everything enabled (ticked):

Buffer hooks

Enable or disable a hook by ticking or unticking the yellow boxes.

· Enable All ticks all the hooks, enabling everything

· Disable All unticks everything

Buffer hook groups

All the buffer manipulation hooks in the following groups can be enabled and disabled at once by ticking
the group checkbox next to the group name

The User Interface 360

Copyright © 2001-2025 Software Verify Limited

· Kernel buffer functions

· Memory and string copying and moving

· Memory and string comparisons

· Internet, Path and Registry functions

For details on the contents of each of these hook groups consult the Hook Reference.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.8.4 Custom Hooks

The Custom Hooks tab allows you to specify hooks for functions that Memory Validator does not initially
know about.

For example, custom hooks might let you monitor APIs in third party products or in APIs that are
released after Memory Validator was released.

This a very advanced topic.

Read on, or click on a setting in the picture below to find out more

Using custom hooks

Memory Validator Help361

Copyright © 2001-2025 Software Verify Limited

Before adding custom hooks, you need to know the parameter list and return type of each function to be
hooked and their calling conventions .

· Add... displays the custom hook dialog (below)

For other options (edit,remove, and enable), see modifying existing custom hooks further below.

This topic is also discussed in the Memory Validator tutorial, which can be found on the Help menu.

Custom hook dialog

The custom hook dialog allows you to set up or edit the definition of a custom hook, including its
parameters.

 Take care! Failure to specify the information correctly may crash your application. If in doubt do not
attempt to use this feature of Memory Validator.

At the end of this topic are some examples of how this dialog might be filled out for a few different
functions.

http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx

The User Interface 362

Copyright © 2001-2025 Software Verify Limited

Custom hook definition

· DLL Name Browse to navigate to a DLL Open to enter the DLL name into the dialog

Alternatively you can type the full path, or a relative path to the DLL into the DLL Name field.

· Function Name choose the name of the exported function from the drop-down list

The list is automatically populated with the exported functions after choosing a DLL name above

Memory Validator Help363

Copyright © 2001-2025 Software Verify Limited

The function name must be exported from the DLL you specified in order to appear in the list. If
the function is not exported it cannot be hooked.

· Function Ordinal type the ordinal (decimal integer) if the function is imported by ordinal,
otherwise enter -1 to ignore it

For example MAPIAllocateBuffer@8 in MAPI32.DLL has the ordinal 13 as found in the Export
Address Table of the DLL

 Finding the ordinal of an exported function in a DLLOne way to find the ordinal of a function
exported from a DLL is to use the dumpbin.exe utility provided with Microsoft Visual Studio. e.g.
dumpbin filename.dll /EXPORTS In Visual Studio 9.0, the dumpbin.exe utility is found in
VC\bin and is dependent on link.exe in the same directory and mspdb80.dll in the
Common7\IDE directory.

· Calling convention select the option that corresponds to the calling convention of the function

Do not guess this, if you don't know! Using the wrong calling convention will crash your
application

See also, the history of calling conventions

· Number of Parameters enter the number of parameters the function takes

This is the number of parameters the function has, not the number of parameters that you want
to monitor (below).

Again - do not guess this! Using the wrong number of function parameters will crash your
application when used with the stdcall calling convention.

· Function Purpose set the function purpose - Alloc, AllocMore, Realloc, or Free

· Enabled tick to enable hooking of the function

Only takes effect each time your application starts, so changing this in the middle of a session
has no effect.

· Datatype enter the type of all allocations via this hook, or leave empty and Memory Validator will
parse the source code to try and obtain the datatype

Do not include parentheses in the datatype. [] and <> are acceptable though.

Custom hook function parameters

The parameters section of the dialog allows you to define which parameters and return value are
monitored for the function.

http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/08/48616.aspx

The User Interface 364

Copyright © 2001-2025 Software Verify Limited

You should specify all the other settings in the custom hook definition (see section above) prior to
defining the parameters. This will ensure that the right menu choices are made available while setting up
the parameters.

You don't need to monitor all the input parameters, or the return value - just monitor what you need.

Generally for each function purpose (that you will have defined above), different parameter values are
usually required:

For example:

· Alloc an input size, and an output pointer or return value pointer
· AllocMore an input size and an input pointer
· Realloc an input size, an input pointer, and an output pointer or return value pointer
· Free an input pointer

In some cases, an input parameter may also serve as an output.

If you want to monitor additional parameters, we recommend that you set their type to Miscellaneous or
Pointer to Miscellaneous as appropriate.

· Add adds a row to the parameters table, firstly a return value, then parameters in order 0,1,2...

· Remove removes selected parameter definitions from the list

· Remove All clears the list of parameters

Defining custom hook function parameters

After adding a parameter definition, values can be edited by double clicking on the value in the table. A
drop-down list will be displayed with appropriate choices in each column:

· Parameter choose the parameter index in the range 0 to N-1 where N is the number of
parameters you specified to the function

You can only choose an index which is not already used by another parameter

You can't change the entry for a "return value"

· Usage set how the parameter is used:

Memory Validator Help365

Copyright © 2001-2025 Software Verify Limited

In is input only and Out is output only, while In/Out serves as both
Return value, this and any output parameters are usually pointers to something.

· Type choose what the parameter type is:

All Pointer to... options are parameters that need dereferencing to read the values.

Memory Validator x64 also supports the following values:

Size (QWORD) a size
Pointer to size (QWORD) a pointer to a size
Miscellaneous (QWORD) a miscellaneous value
Pointer to Miscellaneous (QWORD) a pointer to a miscellaneous value

Note that when specifying parameters as Pointer to ..., it's OK if that parameter is occasionally
NULL - this will be identified and the pointer will not be dereferenced. Many Microsoft APIs allow NULL
values for optional data, for example.

Modifying existing custom hooks

Once you have some custom hooks set up you can edit, remove or en/disable them in the following
ways:

· Edit... or double click a hook in the list opens the custom hook dialog to change the hook
attributes

The usual controls apply for removing list items:

· Remove removes selected items from the list

The User Interface 366

Copyright © 2001-2025 Software Verify Limited

· Remove All clears the list

Alternatively, press to delete selected items, and + to select all items in the list
first.

Enable or disable a custom hook by ticking or unticking the yellow boxes or change them all at once

· Enable All ticks all the hooks, enabling them all

· Disable All unticks everything

· Import... Imports a custom hook XML file.

· Export... Exports the custom hooks as an XML file. This can be useful for moving a custom hook
definitions from one computer to another without copying the whole settings file.

Resetting custom hooks

Normally, the custom hooks will not be reset when you press the reset button, but you can make that
the case if you wish:

· Allow the Reset button to reset the custom hook definitions when ticked, custom hooks will
be reset with all other global settings

Reset All - Resets most global settings including those on other pages, but not the settings on this

page unless explicitly requested above.

Reset - Resets the settings on the current page.

These examples show how to use the custom hooks dialog

Custom hook dialog - example 1

A custom hook dialog for a function using the __cdecl calling convention is shown below.

The function prototype for customAlloc1 in the DLL testCustomDLL.dll (provided) is:

 extern "C" void *customAlloc1(DWORD size); // input param

It has been specified using the extern "C" specifier so that the function name has no C++ name
mangling decoration.

It uses the __cdecl calling convention, takes one input parameter and is marked as an allocator by the
Alloc definition.

For datatype purposes it can be specified as returning the BYTE datatype.

The custom hook will monitor:

Memory Validator Help367

Copyright © 2001-2025 Software Verify Limited

· the return parameter, marked as a pointer
· the single input parameter, marked as a size specifier.

Custom hook dialog - example 2

A custom hook dialog for a function using the __stdcall calling convention is shown below.

The function prototype for ?customStdCallAlloc3@@YGXKPAPAX@Z is in the DLL testCustomDLL.dll is:

 extern void __stdcall customStdCallAlloc3(DWORD size, // input param

 void **ptr); // output param

It has been compiled as C++, having C++ name mangling decoration.

It uses the __stdcall calling convention, and takes two input parameters.

The function purpose as an allocator is defined by the Alloc setting.

The User Interface 368

Copyright © 2001-2025 Software Verify Limited

For datatype purposes it can be specified as returning the BYTE <STDCALL> datatype.

The custom hook will monitor:

· the first input parameter, marked as a size specifier
· the second output parameter, marked as a pointer to pointer.

Custom hook dialog - example 3

Similar to example 2, except we have a different function name and its purpose is now as a Realloc
function, with a pointer return type.

The function prototype for customStdCallReAlloc1 is:

 extern void* __stdcall customStdCallReAlloc1(DWORD size, // input param

 void **ptr); // output param

The custom hook will monitor:

Memory Validator Help369

Copyright © 2001-2025 Software Verify Limited

· the return parameter as a pointer
· the first input parameter, marked as a size specifier
· the second input parameter, marked as a pointer to pointer.

The User Interface 370

Copyright © 2001-2025 Software Verify Limited

3.12.1.9 Third Party DLLs

3.12.1.9.1 Stub Global Hook DLLs

The Stub Global Hook DLLs tab allows you to detect and specify global hook DLLs that may not be
wanted in the stub process.

About global hook DLLS

Some third party products such as storage devices and video cards are supplied with software to help
integrate the hardware device into the computer desktop environment.

An example is the Iomega® Zip® drive. This uses a global hook via the IMGHOOK.DLL which allows
the browse for files and browse for folders interfaces to correctly display all the storage devices on the
computer, including the zip drive and any special options for the drive.

Now some global (or system) hook DLLs can interfere with the correct operation of Memory Validator
when it inserts hooks into the target program, (although the IMGHOOK.DLL mentioned above doesn't).

The settings below allow you to specify and/or detect DLLs that should be treated as global hook
DLLs.

Any DLL listed will fail to load into the target program when loaded via LoadLibrary() or
LoadLibraryEx().

For situations where the hook DLL is already present in the target program, it can optionally be forcibly
unloaded. This may happen if it was loaded before Memory Validator attached to the process.

Managing global hook DLLs

http://msdn.microsoft.com/en-us/library/ms644960(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms644960(v=vs.85).aspx

Memory Validator Help371

Copyright © 2001-2025 Software Verify Limited

· Test for Window Blinds... test for Window Blinds DLLs loading into your application, and prevent
them from loading

Window Blinds DLLs WBOCX.OCX and WBLIND.DLL are not compatible with Memory Validator.

· Test for Sugar Sync... test for Sugar Sync DLLs loading into your application, and prevent them
from loading

Sugar Sync DLLs SugarSyncShellExt.dll and SugarSyncShellExt_x64.dll are not compatible with
Memory Validator.

· Test for Visual Leak Detector... test for Visual Leak Detector DLLs loading into your application,
and prevent them from loading

Visual Leak Detector is not compatible with Memory Validator. If you are linked to Visual Leak
Detector you'll need to create a build without Visual Leak Detector to use with Memory Validator.

· Test for user specified... test for user specified DLLs loading into your application, and prevent
them from loading

· Add DLL... browse and select one or more DLLs Open adds the chosen DLLs to the Global
Hook DLLs list

· Remove removes any selected DLL from the list

· Remove All removes all DLLs from the list

Auto detecting global hook DLLs

Memory Validator can detect any DLLs in its own process that are not ones it uses itself. Such DLLs are
likely to be global hook DLLs:

· Auto Detect automatically detect DLLs which may be global hook DLLs, adding them to the
Global Hook DLLs list

Additionally, you can request unloading of any of the listed global hook DLLs that are detected as
already loaded into the target process when Memory Validator attaches to it:

· Unload already loaded global hooks when ticked, forces an unload of any listed global hook
DLLs

 Use this with caution, as not all global hook DLLs may have been designed or intended for
this!

Viewing the diagnostic information

If a DLL is prevented from loading because of these settings, or is allowed to load because of these
settings, there will be an entry on the Diagnostic tab.

The User Interface 372

Copyright © 2001-2025 Software Verify Limited

To view this data, go to the Diagnostic tab, select the Diagnostic sub tab, then set the Show combo box
to "Dlls". All information about DLLs will be shown. Scroll through the list looking for "Prevented DLL
load" in the left hand column. The right hand column will indicate if a DLL was prevented from loading, or
allowed to load. The DLL name will also be shown.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.12.1.9.2 User Interface Global Hook DLLs

The User Interface Global Hook DLLs tab allows you to detect and specify global hook DLLs that may
not be wanted in the Memory Validator user interface process.

About global hook DLLS

Memory Validator Help373

Copyright © 2001-2025 Software Verify Limited

See the similar topic on stub global hooks to read about global hook DLLs

The user interface hook DLL loading rule

The default behaviour is not to allow the global hooks to load, but you can change this if necessary

· Allow all global hooks to load allows all global hook DLLs to load into Memory Validator

· Do not allow any global hooks to load prevent any global hook DLLs from loading (the default)

· Use the list of dlls shown provide per-DLL control over which DLLs load or don't load via the User
Interface Global Hook DLLs list

Any global hook DLLs not listed will result in the user being asked for permission to load a DLL
via the Global Hook Warning Dialog below

Managing user interface global hook DLLs

· Add DLL... browse and select one or more DLLs Open adds the chosen DLLs to the Global
Hook DLLs list

Having added a DLL to the list, you can change whether the DLL is allowed to load or not, by
double clicking in the second column and changing the value: Load or Don't load

· Remove removes any selected DLL from the list

· Remove All removes all DLLs from the list

Auto detecting global hook DLLs

Memory Validator can detect any DLLs in its own process that are not ones it uses itself. Such DLLs are
likely to be global hook DLLs:

· Auto Detect automatically detect DLLs which may be global hook DLLs, adding them to the
Global Hook DLLs list

Global Hook Warning Dialog

When the global hook loading rule above is set to Use the list of dlls shown, the Allow load column
controls whether the hook DLL is loaded.

When a global hook is loaded that is not on the list of known global hooks, the user is presented with a
warning dialog like that shown below.

The user can then accept or block the global hook from loading. The dialog lists a couple of known
problematic DLLs.

The User Interface 374

Copyright © 2001-2025 Software Verify Limited

· Help displays this help page
· Yes lets the DLL load
· No blocks the DLL

The response is automatically recorded in the Global Hook DLLs list, so that you won't be asked again.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Memory Validator Help375

Copyright © 2001-2025 Software Verify Limited

3.12.1.10 Extensions

3.12.1.10.1Stub Extensions

The Stub Extensions tab allows you to specify DLLs which can be used to extend the Memory Validator
stub.

Stub extension DLLs

You can specify up to 16 extension DLLs which can be used to extend the functionality of the Memory
Validator stub - i.e. the target application.

Standard options control the list:

· Add... browse and select one or more DLLs Open adds the chosen DLLs to the DLLs list

· Remove removes any selected DLL from the list

· Remove All removes all DLLs from the list

Enable or disable a DLL by ticking or unticking the yellow boxes or change them all at once

· Enable All ticks all the DLLs, enabling them all

· Disable All unticks everything

See also user interface extension DLLS

Reset All - Resets most global settings including those on other pages, but does not clear the DLLs

in this list other than those added since the settings page was last opened.

The User Interface 376

Copyright © 2001-2025 Software Verify Limited

Reset - Resets the settings on the current page.

3.12.1.10.2User Interface Extensions

The User Interface Extensions tab allows you to specify DLLs which can be used to extend the
Memory Validator user interface.

User interface extension DLLs

Similar to the stub extensions, but without the limit of 16, you can specify extension DLLs which can be
used to extend the functionality of the Memory Validator user interface.

· Enable user extensions... allows you to turn your extensions on/off without having to
enable/disable or remove them all.

Standard options control the list:

· Add... browse and select one or more DLLs Open adds the chosen DLLs to the DLLs list

· Remove removes any selected DLL from the list

· Remove All removes all DLLs from the list

Enable or disable a DLL by ticking or unticking the yellow boxes or change them all at once

· Enable All ticks all the DLLs, enabling them all

· Disable All unticks everything

Memory Validator Help377

Copyright © 2001-2025 Software Verify Limited

See also stub extension DLLs

Reset All - Resets most global settings including those on other pages, but does not clear the DLLs

in this list other than those added since the settings page was last opened.

Reset - Resets the settings on the current page.

3.12.2 User Permissions Warnings

You may see (or want to see) warning dialogs when Memory Validator receives an error accessing the
registry or obtaining debugging privileges.

 Settings menu User Permissions Warnings... shows the User Permissions Warnings
dialog below

The Help button displays the User Permissions help topic.

See also, the answer to the question about creating Power User accounts on Windows XP.

3.12.3 Ordinal Handling

Ordinal values and .def files

Some DLLs, including some from Microsoft, may export their functions by ordinal value, instead of by the
usual readable name.

However, having access to the module's original .def file means those ordinal values can be used to
look up the symbol names to display in Memory Validator.

The .def file will contain the function names and ordinal values, allowing a DLL's exported ordinal value to
be mapped to the symbol name.

https://msdn.microsoft.com/en-us/library/d91k01sh.aspx

The User Interface 378

Copyright © 2001-2025 Software Verify Limited

For example, here's a small section of mfc90.def showing the ordinal values 332 to 335 and a selection
of decorated names :

 ??0CBrush@@QEAA@K@Z @ 332 NONAME
 ??0CBrush@@QEAA@PEAVCBitmap@@@Z @ 333 NONAME
 ??0CByteArray@@QEAA@XZ @ 334 NONAME
 ??0CChevronOwnerDrawMenu@@QEAA@XZ @ 335 NONAME

You can use the ordinal handler dialog (below) to associate a def file with a DLL. These associations will
persist between sessions.

If you need different ordinal configurations for different DLL usage, you can export this mapping between
DLL and .def to a file, to be used at a later date.

The ordinal handler dialog

The ordinal handler dialog lets you manage which .def files are associated with which DLLs.

 Settings menu Edit Settings... Symbols Symbols Misc page Manage Ordinals
shows the ordinal handler dialog

· Add... shows the ordinal-to-function converter dialog, described below ,so you can add a new
mapping

· Edit... opens a selected mapping in the ordinal-to-function converter dialog

Double clicking an item in the list also does this.

· Remove removes the selected associations from the list

https://en.wikipedia.org/wiki/Name_mangling

Memory Validator Help379

Copyright © 2001-2025 Software Verify Limited

· Remove All clears all the associations in the list

· Import... choose a previously saved set of associations to add to the list

· Load... as for Import, but replaces the contents of the list

· Save... saves the associations in the list to a .ord file of your choice

Switching usage of mapped names on and off

The option to switch the ordinal mapping on or off is in the global settings dialog:

 Settings menu Edit Settings... Advanced Symbols Misc page Convert DLL
exported function ordinals to symbols enable the ordinal to function name mapping

 You'll need to tick this to enable the use of mapped names defined in the list above. If you
don't, you won't see the names being used.

The ordinal-to-function converter dialog

After clicking Add... on the Ordinal Handler Dialog (above) you'll see the ordinal-to-function converter
dialog below.

The basic process for adding a new mapping is to:

· choose a DLL
· find its matching .def file
· convert the ordinal values to symbol names
· add the file association to the Ordinal Handler dialog

This example shows the Microsoft MFC90.dll associated with its .def file:

The User Interface 380

Copyright © 2001-2025 Software Verify Limited

Associating the DLL and .def files

In the ordinal-to-function converter dialog:

· DLL to examine... type or browse to enter the DLL you want to map

· Definition file to examine... type or browse to enter the .def file you want to associate with the
DLL, or choose one from the drop-down list

If a .def file matching the name of the .dll exists in the same directory as the DLL, this will be set
automatically.

· Convert Ordinals into Symbol Names convert the exported ordinals from the chosen DLL into
symbol names using the specified .def file

All the ordinals and symbol names found will be displayed in the list at the bottom.

· OK closes the dialog and adds the association between the DLL and the .def to the ordinal
handler dialog

Scanning for .def files

The .def files aren't always in the same directory as the DLLs and may be hard to find, so a search
option is available.

Any .def files found during a scan can be used to extend or replace the drop-down list of the Definition
file to examine... option above.

Memory Validator Help381

Copyright © 2001-2025 Software Verify Limited

· Partial Scan... choose a folder and scan it for .def files

· Full Scan... scan all drives for .def files

While scanning, a progress dialog shows the search location and the number of .def files found:

· Stop stop the scan and show results found so far

· Cancel stop the scan and discard any results

When the scan is complete a dialog shows any .def files found:

· Add To List extend the drop-down list of the Definition file to examine... option by adding all
the search results in the list

· Replace List as above but replaces the list rather than extending it

· Add adds an entry to the list so you can manually enter a file path

· Remove remove any selected items from the list

· Remove All clears the list

· Cancel closes the dialog, discarding the list of results

The User Interface 382

Copyright © 2001-2025 Software Verify Limited

3.12.4 Loading and saving settings

Saving and loading settings files

Memory Validator settings can be saved to a file and restored at any time.

 Settings menu Save Settings... save settings to a file

 Settings menu Load Settings... load a previously saved settings file

Loading settings via command line option

Different settings files can be used for automated regression testing by using the -settings command line
option and the required filepath to load the settings when Memory Validator starts up.

3.12.5 Symbol Path Truncated Warning

The Symbol Path Truncated warning dialog

The symbol path truncated warning dialog is displayed to warn you when the symbol path is too long.

· Edit Symbol Paths... shows the file locations dialog so that you can edit the paths used for
subsequent runs of the program.

Memory Validator Help383

Copyright © 2001-2025 Software Verify Limited

You can choose when this dialog is displayed.

· Always show The dialog is always shown when the symbol path is too long.
· Show when path changes The dialog is shown when the symbol path is too long, but only if the

symbol path is different than last time this warning was shown.
· Never show The dialog is never shown.

Whether this dialog is displayed or not there is always a warning message written to the diagnostic
window when the symbol path is truncated.

The display lists each path with it's length (including the unshown ';' path separator) and the total length
so far so that you can see which paths exceed the truncation point (length and total displayed in red).

Any paths that don't exist on this computer are displayed in red.

Why is this dialog displayed?

You may see a Symbol Path Truncated warning dialog in some rare circumstances.

This dialog is displayed when the symbol path that has been calculated to pass to DbgHelp.dll to load
Microsoft debugging symbols (found in .PDB files) is too long.

If the symbol path has been truncated because it is too long it is possible this may mean that some
symbol searches will fail, resulting in failure to load some symbols. We display this dialog so that you
are aware that the symbol path is too long and would benefit from editing to make the symbol path
shorter.

Passing a symbol path that is too long to DbgHelp.dll will cause the program being tested to end with an
EXCEPTION_INVALID_CRUNTIME_PARAMETER C runtime error. This happens because internally
DbgHelp.dll is using a fixed length array to format a string. To prevent this fatal termination of the test
program we limit the length of the path passed to DbgHelp.dll.

Typically if a path that is long enough to cause this problem is passed to DbgHelp it's because the
number of paths in the calculated path contain paths not relevant to finding symbols for the test program.
We use the Symbol Path Truncated warning dialog to show you the calculated paths so that you can
work out which paths to delete.

The calculated symbol paths come from several places:

· File locations PDB paths
· Symbol server symbol storage directories
· Symbol handling environment variables

Fixing the symbol path

For this example, we are testing the program E:\om\c\3RD_SRC\cdplayer\Release\cdplayer.exe

In the image shown above you can see that seven paths exceed the truncation limit, one of the 7 paths
doesn't exist.

The User Interface 384

Copyright © 2001-2025 Software Verify Limited

To work out what to do we need to do several actions:

1. Looking at the environment variable settings shows that none of the environment variables are
being used. We do not need to consider the content of these environment variables.

2. Examining the symbol servers shows that C:\Users\Admin is a local symbol storage location. We
should keep this path.

3. We should delete the path that doesn't exist: E:
\om\c\testApps\testStdinStdoutRedirectEx\Release. We do this using the file locations dialog
by clicking Edit Symbol Paths... then click Delete invalid.

4. Examining the paths in the file locations dialog we can identify any paths not relevant to the
program we are testing. In this case the following paths are not relevant and can be deleted.

E:\om\c\testApps\testStdinStdoutRedirect\Release
E:\om\c\testApps\testAppTheReadsFromStdinAndWritesToStdout\Release
E:\om\c\testApps\testSimpleMemoryLeak\Release
e:\om\c\3rd_src\cppunit-1.12.1\examples\cppunittest\release
e:\om\c\3rd_src\cppunit-1.12.1\examples\cppunittest\releasedll

3.13 Managers

The Managers menu provides a handful of powerful tools to manage or inspect data collected by Memory
Validator.

The tools include:

· session management

· global, session, local and thread filters

· named heaps

· watermarks and bookmarks

3.13.1 Session Manager

Managing multiple sessions

Memory Validator can manage multiple sessions at once.

As well as the actively running session, open sessions may include those run since Memory Validator
started, or sessions that have been saved earlier and reloaded.

Memory Validator Help385

Copyright © 2001-2025 Software Verify Limited

 Managers menu Session Manager... shows the Session Chooser dialog below, highlighting
the current session

Each time a session is started or loaded it is added to this list using the name of the executable
program and the date and time the session started.

Managing the sessions

· Select makes the selected entry the current session, i.e. the one for which data will be displayed

 Some tab views may update immediately, others may need a manual refresh

· Set Alias... opens the Edit Session Alias dialog so you can give the session a more useful name

· Delete removes the selected session

You can't delete a session that is actively collecting data.

· Delete All removes all the loaded sessions

If one of the session is actively collecting data, this will be disabled.

· Close closes the dialog (as opposed to closing any selected sessions!)

Comparing loaded sessions

The User Interface 386

Copyright © 2001-2025 Software Verify Limited

When two different sessions are loaded they can be compared as part of a manual regression test.

· Compare... shows the Compare Sessions dialog for manual regression testing.

Limiting the number of sessions

You can choose to limit the maximum number of sessions open at once, at which point each time a new
session is added, the oldest session will automatically be removed.

· Auto purge sessions ensures that the number of loaded sessions is limited to the maximum
(below)

· Maximum number of sessions sets the maximum number of sessions allowed if auto-purge is
on

3.13.2 Filters

Filtering of data

Memory Validator has a powerful filtering mechanism that allows you to exclude unwanted data from the
displays.

Filtering happens at different levels of granularity and the filters themselves can be defined to be broad or
extremely targeted.

You can manage different groups of filters; save and load them, and move filters between groups;

Filters do not control what is collected, only what is displayed, so you can refocus on different areas of
data at any time.

Filter Groups

Filter groups allow related filters to be grouped together.

For example, you might have a group of filters excluding data relating to memory leaks in 3rd party
products that you have no control over.

The Thread Filter manager gives you control over which thread data you see.

The Filter Manager dialog lets you manage the high level global filters and session filters

For local filters, the relevant tab views have a Filter... button to the left of each display.

Filtering Level

Memory Validator Help387

Copyright © 2001-2025 Software Verify Limited

Filtering of displayed data happens at four different levels:

· Thread filters where for example you might enable only the UI thread of your application

· Global filters that will be applied to all sessions and all tab views

· Session filters are applied only to a particular session for which data is recorded and displayed

· Local filters affecting each individual tab view

Filter Types

Filters can be one of three types:

· Instant filters are derived directly from an existing callstack and saved with the session

Typically these are created by right clicking on a callstack in the display
and opting to create an instant filter based on the selected data.

· Temporary filters are usually instant (callstack) filters, and will not be saved anywhere

· Custom filters let you decide exactly what to exclude using the Define Filter dialog

Any persistent filter can be made temporary and vice versa.

While you'd normally make custom filters persistent, you can make it temporary if you wish.

3.13.2.1 Thread Filters

Thread filters

The thread level is the highest level at which filtering happens.

Thread filtering simply allows you to exclude data according to the thread id.

Filtering by thread id is only going to be useful for multi-threaded applications.

The User Interface 388

Copyright © 2001-2025 Software Verify Limited

Whether you realise it or not, many applications have threads that you may want to exclude from your
data as being beyond your control.

 The thread filter dialog below also serves the dual purpose of manually naming threads. The names
are used elsewhere in the display of data and selection of threads.

The thread filter dialog

 Managers menu Thread Filter... shows the Filter Memory by Thread Id dialog

The dialog is very simple - it just has a list of all the threads in the target program, with check boxes to
enable and disable the display of data from each thread id.

The dialog has three sections. A thread selector at the top, a thread grid in the middle, and at the bottom
a control that allows you to choose how the thread filter shows or hides threads.

Thread Selector

The thread selector lists are threads in the target application plus two special values: All Threads and
Specific Threads.

When a thread is selected that thread is the thread that the thread filter works on.

When All Threads is selected, the thread filter works on all threads.

When Specific Threads is selected, the thread filter works on the enabled threads in the thread grid.

Thread grid

If the thread selector is set to Specific Threads the grid and the controls next to it are enabled.

The Specific Threads option allows you to choose one or more threads to filter, giving you more flexibility
that the other options on the thread selector.

The thread grid is very simple - it just has a list of all the threads in the target program, with check boxes
to enable and disable the display of data from each thread id.

Memory Validator Help389

Copyright © 2001-2025 Software Verify Limited

· Invert All toggle the enabled/disabled state for each thread

· Enable All checks all threads, meaning that no thread filtering will occur

· Disable All unchecks all threads, making it easier to enable just one or two of many threads

Sorting

To sort the list on id or name, click one of the headers.

Showing (or hiding) filtered results

The filters can be set to hide data that matches any of the filters, or to show data that matches any of
the filters. The default is to hide data that matches any of the filters.

· Hide data on this thread if selected, sets the filter to hide matching threads from display, rather
than displaying it

· Show data on this thread if selected, sets the filter to only display matching threads to display,
rather than hiding it

Filters that show data are perfect for showing very focused and targeted results.

 Filters that show data can be more computationally expensive, so use them with caution!

The User Interface 390

Copyright © 2001-2025 Software Verify Limited

Thread names

If a thread has been named using the Win32 RaiseException method, the Win32
SetThreadDescription(), or using mvSetThreadName() its name is shown in the list. See the link
below for more details.

For threads not explicitly named by the above methods, Memory Validator provides automatically
generated names based on the name of the function passed to CreateThread(), _beginthread(), or
_beginthreadex(). If you want to give a thread a name here by double clicking on the name column and
entering a name for the thread. Click outside the box or press return to complete the entry.

Names of threads will be used where relevant in other parts of the application. Eg thread selection in the
Types and Sizes tabs.

How can I give a name to a thread from my code?

3.13.2.2 Global Filters and per-Session Filters.

Global and session filters

Global filters affect all the relevant tab views for all sessions.

Session filters also affect all the tab views, but only for the that session.

Both global and session filters are set up in the Filter Manager dialog.

Opening the filter manager dialog

 Managers menu Global Filter Manager... shows the Filter Manager dialog

Or use this option on the Session Toolbar:

The filter manager dialog

The filter manger has two main components: on the left you can manage the groups of filters, and on the
right, the filters themselves.

Memory Validator Help391

Copyright © 2001-2025 Software Verify Limited

Filters are arranged in the following hierarchy:

· Global and session filter groups

· Filter group manager

· Filter groups

· Filters

Filters are displayed on the right when a filter group is selected, as shown in the image above.

Like the global filters, each session has a default filter group manager under which filters are placed,
unless you create your own group structure.

Building the filter group hierarchy

Building a complex or hierarchy is not essential - you can just have one filter group and manager and
work perfectly well.

However, if you make regular use of this feature, you may wish to fine-tune how you use different groups
of filters.

Having created the hierarchy and added some filters, you can move filters and groups of filters around
and reuse them.

The User Interface 392

Copyright © 2001-2025 Software Verify Limited

To build the hierarchy, different actions are available depending on each selected item:

Select a global or session filter groups:

· Add Manager creates a new filter group manager

· Save... save all the filters and filter groups for the selected global or session filter group
to a .mvf file

· Load... load filters and groups from a previously saved .mvf file, replacing any existing
content

Select a filter group manager:

· Add Group creates a new filter group

· Rename... enter a new name for this filter group manager

· Delete remove this filter group manager from its global/session filter group

Select a filter group:

· Rename... enter a new name for this filter group

· Delete remove this group from its filter group manager

· Move... opens the Move Filter Group dialog below so you can move the group to a new
owner

First choose a global or session filter group, and then which of its managers you want to
move the filter group to.

· Delete All remove the entire hierarchy and all its filters

There's a confirmation dialog in case you click this accidentally!

Adding filters to a group

In the right hand panel, is a list of filters, belonging to the filter group you selected on the left. Initially
empty, this is where you add your filters.

Memory Validator Help393

Copyright © 2001-2025 Software Verify Limited

The functionality here is almost identical to the Local Filters dialog, with filters being added and modified
via the the Filter Definition dialog.

Turning a filter group on / off

Filter Group Managers and Filter Groups can be enabled or disabled by clicking the check box in the
tree.

A disabled filter group manager will not take part in filtering any data.

A disabled filter group will not take part in filtering any data.

To see the effects of changing the enabled status you need to click the Apply button or the OK button.

Context menus

Items in the left hand part of the display have context menus that provide access to functions relevant to
the item selected.

Global Filters and Session Filters

· Add Filter Group Manager... creates a new filter group manager

The User Interface 394

Copyright © 2001-2025 Software Verify Limited

Filter Group Managers

· Rename Filter Group Manager... enter a new name for this filter group manager

· Add Filter Group... creates a new filter group

· Delete Filter Group Manager remove this filter group manager from its global / session
filter group

Filter Groups

Memory Validator Help395

Copyright © 2001-2025 Software Verify Limited

· Rename Filter Group... enter a new name for this filter group

· Move Filter Group... move this filter group to a new filter group manager

· Delete Filter Group remove this filter group from its filter group manager

3.13.2.3 Local Filters

Local Filters

Local filters let you remove unwanted noise from the data views, or when inverted, can target very
specific data you want to display.

Being local means they apply only to the tab view where you create them, without affecting other data
elsewhere in Memory Validator

The following tabs have local filters:

· Memory tab
· Types tab
· Coverage tab
· Analysis tab
· Pages tab

The User Interface 396

Copyright © 2001-2025 Software Verify Limited

While most of the local filters use the more detailed FIlter Definition dialog to fine-tune the filters, the
Types and Coverage tab use dialogs with much simpler filtering rules.

The Coverage tab filter dialog can also be accessed on the memory coverage page of the global settings
dialog, where it is described in detail.

 In the Types tab, local filters are applied to each of the five local object tabs (Thread, DLL, etc).
They do not affect the values in each column, only whether the filtered object type is actually shown in
the view.

The local filters dialog

This dialog lets you manage a group of local filters by adding new filters, modifying existing ones and
enabling or removing them as required.

This example shows instant, temporary and custom filters:

The local filters dialog for the Types and Coverage do not have the Move or Search options.

Memory Validator Help397

Copyright © 2001-2025 Software Verify Limited

Local filter management options

· OK updates the data view with any newly changed local filters and closes the dialog

· Apply updates the data view with any newly changed local filters and without closing the dialog

· Cancel discards and changes to filters and closes the dialog

· Add... shows a dialog such as the Filter Definition dialog to define a new filter to add to the list

· Edit... reopens the definition dialog to view or modify the selected filter

Double clicking a filter in the list also works.

· Delete removes the selected filters from the list

· Delete All clears the list completely

The next three options are only found on the Memory, Analysis and Pages local filter dialogs:

· Move... opens the Move Filter Group dialog below so you can move the filter to a group
elsewhere, thus not making it local any more.

First choose a global or session filter group, and then which of its managers and groups you

want to move the filter to.

If you don't have a target group yet, you can type a new group name or select NewGroup from
the list.

· Copy... opens the Copy Filter Group dialog below so you can copy the filter to a group elsewhere,
thus not making it local any more.

First choose a global or session filter group, and then which of its managers and groups you

want to move the filter to.

If you don't have a target group yet, you can type a new group name or select NewGroup from
the list.

The User Interface 398

Copyright © 2001-2025 Software Verify Limited

· Search... shows the Find Filter dialog to look for a filter in your list which matches an object type,
size or file location

 Searching is only going to be useful when you have many filters in your group.

· Enable/Disable All switches all the filters on or off

· Load... load the filters from a local filters file, replacing the existing filters

· Merge... load the filters from a local filters file, adding to the existing filters without causing
duplicate filters.

· Save... save the filters to a local filters file

Sorting Filters

Filters can be sorted by:

· Enabled state filters are sorted by their enabled state. For any two filters that have the same
enabled state they are sorted by the filter comment field

· Comment filters are sorted by their comment field. For any two filters that have the same
comment they are sorted by the enabled field

To sort filters click the appropriate column header. To change sort direction click the same column
header again.

Lifetime Filter

The lifetime filter allows you to show or hide data that has existed for less than a specific time, or for
longer than a specific time.

Memory Validator Help399

Copyright © 2001-2025 Software Verify Limited

The time is specified in hours, minutes, seconds and milliseconds.

· Lifetime Filter turn the lifetime filter on / off

· HH:MM:SS:mm specify the time using the four combo boxes

· Filter comparison specify if events are filtered because they have lifetimes shorter than the filter,
or longer than the filter

Showing (or hiding) filtered results

The filters can be set to hide data that matches any of the filters, or to show data that matches any of
the filters. The default is to hide data that matches any of the filters.

· Filters hide data if selected, sets the filter to hide matching data from display, rather than
displaying it

· Filters show data if selected, sets the filter to only display matching data to display, rather than
hiding it

Filters that show data are perfect for showing very focused and targeted results.

 Filters that show data can be more computationally expensive, so use them with caution!

Remembering local filters between sessions

The local filters for each view can be reset or kept when a new session starts.

The default behaviour is to keep them between sessions, whether or not the executable changes

· Reset local filters for each new session removes the local filters at the start of the next
session

· Keep local filters for each new session keeps the filters (the default)

When you start a session the number of local filters displayed on the Filter button on those tabs that
have it.

3.13.2.4 Find Filter

Sometimes when you have a long list of filters in a group, it can be awkward to find specific filters.

Whether you're using local filters or global or session filters, the Find Filter dialog (via the Search...
button) can help with this.

The User Interface 400

Copyright © 2001-2025 Software Verify Limited

The find filter dialog

There are four characteristics of the filters that you can search for, any or all of which can be enabled:

· Find filters of type choose from a list of known datatypes for the target program in the current
session

· Find filters using file specify the source code file your target filter is using

· Find filters using function target filters using a selected function name

· Find filters in size range select a lower and upper object size limit by which to search filters

Each of these criteria will only show options relevant to the target program for the current session.

Exclusive or inclusive searches

The find filter dialog allows two types of search:

· Exclusive all criteria that are enabled must match the filter for it to be highlighted

Returns a tightly focused set of results.

· Inclusive at least one of the enabled criteria must match

Gives a broader set of results.

Performing a search

· Enable and set the criteria choose inclusive or exclusive search click Find... matching
filters are highlighted in the list

Memory Validator Help401

Copyright © 2001-2025 Software Verify Limited

Filters are highlighted in the selected object colour, which is set via the Global settings Data Display
 Colours.

 Delays with this dialog appearing? If this dialog takes a few seconds to appear, it's probably
because you have a very large dataset, with many object types, files and functions.

3.13.2.5 Filter Definition

Filter definitions

Filter definitions consist of a set of criteria or rules by which you can exclude data from the various main
tab views.

You can filter the data by many characteristics, including:

· Full or partial callstack matching

· Callstack symbol location details such as name, class, file, directory and DLL

· Memory and handle allocation criteria

· Object attributes such as size, type and address

Global filters, session filters and local filters all use the filter definition dialog to create or modify a filter.

The filter definition dialog

The filter definition dialog appears as shown below left, when you first create a new local, session or
global filter.

However, it's much easier to create and edit a filter directly from an existing data item displayed in the
Memory or Analysis tab.

The example on the right below has pre-populated filter options for callstack, object type, size, address
and other useful data to filter on.

The User Interface 402

Copyright © 2001-2025 Software Verify Limited

Memory Validator Help403

Copyright © 2001-2025 Software Verify Limited

The options above may look complex, but you don't need to set all the options here - just focus on which
of the criteria you want to filter by.

Filter by location or type

The dialog is split vertically into two halves: location-based options at the top and type-based options at
the bottom

· Match Using Location filter using callstack location or source file location

· Match Using Filter Type filter using memory or handle object datatype attributes

Match using location (callstacks)

The User Interface 404

Copyright © 2001-2025 Software Verify Limited

When filtering by all or part of a callstack, that callstack has to come from an existing data item.

Popup menu options on the Memory tab and Analysis tab can create filters using the callstack of the
data item.

Having first created a local, session or global filter this way, you can then edit the filter to change exactly
how much of the callstack the filter needs to match.

There are three ways to match by callstack: root, leaf and partial, each of which is illustrated below.

· Match Using Stack Trace (Root) filter callstacks containing at least the root through all the
selected functions

Ticking a box automatically ticks all items between it and the root.

Unticking a box unticks all items between it and the leaf

· Match Using Stack Trace (Leaf) filter callstacks containing at least from the leaf through all the
selected functions

Ticking a box automatically ticks all items between it and the leaf.

Unticking a box unticks all items between it and the root.

· Match Partial Stack Trace match any callstack containing at least the selected functions

Memory Validator Help405

Copyright © 2001-2025 Software Verify Limited

You can tick any boxes in any order, but they do have to be contiguous.

Filtered items can have the selected items anywhere in their callstack.

Match using location (source)

Match using...

· Symbol name match a selected function name or class::method name from the dropdown list

· Class name match a selected class name from the dropdown list

· Filename match a source file from the list

· File and line match a source file and line number

The list contains combinations of all known allocation points in the source files for the target
program

· Directory match a directory file from the list

· DLL match a DLL from the list

The list contains DLLs loaded by the target program as well as the target executable itself

You can choose how much in the callstack is compared to find the selected item. The measure is from
the leaf callstack position (see diagram above)

· Match As First Trace looks for the selected item only at the leaf position

· Match As Any Trace looks at within N levels from the leaf position

Enter the Depth (on the right) within which to match the selected item

A depth of 0 (zero) means match the entire callstack.

Match using filter type

The User Interface 406

Copyright © 2001-2025 Software Verify Limited

Instead of filtering by callstack location, you can filter according to

· attributes of the object being allocated
· the type of item in the display

First you need to decide what type of filter you want to create.

· Filter Type choose a type of filter from the list below

Changing the filter type enables other parts of the dialog so you can set specific filter values.

When the filter type is set to Memory Allocation, you can target the filter with object type, size
and address.

Some of the filter types simply allow you to include or exclude these types of items in the
display.

Match using object type

· Match Using Object Type choose a type from the Object Type dropdown list

Match using object size

Memory Validator Help407

Copyright © 2001-2025 Software Verify Limited

· Match Using Object Size choose from the Comparison type dropdown list and a size, or size
range

Changing the comparison type will cause the display to update to show the appropriate controls.

You can match exact sizes, not equal to a size, greater than or less than a size, or inside or
outside a range.

 Remember filters exclude data, so take care with your logic on this (and other) options!

Match using address

Matching address is useful if want to select a particular COM Object for example, so that all AddRef(),
Release() and QueryInterface() calls can be shown.

· Match Using Address enter a specific allocation address to match against

Combined with the Invert Match option below, this option is great for displaying data about just one
particular object.

Match using handle or heap

When the filter type is set to Handle Allocation, you can filter by handle type and/or heap id.

· Match using Handle Type select the type of handle to filter

Common resource handles might be Bitmap, Brush, Font etc, but there are a host of other
handle types in the list.

· Match using Heap ID select the id of the heap to filter, if any have been created

If a heap has been named, the heap name will be shown in the list instead of the heap ID

Other Match types

Other filter types include trace messages, error conditions, uninitialised data and COM reference counts.

These types have no further options necessary to filter the relevant data out of a display.

The User Interface 408

Copyright © 2001-2025 Software Verify Limited

Filter Details

Finally, the details at the bottom let you add a comment to the filter and control how the filter gets
applied, if at all.

· Comment enter a description of the filter to show in group filter lists

Usually the comment is auto-generated from the selected filter options, but you can add your
own touch here!

· Automatic comment set this if you want an automatically generated comment. Unset this if you
want to write your own comment.

· Temporary Filter set the filter to be temporary - meaning it won't be saved

· Enable Filter enables and disables the filter

3.13.2.6 Location Filters

The Location Filters dialog allows you to edit filters for the Locations view.

Memory Validator Help409

Copyright © 2001-2025 Software Verify Limited

Local filter management options

· Add... shows a dialog such as the Location Filter Definition to define a new filter to add to the list

· Edit... reopens the definition dialog to view or modify the selected filter

Double clicking a filter in the list also works.

· Delete removes the selected filters from the list

· Delete All clears the list completely

· Enable/Disable All switches all the filters on or off

· Apply updates the data view with any newly changed local filters and without closing the dialog

Data display

Whether filters remove data from the display or show data on the display is determined by the combo
box at the bottom of the screen.

· Filters hide data data matching the filter is not shown. All other data is shown.

· Filters show data data matching the filter is shown. All other data is not shown.

3.13.2.7 Location Filter Definition

The Location Filter dialog allows you to edit filters on the Locations view.

The User Interface 410

Copyright © 2001-2025 Software Verify Limited

Enable Filter

Filters can be turned on and off so that you can easily change what is displayed without having to
create/delete filters.

· Enable Filter allow the filter to affect the filtering of data on the Locations view

Match using function name

· Match Using Function Name choose a type from the Function dropdown list

Match using object size

· Match Using Object Size choose from the Comparison type dropdown list and a size, or size
range

Changing the comparison type will cause the display to update to show the appropriate controls.

You can match exact sizes, greater than or less than a size, or inside or outside a range.

 Remember filters exclude or include data depending on the setting in the Location Filters dialog, so
take care with your logic on this (and other) options!

Memory Validator Help411

Copyright © 2001-2025 Software Verify Limited

3.13.2.8 Generation Filters

The Generation Filters dialog allows you to edit filters for the Generations view.

Local filter management options

· Add... shows a dialog such as the Generation Filter Definition to define a new filter to add to the
list

· Edit... reopens the definition dialog to view or modify the selected filter

Double clicking a filter in the list also works.

· Delete removes the selected filters from the list

· Delete All clears the list completely

· Enable/Disable All switches all the filters on or off

· Apply updates the data view with any newly changed local filters and without closing the dialog

Data display

Whether filters remove data from the display or show data on the display is determined by the combo
box at the bottom of the screen.

The User Interface 412

Copyright © 2001-2025 Software Verify Limited

· Filters hide data data matching the filter is not shown. All other data is shown.

· Filters show data data matching the filter is shown. All other data is not shown.

3.13.2.9 Generation Filter Definition

The Generation Filter dialog allows you to edit filters on the Generations view.

Enable Filter

Filters can be turned on and off so that you can easily change what is displayed without having to
create/delete filters.

· Enable Filter allow the filter to affect the filtering of data on the Locations view

Match using object type

· Object Type choose a type from the Object Type dropdown list

 Remember filters exclude or include data depending on the setting in the Generation Filters dialog,
so take care with your logic on this (and other) options!

Memory Validator Help413

Copyright © 2001-2025 Software Verify Limited

3.13.2.10 Ages Filters

The Ages Filters dialog allows you to edit filters for the Ages view.

Local filter management options

· Add... shows a dialog such as the Age Filter Definition to define a new filter to add to the list

· Edit... reopens the definition dialog to view or modify the selected filter

Double clicking a filter in the list also works.

· Delete removes the selected filters from the list

· Delete All clears the list completely

· Enable/Disable All switches all the filters on or off

· Apply updates the data view with any newly changed local filters and without closing the dialog

Data display

Whether filters remove data from the display or show data on the display is determined by the combo
box at the bottom of the screen.

· Filters hide data data matching the filter is not shown. All other data is shown.

The User Interface 414

Copyright © 2001-2025 Software Verify Limited

· Filters show data data matching the filter is shown. All other data is not shown.

3.13.2.11 Age Filter Defintion

The Generation Filter dialog allows you to edit filters on the Ages view.

Enable Filter

Filters can be turned on and off so that you can easily change what is displayed without having to
create/delete filters.

· Enable Filter allow the filter to affect the filtering of data on the Locations view

Match using object type

· Object Type choose a type from the Object Type dropdown list

 Remember filters exclude or include data depending on the setting in the Ages Filters dialog, so
take care with your logic on this (and other) options!

3.13.3 Named Heaps

Heap names

Heap names are used in the following locations in Memory Validator for convenient identification of
heaps:

· Filter definition dialog when filtering by handle allocation using a Heap ID

· Memory tab when showing the allocation location against a data item

Naming heaps

The named heap manager lets you view and edit the heap names that are shown when inspecting
allocations in heaps that Memory Validator is aware of..

Memory Validator Help415

Copyright © 2001-2025 Software Verify Limited

 Managers menu Named Heaps... shows the Named Heaps dialog below

The list shows any known heaps with ID and name.

Heap names will be shown if they were already assigned using the Memory Validator API function
mvSetHeapName().

Debug and Release C Runtime Heaps will be automatically named.

Changing heap names

You can name a heap directly:

Double click a box in the name column enter the name click outside the box to finish

3.13.4 Watermarks

Watermarks

In Memory Validator, watermarks are event markers in the allocation history at which you can say other
events occurred either before or after the watermark.

Watermarks are used in the following areas as a kind of filter to constrain displayed data to that which
happened between two watermarks.

· The Memory tab
· The watermark view of the Types and Sizes tabs
· The Hotspots tab
· The Analysis tab

Adding watermarks

You can add new watermarks directly from allocation items displayed in the Memory and Analysis tabs,
using the popup menu options.

The User Interface 416

Copyright © 2001-2025 Software Verify Limited

Watermarks added this way are initially named using the .exe or DLL and the function name as in the
picture below, but you can change this if you want.

Alternatively, you can add a watermark at the most recent recorded allocation event:

 Managers menu choose Add watermark at most recent trace enter a name click OK

Or use the option on the Session Toolbar:

 The most recent trace event may not actually be visible in any of the displays as it could be
filtered or hidden for other reasons.

First and last watermarks

There are two permanent special watermarks, not directly associated with particular events:

· The first watermark is the point before every other event

· The last watermark is the point after every other event

These two watermarks are the default settings, meaning that no data is filtered due to watermarks.

You cannot remove or rename the first and last watermarks.

The watermarks dialog

When a session is active, you can show the watermark manager to see a list of watermarks, change
their names, or apply selected watermarks to the data views:

 Managers menu Watermark Manager... shows the Watermarks dialog

Or use the Session Toolbar option:

Watermarks are shown in order of their associated event allocation history.

If you haven't added any watermarks yet, this will just be the special first and last watermarks.

Memory Validator Help417

Copyright © 2001-2025 Software Verify Limited

 The watermarks dialog can only be shown when the Memory, Hotspots or Analysis tab is open.

Managing the watermarks

There's a few options for renaming and removing watermarks:

· Edit... rename the selected watermark

Double clicking on the watermark also works.

You can't edit the first and last watermarks.

· Delete delete the selected watermark

You can't remove the first and last watermarks.

· Delete All delete all the watermarks except the first and last

You can't change watermark locations. If you want to do that, delete the watermarks you don't want and
add new ones.

Applying watermarks to the data displays

You can override the local watermark settings in the Memory, Hotspots and Analysis tabs.

At the bottom of the watermarks dialog choose the watermarks:

· First set the earlier of the watermark range

· Second set the later of the watermark range

You can't choose a second watermark which is earlier than (or the same as) the first one.

The watermarks views in the Types and Sizes tabs are not affected.

The User Interface 418

Copyright © 2001-2025 Software Verify Limited

3.13.5 Bookmarks

Bookmarks

Bookmarks are event markers in the allocation history. You can use the Bookmarks dialog to jump back
to a bookmarked location any time.

Bookmarks are only used in the Memory and Analysis tabs.

Adding bookmarks

Adding bookmarks is very similar to adding watermarks.

You can add new bookmarks directly from allocation items displayed in the Memory and Analysis tabs,
using the popup menu options.

Bookmarks added this way are initially named using the .exe or DLL and the function name as in the
picture below, but you can change this if you want.

Alternatively, you can add a bookmark at the most recent recorded allocation event:

 Managers menu choose Add bookmark at most recent trace enter a name click OK

Or use the option on the Session Toolbar:

 The most recent trace event may not actually be visible in any of the displays as it could be
filtered or hidden for other reasons.

The bookmarks dialog

When a session is active, you can show the bookmark manager to see a list of bookmarks, change their
names, or jump to a bookmark location:

 Managers menu Bookmark Manager... shows the Bookmarks dialog

Or use the Session Toolbar option:

Unlike watermarks, bookmarks are shown in the order you add them.

Memory Validator Help419

Copyright © 2001-2025 Software Verify Limited

 The bookmarks dialog can only be shown when the Memory or Analysis tab is open.

Jumping to bookmark locations

The most useful option in this dialog is the Goto:

· Goto scrolls the open tab to the selected bookmark and selects it

Double clicking on the bookmark also jumps to its location.

Managing bookmarks

There's also a few options for renaming and removing bookmarks:

· Edit... rename the selected bookmark

· Delete delete the selected bookmark

· Delete All delete all the bookmarks in the list

You can't change bookmark locations. If you want to do that, delete the bookmarks you don't want and
add new ones.

3.14 Query and Search

Tools to search for allocations

The following tools help you find memory and handle allocations using different criteria and are all found
on the Query Menu.

Click on an item in the picture or in the list below to find out more in the following topics.

The User Interface 420

Copyright © 2001-2025 Software Verify Limited

· Search use the Find Memory dialog to search the data in some of the tab views for different types
of memory allocations

· Query Address use the Find Address dialog to search for allocation events at or near an address

· Query Object use the Find Objects dialog to search for allocations of objects by their datatype

· Find Function use the Find Functions dialog to search for allocations occurring in certain
functions

· Find cross-thread allocations use the Cross-thread Allocations dialog to find memory allocated
in one thread and deallocated in another

3.14.1 Finding memory

Searching for memory

Using the Find Memory dialog below, you can search the data in some of the tab views for different types
of memory allocations.

Searches can be:

· based on allocation location such as in a function, file or module

· based on the allocated object such as size, type or address

· based on other identifiers like tag id, sequence id, or allocation type

The find memory dialog

To show the Find Memory dialog, choose the menu option below:

 Query menu choose Search... displays the Find Memory dialog

Or use the search icon on the Query Toolbar.

The Find Memory dialog has many search options, each of which can be switched on and off.

Memory Validator Help421

Copyright © 2001-2025 Software Verify Limited

There is a different instance of the dialog for each of the following tabs:

· The Memory tab
· The Hotspots tab
· The Analysis tab
· The Pages tab

Note that the Find Memory dialog can remain open while you inspect the results.

Search Criteria

Each of the desired search options needs to be enabled and criteria specified:

To find objects... enable the option and choose...

· of type a data type from the drop down list

· in function a function from the list

The User Interface 422

Copyright © 2001-2025 Software Verify Limited

· allocated in file a file from the list

· allocated in directory a directory from the list

· in module an .exe, DLL or other module

· in heap a heap ID

· with allocation id the allocation request id

· of allocation type opne of alloc, realloc or free from the dropdown list

· with tag tracker a tag tracker id

· by thread id a thread id

Objects between...

· addresses type in the values or choose the current minimum or
maximum from the drop down list

· sizes

· pages

· sequence ids

Free text search

· event description a string that is a subset of an event description.
* wildcard is supported.

For options where there is a set choice of values, the lists show all the options that Memory Validator
knows about at the time the dialog is shown.

Where a range is specified, you can enter the same value for the beginning and end of the range.

 If you want to search by object type, note that Memory Validator only fetches type information for
each memory location when it is requested. This improves performance, but can mean the drop down list
doesn't have all the datatypes in yet. If you don't see a datatype you want, type it in instead, and the list
will be updated when possible.

Resetting fields

To start over and create a new set of search criteria, there's a handy reset option:

· Reset clears all the fields and enables all options as seen in the picture above

Searching callstacks

By default, callstacks are not searched, but if you want to search all stack frames you can.

· Search all of each callstack if selected all frames of each callstack are searched as well as the
top frame

Exclusive or inclusive searches

Memory Validator Help423

Copyright © 2001-2025 Software Verify Limited

There are two ways of searching:

· Exclusive search results satisfy all the enabled search criteria

· Inclusive search results satisfy at least one of the enabled search criteria

As a general rule, exclusive searches return a tightly focused set of results, while inclusive searches
return a broader set of results.

For those who prefer logic notation, exclusive searches use AND logic, while inclusive use OR logic.

Performing the search

Once search criteria are enabled, and search mode selected, results can be found

· Find... matching results in the corresponding tab are highlighted

The colour of highlighted objects is set on the colours tab of the Global Settings dialog.

The first time a search with a new search criteria is performed the first item in the search results
is navigated to and selected.

Subsequent searches without changing the search criteria will navigate to the next search result,
or if shift is held, the previous search result.

 is the equivalent of clicking the Find... button.

· Clear all previous search results in the corresponding tab are cleared

Example

In the picture above, the dialog shows a search setup to find:

· objects of size 4

· objects of type CtestParsing_c.

The results of that search are shown in the Memory tab below, first as an exclusive search and then an
inclusive one.

Example results: Exclusive results, showing only the 4 byte CtestParsing_c object allocation:

The User Interface 424

Copyright © 2001-2025 Software Verify Limited

Example results: Inclusive results, now showing the 4 byte CString objects also selected.

Memory Validator Help425

Copyright © 2001-2025 Software Verify Limited

3.14.2 Finding addresses

Searching for allocation addresses

Using the Address Query dialog below, you can search the data for allocation events at or near an
address.

Searches can include:

· allocations in a memory block of a certain size, starting at an address of your choice

· allocations within a specified range of a chosen address (+/-)

The address query dialog

To show the Address Query dialog, choose the menu option below:

 Query menu choose Query Address... displays the Address Query dialog

Or use the following icon on the Query Toolbar.

Search criteria

The search address is essential, but size and range are optional for adding some tolerance.

The format of these values can be decimal or prefixed with 0x for a hexadecimal address.

The User Interface 426

Copyright © 2001-2025 Software Verify Limited

· Address to search for enter the memory address of interest

· Size choose a size of memory block within which to search for allocations

· Address within range enter a tolerance range for finding allocations near to the address

The range can help find potential candidates for memory overrun, underrun and corruption
problems.

Allocation types

As well as allocations you can search for reallocations and/or free events:

· Allocated search for allocations

· Reallocated search for reallocations

· Deleted search for free events

Query results

· Query performs the search

The search results are added to the list in the dialog.

· Clear clears all the results from the list

The list is not automatically cleared with each search, so you can compare results of different
searches

The search results may be shown in the following sections if you entered any of the optional criteria:

· results including the address
· results within the size, if specified
· results within range, if specified

You can specify decimal values and hexadecimal values for your search query.

For example, when searching for address 0x037e6120 with a size of 30 and a range of 0x1000:

Memory Validator Help427

Copyright © 2001-2025 Software Verify Limited

Results appear in the earliest of the above sections. They are not repeated in the case where the size
and the range might capture overlapping results.

You can expand the search results, and double click the data items to edit source code in your preferred
editor.

Finding referenced objects

As well as finding an object at an address, you can find which objects it may reference and which
objects may reference it:

· Addr Ref'd... find other objects which are referenced by the object at the search address

· Addr Ref'ing... find other objects that reference the object at the search address

Similarly, within the main search results, you can select an item and find potentially referenced and
referencing objects:

· Referenced... find other objects which are referenced by the selected object

· Referencing... find other objects that reference the selected object

 The target program must still be executing for references to be found. You wouldn't be able to find
references in a session that has been loaded from a file.

The references dialog

Referenced and referencing pointers are listed in a new dialog.

The User Interface 428

Copyright © 2001-2025 Software Verify Limited

· Update refresh the results

You can keep several of these dialogs open if you want to compare results.

You can double click a row in the Referencing Pointers dialog to edit source code if its available.

 It's normal for there to sometimes be a pause before referenced objects are displayed. This is while
the data is being found.

References dialog popup menu

The following popup menu is available over the data area

Click on any part of the menu to jump straight to the topic below:

· Edit Source Code... view the source code in the source code editor

· Referencing Pointers... view pointers referencing the selected address

· Referenced Pointers... view pointers referenced by the selected address

· Show Data at (bytes)... view the contents of memory at the selected address

· Relations a submenu of additional queries related to the current allocation

Menu option: relations

Memory Validator Help429

Copyright © 2001-2025 Software Verify Limited

The relations menu has a large sub-menu with many different options for choosing a set of related data to
display in the upper analysis window.

Think of this as a sub-query on the working data - like searching for friends of friends on a social network!

Available relations are as follows, with allocations generally meaning any allocation, reallocation or
deallocation

· Same address
· Same size
· Smaller
· Larger

Finds any other allocations on the same memory address (allocations,
reallocs, or frees)
Allocations on any memory objects of identical size
 or on smaller
 or larger objects

· Same object type Finds any other allocations of the same type

· Same source file
· Same DLL

All allocations from the same file...
 or the same DLL

· Allocations within For memory allocations, finds all other allocations within a range of 32
bytes up to 4Kb of this one

 Also see the examples below.

Examples of searches and finding referenced objects

Getting an address to search for

Memory Validator has an example program with which to safely explore all the features available.

While the example program is running, refreshing the Memory Tab view should show an allocated
object of type CSingleDocTemplate:

Address to search for

 Using the Query Address dialog to search for that object's address and size (address 0x0060A10,
size 140 in this case) should show the expected result:

Size

Expanding the size to 0x100 may find more objects. For example:

The User Interface 430

Copyright © 2001-2025 Software Verify Limited

Address within range

Additionally, setting the range to 0x1000 might give the result:

Addr Ref'd

Clicking Addr Ref'd to find referenced objects should include CTeststakDoc being referenced by the
CSingleDocTemplate :

Addr Ref'ing

Clicking Addr Ref'ing to find objects referencing the object at the address 0x0231BD50 might show
something like:

Memory Validator Help431

Copyright © 2001-2025 Software Verify Limited

3.14.3 Finding objects

Searching for object allocations

Using the Object Query dialog below, you can search for allocations of objects by their datatype.

The object query dialog is very similar in behaviour to finding addresses.

The object query dialog

To show the Object Query dialog, choose the menu option below:

 Query menu choose Query Object... displays the Object Query dialog

Or use the following icon on the Query Toolbar.

The User Interface 432

Copyright © 2001-2025 Software Verify Limited

Search criteria

Just choose the object type for which you want to find allocations.

· Object type choose the datatype of the objects you want to find

Allocation types

As well as allocations you can search for reallocations and/or free events:

· Allocated search for allocations

· Reallocated search for reallocations

· Deleted search for free events

Query results

· Query performs the search

The search results are added to the list in the dialog.

· Clear clears all the results from the list

The list is not automatically cleared with each search, so you can compare results of different
searches

You can expand the search results, and double click the data items to edit source code in your preferred
editor.

Finding referenced objects

Within the search results, you can select an item and find potentially referenced and referencing objects:

· Referenced... find other objects which are referenced by the selected object

· Referencing... find other objects that reference the selected object

Referenced pointers are listed in the same references dialog used when finding addresses.

 Also see the examples below.

Examples of searches and finding referenced objects

Memory Validator Help433

Copyright © 2001-2025 Software Verify Limited

Memory Validator has an example program with which to safely explore all the features available.

Among the datatypes it uses is CString and CTeststakDoc, used in the examples below.

Searching for object types

If you searched for a datatype with many allocation instances, they would all be listed.

For example CString

Below are the results of searching for CSingleDocTemplate datatype allocations.

The results are expanded to show the source code surrounding the allocation point.

The User Interface 434

Copyright © 2001-2025 Software Verify Limited

Referenced

Selecting the object in the list and clicking Referenced finds referenced objects and should include
CTeststakDoc being referenced by the CSingleDocTemplate object:

Referencing

Clicking Referencing to find objects referencing the CSingleDocTemplate object might show
something like:

Memory Validator Help435

Copyright © 2001-2025 Software Verify Limited

3.14.4 Finding functions

Searching for object allocations in functions

Using the Find Function dialog below, you can search for allocations occurring in certain functions.

The functions can be the allocating function or anywhere in the allocation callstack

This feature is very similar in behaviour to finding objects.

The find function dialog

To show the Find Function dialog, choose the menu option below:

 Query menu choose Find Function... displays the Find Function dialog

Or use the following icon on the Query Toolbar.

The User Interface 436

Copyright © 2001-2025 Software Verify Limited

Search criteria

Enter a function name, and optionally any other search characteristics to find objects allocated in
matching functions

· Function enter full or partial function name

· Match case tick to do a case-sensitive match

· Complete function name tick to only match the whole name

 For C++ methods, complete names must be of the form classname::methodname.

· Trace locations matches only the function containing the allocation

· Callstacks matches any function in the allocation callstack

Allocation types

As well as allocations you can search for reallocation and/or deallocation events:

Memory Validator Help437

Copyright © 2001-2025 Software Verify Limited

· Allocated search for allocations

· Reallocated search for reallocations

· Deallocated search for deallocation events

Finding results

· Find performs the search displaying results in the list

Results replace any previous search, unlike querying addresses or objects where the results are
added to the list.

You can expand the search results, and double click the data items to edit source code in your preferred
editor.

Examples of finding allocations in functions

Memory Validator has an example program you can use to safely explore features.

In the example program, the Allocation menu has an option Test Many Hooks at once.

After doing that, the example searches can be made below.

Searching only within matching functions

Searching for allocations only in functions that have ontest as part of their name finds these results
in CTeststakView::OnTestManyHooks

The User Interface 438

Copyright © 2001-2025 Software Verify Limited

Searching anywhere in the callstack

Keeping the same function name but now searching in any part of the callstack additionally finds two
more allocations in functions underneath CTeststakView::OnTestManyHooks

Memory Validator Help439

Copyright © 2001-2025 Software Verify Limited

3.14.5 Finding memory allocations deallocated in different threads

Cross-threaded allocations

Cross-thread allocations are when memory is allocated in one thread, and is deallocated or reallocated in
another thread.

Memory Validator connects these events, as well as resource handle allocations and releases.

Cross-thread allocations are perfectly valid, for example, a main thread may place data objects onto a
queue in a worker thread that deletes them after processing.

However, the practice can also result in unintentional behaviour as well. For example, after a process
that started off single threaded has been made multi-threaded.

Often these errors occur when memory is unexpectedly deallocated in a diffferent thread.

Using the cross-thread allocations dialog below, you can find these cross-thread allocations and
deallocations.

By inspecting them you can verify expected behaviour, and look out for unexpected behaviour.

The cross thread allocations dialog

The User Interface 440

Copyright © 2001-2025 Software Verify Limited

To show the cross-thread allocations dialog, choose the menu option below:

 Query menu choose Find cross-thread allocations... displays the dialog

Or use the following icon on the Query Toolbar.

There is just the one button - to start the search

· Find start the search and display results in the list

Results include cross-thread reallocations and deallocations.

For larger datasets, the search can take some time.

Note that results displayed in green indicate that some (possibly all) allocations made on this callstack
have been successfully deallocated.

Example of finding cross-thread allocations

Memory Validator has an example program with which to safely explore all the features available.

The following sequence will allocate memory in one thread and free it in another.

 Handles menu Start thread Exit program

Searching for cross-thread allocations

The following three char[] allocations should be found, with sequential allocation request ids.

Memory Validator Help441

Copyright © 2001-2025 Software Verify Limited

Expanding one of these entries shows the allocation location and the deallocation location below.

The various details include thread id (different for allocation and deallocation), timestamp, request id
and callstack.

The User Interface 442

Copyright © 2001-2025 Software Verify Limited

3.15 Tools

Click on an item in the picture of the Tools Menu below to jump to the relevant topic:

3.15.1 Colour coded source code editor

Source code editing

The editing settings let you set an editor of your choice to view or edit source code. Memory Validator's
built-in editor is one of those options.

The built-in editor can be started in several ways:

· double click on a source code fragment in one of the views

· popup menu Edit Source Code...

· Tools menu Edit Source Code...

Using the built-in editor

The built-in editor supports the basic operations expected for editing source code:

Memory Validator Help443

Copyright © 2001-2025 Software Verify Limited

File menu

The file options need no explanation:

Edit menu

All the following edit options should also be familiar:

The User Interface 444

Copyright © 2001-2025 Software Verify Limited

Undo/Redo is unlimited by default, but this can be changed in the options below.

 Editing bookmarks has nothing to do with Memory Validator's own bookmarks.

Formatting menu

The formatting menu has general display and editing options

· Convert Tabs to spaces turns all tabs into spaces
· Convert Spaces to tabs turns all spaces into spaces

· Use Colour toggles the colour coded display

· Fonts and Line Numbers... change text colours, fonts and line numbers

Memory Validator Help445

Copyright © 2001-2025 Software Verify Limited

· Options... set tab length and other options

The User Interface 446

Copyright © 2001-2025 Software Verify Limited

· Wrap Width... changes the column width at which lines will wrap in the display

Status bar

The status bar shows help text at the bottom as you hover over menu and toolbar options.

To the right of the status bar are insert mode, column number and line number.

Line collapsing

You can temporarily collapse sections of code as follows:

· Left click in the margin to start the section Drag to define the length Release to set the end
of the section

Click anywhere on the resulting indicator to collapse, and on the + to expand a section.

Expanded:

Collapsed:

Line collapsing is temporary and not remembered between edit sessions.

3.15.2 Refresh and Refresh All

Refreshing data

You have the option in some views to automatically update in the view at an interval of your choice.

Sometimes you need to refresh the data when you want to, especially while inspecting the data.

Most views have a local refresh button, which updates the data.

Memory Validator Help447

Copyright © 2001-2025 Software Verify Limited

The same function is found in the Tools menu, as well as an option to update all views at once.

 Tools menu Refresh refresh the data displayed only on the current tabbed view

 Tools menu Refresh All refresh the data on all the tabbed views

or use the Refresh and Refresh All icons on the Tools toolbar.

3.15.3 Loaded Modules

Viewing the loaded modules

You can view a list of the modules which are loaded by your target application.

 Tools menu Loaded Modules... shows the Loaded Modules dialog

The dialog shows:

· the Address space occupied by the module (DLL or EXE)

· the type of Code in the module (native, managed, mixed mode or resources only

· the type of Build - is the code debug or release?

· the Path the module was loaded from

The User Interface 448

Copyright © 2001-2025 Software Verify Limited

3.15.4 DLL Debug Information

Viewing the DLL debug information

If you are having problems collecting thread data for a particular EXE/DLL the problem may be that the
debug information that is required to perform the instrumentation of the software cannot be found.

You can view a list of the debug information status of modules loaded by your target application.

 Tools menu DLL Debug Information... shows the DLL Debug Information dialog below

The dialog shows:

· the path from which Modules (DLL or EXE) were loaded

· the debug Status (below)

· if any symbol server is not reachable (offline or doesn't exist) a message will be shown in red at the
bottom of the dialog. You can edit the symbol server definitions here.

Debug status

There are various reasons why a module may not have its debug information read.

The dialog shows a comment or reason in the status column. Examples might be:

· PDB or MAP if the debug information was found and used

· Debug information not present

The status column may contain a button to enable you to find out more via the Debug
Information Diagnosis dialog

Memory Validator Help449

Copyright © 2001-2025 Software Verify Limited

· A reason for being ignored

· Module is a part of the C Run-time Library (CRT) or Standard Template Library (STL)

· Location is a system directory

· Ignored due to Hooked DLLs advanced settings

· File is a Software Verify own module

· Module has been specified as a 3rd party

· No executable code is contained

· The module only has GUI resources

More information about PDB and MAP files

Clicking on the Learn more... link at the top right of the dialog shows the Symbols and Debugging
Information dialog (below) with more details with additional links to topics in this help.

Click the links below to read more in our frequently asked questions.

The User Interface 450

Copyright © 2001-2025 Software Verify Limited

Finding out more using the Debugging Information Diagnosis Dialog

When debug information is not present for a given module the DLL Debug Information dialog (above) may
display a button in the Status column to show the Debugging Information Diagnosis dialog.

The dialog shows:

· Information, advice, and diagnostic help

· Quick links to change settings

Memory Validator Help451

Copyright © 2001-2025 Software Verify Limited

The information options include:

· Show me how debug information was searched for... shows the Debug Information Search
Path dialog

This information is extracted from the Diagnostic tab and shows only the relevant information for
the module selected in the DLL Debug Information dialog.

· Help me choose what flags... shows the Debugging Flags wizard

Use the wizard to first select the compiler or linker you're using

The User Interface 452

Copyright © 2001-2025 Software Verify Limited

Next >> Provides the relevant debug compiler and linker flags. An example for Visual Studio
2017 to 2015 is below:

Memory Validator Help453

Copyright © 2001-2025 Software Verify Limited

· Debugging information advice... shows the Symbols and Debugging Information dialog above.

The options for changing settings include quick links to the following pages from the Global Settings
Dialog

· Edit PDB search paths... shows the File Location settings page for PDB files.

· Edit symbol lookup options... shows the Symbol Lookup settings page

· Edit symbol server options... shows the Symbol Servers settings page

· Edit symbol load preferences... shows the Symbol Load Preferences settings page

· Edit symbol debug options... shows the Symbol Misc settings page

3.15.5 DLLs Prevented from Loading

Viewing the DLL prevented from loading information

If some DLLs are not loading via LoadLibrary() this dialog will show you any DLLs that Memory Validator
has deliberately prevented from loading.

The User Interface 454

Copyright © 2001-2025 Software Verify Limited

Memory Validator will prevent DLLs from loading that are known to be problematic. These are typically
badly written shell extensions, or any DLL that uses Visual Leak Detector, or any DLL that is listed in
the Stub Global Hook DLLs settings.

 Tools menu DLLs Prevented From Loading... shows the DLL Debug Information dialog
below

For each DLL the dialog shows:

· the Product Name associated with the DLL

· the DLL name

· the type (known bad DLL, Visual Leak Detector, Stub Global Hook DLLs)

In normal use, most of the time you won't be able to access this dialog because there will be no data to
display.

If you're seeing a notification on the Summary page, or the Tools menu it is enabled it's because we've
identified a DLL trying to load into your process that is known to cause problems (a shell extension, or
any DLL linked with Visual Leak Detector) or is a DLL that is listed on the Stub Global Hook DLLs
settings.

3.15.6 Out Of Date DLLs

It may happen that if you forget to build a DLL, or if a build error occurs that you perform memory leak
detection on DLLs that are not built with the most recent version of your source code.

We refer to these DLLs are out of date DLLs because they are out of date compared to the source code
that is compiled to create the DLLs.

Memory Validator can detect this, and warn you about it.

Memory Validator Help455

Copyright © 2001-2025 Software Verify Limited

Summary tab

When out of date DLLs are found a warning is displayed on the summary tab, in the lower section of the
display.

Out Of Date DLLs Dialog

The View... link will display the Out Of Date DLLs dialog.

There is also an option to display the Out Of Date DLLs dialog on the Tools menu.

The Out of date DLLs dialog shows the DLLs that are out of date, and the source files for each DLLs. The
dates of both the DLLs and the source files are displayed.

The above image shows 1 DLL that is out of date, with 1 file being more recently edited than the build
timestamp for the respective DLL.

3.15.7 Running totals

Viewing the running totals

The User Interface 456

Copyright © 2001-2025 Software Verify Limited

In order to keep a collective watch on some general statistics, the Running Totals dialog keeps a count
of the number of bytes and handles allocated.

To show the Find Memory dialog, choose the menu option below:

 Tools menu choose Running Totals... displays the Running Totals dialog

Or use the icon on the Tools toolbar.

The running totals dialog

The totals are grouped by related memory/handle allocator, described in the first column.

Memory Validator Help457

Copyright © 2001-2025 Software Verify Limited

Each group of statistics has the following values:

· Count the number of memory allocations or handles currently in use at this time

· Memory the amount of memory or handles currently in use at this time

· Max Count the maximum number of memory allocations or handles in use at any time

· Max Memory the maximum amount of memory or handles in use at any time

· Total Events the total number of memory allocations, reallocations, deallocations or handle
allocations, handle deallocations until this point in time

· Total Bytes the total amount of memory allocations, reallocations, deallocations or handle
allocations, handle deallocations until this point in time

· Alloc Count the number of memory or handles that have been allocated

· Alloc Size the size of memory or handles that have been allocated

· Alloc Max Count the maximum number of memory or handles that have been allocated

· Alloc Max Size the maximum amount of memory or handles that has been allocated

· Alloc Cumulative Count the total number amount of memory or handles that have been
allocated

· Alloc Cumulative Size the total amount of memory or handles that have been allocated

· Realloc Count the number of memory or handles that have been reallocated

· Realloc Size the size of memory or handles that have been reallocated

· Realloc Max Count the maximum number of memory or handles that have been reallocated

· Realloc Max Size the maximum amount of memory or handles that has been reallocated

· Realloc Cumulative Count the total number amount of memory or handles that have been
reallocated

· Realloc Cumulative Size the total amount of memory or handles that have been reallocated

· Free Count the number of memory or handles that have been deallocated

· Free Size the size of memory or handles that have been deallocated

· Free Max Count the maximum number of memory or handles that have been deallocated

· Free Max Size the maximum amount of memory or handles that has been deallocated

· Free Cumulative Count the total number amount of memory or handles that have been
deallocated

The User Interface 458

Copyright © 2001-2025 Software Verify Limited

· Free Cumulative Size the total amount of memory or handles that have been deallocated

 If you see a negative Handle Total, then more handles have been detected as deallocated than
allocated.

3.15.8 Memory leak and handle leak detection

Leak detection

If needed, you can perform in-place leak detection on memory and handles whilst your application is
running.

The Leak Detect dialog lets you search for leaks between watermarks or at specific addresses to help
narrow the search for large datasets.

 In-place memory leak detection can be time consuming so it's usually more efficient to leave
Memory Validator to analyze the collected data once your application has closed normally.

 See the recommended leak detection process at the bottom of this page.

Detecting leaks

To show the Leak Detect dialog, choose the menu option below:

 Tools menu choose Leak Detect... displays the Leak Detect dialog

Or use this icon on the Tools toolbar.

The leak detect dialog

Memory Validator Help459

Copyright © 2001-2025 Software Verify Limited

What to search for

The default is to search for both memory leaks and handle leaks

· Detect Memory Leaks detect memory leaks

· Detect Handle Leaks detect handle leaks

You can then choose to search between watermarks or between addresses.

Searching between watermarks

Watermarks are points in the allocation event history that you can mark and use as endpoints for
showing data or performing searches

· Search for values between watermarks choose a first and last watermark to search between

The User Interface 460

Copyright © 2001-2025 Software Verify Limited

· First Watermark set watermark as start marker

· Last Watermark set watermark as end marker

A typical process might be:

· set a watermark
· perform an action in your application that you know is self contained and should not leak
· set another watermark
· search for leaks between the two watermarks

Address threshold searching

When searching between watermarks, (i.e. not searching for a specific address) you can specify a
threshold around each memory address.

This is useful because for some data structures, the stored pointer is not the actual allocation memory
address.

One example of this is the MFC CString object which uses an internal object CStringData which is
allocated with a N byte header which stores information about the CStringData.
The CStringData offset varies with Visual Studio version and processor bit depth:

Visual Studio CStringData offset
x86 VS 6 12
x86 VS 2002..2019 16
x64 VS 2008..2019 20

The pointer that is stored as m_pchData in the CString object is a pointer to the Nth byte in the
allocation.

For the reason above, the default is 16 for x86 and 20 for x64, but you can change this:

· Threshold: pointer values within BYTE count set the address threshold between 0 and 63
bytes

If a pointer is found within the threshold range, it's considered a match.

At least 16 bytes is recommended for MFC applications, but you can change this if not using
MFC:

Searching at specific addresses

· Search for specific memory addresses and handles use address or handle ids to search for
leaks

The list should be edited to add the memory addresses or handle ids you want to search for.

· Add adds a new item to the list enter the address or id in the new list item

Addresses can be specified in decimal or hexadecimal with a leading 0x and must be positive.

Memory Validator Help461

Copyright © 2001-2025 Software Verify Limited

· Remove removes a selected item

· Remove All removes all items

The list is also cleared each time the dialog is shown

Search Accuracy

Most applications will have pointers and handles stored in memory aligned on 4 byte (DWORD)
boundaries.

Some Windows datatypes are stored more compactly, and align data on 1 byte and 2 byte (WORD)
boundaries.

Your application may have its own datatypes which align data on 1 and 2 byte boundaries.

Depending on the datatypes involved and how they are stored internally, you may wish to specify more
accurate address address checking than the 4 byte DWORD alignment that is used by default.

· BYTE boundaries checks addresses and handles on 1 byte boundaries

· WORD boundaries checks 2 byte boundaries

· 32 bit pointer boundaries checks 4 byte boundaries

· 64 bit pointer boundaries checks 8 byte boundaries. This option is only available with Memory
Validator x64.

Byte boundary checking will be slower and possibly find more false positive matches for leaked memory.

Handles are the same size as pointers on 32 bit Windows (4 bytes) and 64 bit Windows (8 bytes).

Starting the leak detection

· Detect Leaks starts the detection process

· Don't Detect Leaks abandon and close the dialog

The User Interface 462

Copyright © 2001-2025 Software Verify Limited

When searching between watermarks mode, a list of memory allocations and handle allocations (as
appropriate) is prepared.

A message dialog shows the number of data items to be checked:

When searching for specific values, no such dialog is displayed as the number of data items is obvious.

A progress dialog indicates what's being examined:

 In place leak detection can take a long time.

Memory leak search results

When the search is complete a status dialog is displayed.

Memory Validator Help463

Copyright © 2001-2025 Software Verify Limited

· View Results displays the search results on the Memory and Handle tab.

 If pointers to memory can be found in memory or handles can be found in memory they will not be
regarded as leaked. Because of this fewer items may be reported as leaked than you may expect. For
more information see Why doesn't in-place leak detection always find leaking objects?

Memory leak search results (searching between watermarks)

When searching between watermarks is complete, any objects that were determined to have leaked are
display in the Memory view.

These objects are given the status 'potential memory leak', and displayed in the relevant colour.

The reason for being a 'potential' memory leak is because the address pointer may (depending on your
application) have been

· stored in encrypted format
· offset (as described for CStringData above)
· altered in some other way prior to being stored.

An example portion of the display of potential memory leaks (after using the example application) is
shown below:

Memory leak search results (searching for specific values)

When searching for specific values is over, the results are displayed in the Memory Leak Detect dialog:

The User Interface 464

Copyright © 2001-2025 Software Verify Limited

The dialog displays the results in a list showing:

· the memory address or handle value

· if the specified value was found in the application, or was leaked

· the object identified as using the specified address or handle value

This may be blank if no object relating to the value could be determined.

· Edit... (or double clicking any row) displays the relevant source code in your preferred editor

This is only enabled when you select a result in the list

Why doesn't in-place leak detection always find leaking objects?

When you run the in-place memory leak detection method the only way to detect that memory has
leaked (pointer A, let's say) is to search all of your program's memory for pointer A.

If pointer A is not found we can regard that memory as leaked.

However, if pointer A is found anywhere (dynamically allocated memory, static memory, stack variables,
function parameters) the pointer must be regarded as valid and cannot be marked as leaked.

The pointer may still be in memory but the program may not be aware of it (so in reality it is leaked) but
because it is in memory our scan can't know that the program has forgotten about the pointer.

Consider the following example:

Show a C++ example (showing some bad programming):

Memory Validator Help465

Copyright © 2001-2025 Software Verify Limited

class container

{
public:

 container();

 ~container();

 void flush();

 void addData(DWORD value);

private:

 DWORD *data;
 DWORD len;
};

container::container(DWORD value)
{
 data = NULL;
 len = 0;
}

container::~container()
{
 flush();
}

void container::flush()

{
 // whoops, forgot to free the data here!

 len = 0;
}

void container::addData(DWORD value)

{
 len++;
 if (data == NULL)

 data = (DWORD *)malloc(sizeof(DWORD) * len);

 else

 data = (DWORD *)realloc(data, sizeof(DWORD) * len);

The User Interface 466

Copyright © 2001-2025 Software Verify Limited

 if (data != NULL)

 data[len - 1] = value;
}

static container testObj;

static void test()

{
 testObj.addData(1);
 testObj.addData(2);
 testObj.addData(3);

 testObj.flush();
}

The example uses a simple class container to store some data which has several methods.

The flush method

container uses a method flush() to clear out all data.

flush() can be called at arbitrary times to reset the data.

It is also called from the destructor to ensure that the class cleans up after itself.

However, the flush() method contains a bug: it should call free(data), but doesn't - and so this
results in a memory leak.

The test method

If we examine the function test() we can see it calls addData() three times which results in
memory being allocated inside the container object.

Finally flush() is called to discard the data, causing a memory leak.

The memory pointer is not freed but is also not reset which means that the pointer data in the object
testObj is still pointing to the memory that has been leaked.

This pointer will be found when the in-place memory leak detector scans memory and so the
memory will not be regarded as leaked.

 This memory will be reported as leaked when the program finishes executing and C++ Memory
Validator can reconcile all memory allocations with memory deallocations.

The recommended leak detection process

If in doubt about memory leak detection always use the following methodology:

Memory Validator Help467

Copyright © 2001-2025 Software Verify Limited

1. Start your program with C++ Memory Validator

2. Run your program as normal, executing the parts of your program you want to test for memory
leaks.

3. Close your program

4. Wait for C++ Memory Validator to analyze all memory allocations and memory deallocations

5. Examine the memory leak report on the Memory tab.

3.15.9 Uninitialised memory detector

Uninitialised memory

Memory Validator can detect potentially uninitialized data by looking for memory allocations that have
the Microsoft® uninitialized data signature in them.

The debug C runtime heap initialises all allocated memory with a signature byte of 0xCD.

Bit patterns in memory are sought out that match the default values:

· 0xCD for BYTEs
· 0xCDCD for WORDSs
· 0xCDCDCDCD for 32 bit pointers (and DWORDs)
· 0xCDCDCDCDCDCDCDCD for 64 bit pointers (and QWORDs)

Any objects found with the signature are displayed in the Memory tab which is updated to display the
allocations with uninitialised memory.

 Uninitialized data detection is only available when your program is compiled in _DEBUG mode.

See the global settings for checking uninitialised data.

False positives

It may not be that uncommon to find a byte that has actually been deliberately initialised to 0xCD by the
program - a 1 in 256 chance for random data for example.

It's less likely to find words similarly initialised to 0xCDCD, very unlikely to find such DWORDS (1 in 4
billion for random data), and exceptionally unlikely to find such QWORDS (1 in 16 quintillion for random
data).

Because of this, you should use your own judgement as to whether reported allocations are false
positives, based on what you know about the behaviour of your program.

Invoking a memory initialisation check

The User Interface 468

Copyright © 2001-2025 Software Verify Limited

Use one of the following methods during a session to start uninitialized memory detection:

 Tools menu Check Initialised performs the check

or click the Check Initialised icon on the session toolbar.

3.15.10 Integrity checker

Integrity checks

An integrity check is an examination of the C runtime heap that looks for blocks that are damaged or
have errors.

Any errors found in the heap are communicated to the user.

Internally the status for any memory blocks having errors is updated so that the user interface displays
such blocks as damaged.

Invoking an integrity check

Use one of the following methods during a session to invoke the CRT heap integrity check:

 Tools menu Integrity Check performs the check

or use the Integrity Check icon on the Tools toolbar:

3.15.11 Update information

Why is Update needed?

When Memory Validator attaches to a target program, some memory allocations may have been made
already.

Although those allocations are typically in the very first startup code executed as the C runtime
initialises, Memory Validator won't know their location.

This is true even when Memory Validator launches, waits for, or is linked to the target program.

Memory Validator Help469

Copyright © 2001-2025 Software Verify Limited

Where the program has been running for a while and Memory Validator is injected into the program, then
clearly a lot of allocations could have occurred already!

In most cases it's not important to know about the C runtime initialisation memory, as the C runtime will
deallocate the memory when the program shuts down.

However, if you need Memory Validator to know about this memory you can use this update function to
cause the stub to send information about all C runtime memory allocations to the Memory Validator user
interface.

 These allocations won't have a stack trace to identify where the memory was allocated, but for the
_DEBUG versions of the C runtime, there may be useful filename and line information.

Invoking a CRT memory update

Use one of the following methods to invoke an update:

 Tools menu Update shows the CRT Memory Update dialog

or use the Update icon on the Tools toolbar:

 Update is a one-off operation in each session. The option is disabled after the first time.

The CRT Memory Update dialog

A confirmation dialog appears with a notice before the update proceeds.

The User Interface 470

Copyright © 2001-2025 Software Verify Limited

3.15.12 Send command to stub extension DLL

This utility is only relevant if you have first built a Memory Validator stub extension and then specified a
stub extension DLL in the settings.

It allows you to send a command to one or all user supplied stub extension DLLs, for whatever custom
purpose you may need.

See the example stub extension DLL provided with Memory Validator.

Sending a command to a stub extension DLL

Use one of the following methods to access the dialog:

 Tools menu Send Command To Stub... shows the Send Command to Stub Extension
DLLs dialog

or use the Send Command To Stub icon on the Tools toolbar.

These options will be disabled if there are no stub extensions specified in the settings.

The Send Command to Stub Extension DLLs dialog

The dialog appears similar to the one below, letting you type in a message to be sent to one or all stub
extension DLLs.

Memory Validator Help471

Copyright © 2001-2025 Software Verify Limited

· Command type the command to send to the extension DLL(s)

· Send command to all extension DLLs will send the command to all the known stub extension
DLLs

· Send command to a single DLLs only sends the command to a stub extension DLL selected
from the list

The list is only enabled once you select this option.

· Send immediately sends the message you entered

If you're using the example stub extension DLL provided with Memory Validator, the command beep
would emit the system beep sound.

3.16 .Net Tools

Click on an item in the picture of the .Net Tools Menu below to jump to the relevant topic:

The User Interface 472

Copyright © 2001-2025 Software Verify Limited

3.16.1 Heap Dump

To cause a .Net heap dump, choose the menu option below:

 .Net Tools menu choose Heap Dump... displays the Heap Dump dialog

Or use the heap dump icon on the .Net Tools Toolbar.

The heap dump dialog is displayed.

Heap Naming

· Automatically name heap dumps all heap dumps are automatically named

· Prompt for heap dump name this dialog is displayed. The heap dump name is specified in the
edit field.

· Display a notification dialog when the heap dump is complete a dialog box is displayed

Heap Dump Complete

When the heap dump is complete a notification is displayed if it has been requested.

Memory Validator Help473

Copyright © 2001-2025 Software Verify Limited

An entry for the heap dump is also added to the combo box on the Heap Dumps sub-tab of the main .Net
tab.

 Any attempt to fetch a new heap dump will fail until enough objects have been allocated to allow a
garbage collection to run.

3.16.2 Garbage Collect

To cause a garbage collection to happen, choose the menu option below:

 .Net Tools menu choose Garbage Detect the target program will cause a .Net garbage
collection to happen

Or use the recycle icon on the .Net Tools Toolbar.

3.16.3 Snapshots

To create a .Net memory snapshot, choose the menu option below:

 .Net Tools menu choose Snapshot... displays the Snapshot dialog

Or use the camera icon on the .Net Tools Toolbar.

The User Interface 474

Copyright © 2001-2025 Software Verify Limited

The snapshot dialog is displayed.

Snapshot Naming

· Automaticlly name snapshots all snapshots are automatically named

· Snapshot name enter the name for this snapshot. If you leave it empty a name will be created for
this snapshot.

The snapshot is created an an entry for the snapshot is added to the list on the Snapshots sub-tab of the
main .Net tab.

3.17 Sessions: Load, Save, Export, Close

Working with sessions

Sessions with Memory Validator can be saved to and loaded from a file so that you can:

· share the session with a colleague

· examine the session at a later date

· compare the session with another session

Memory Validator Help475

Copyright © 2001-2025 Software Verify Limited

· create baseline sessions for use in regression tests

Sessions can be even exported in HTML and XML formats.

You can have multiple sessions open at once, necessary for manual session comparison or automated
regression testing.

Closing a session

When you've finished working with a session, it can be closed.

 File menu Close Session... closes the session, clearing the displays

Closing a session may happen automatically if you start a new session and the session count limit is 1.

If the maximum session count allows, closed sessions still appear in the Session Manager, where they
can be reopened or deleted.

Session Filename

The session filename is displayed as the first line of the diagnostic data on the Diagnostic tab.

3.17.1 Loading & Saving Sessions

Loading sessions

Load a session using any of the following options.

 File menu Open Session... open a previously saved session from file (*.mvm)

or click on the Open Session icon on the standard toolbar.

The User Interface 476

Copyright © 2001-2025 Software Verify Limited

or use the shortcut:

 + Open session

If you have a limit of 1 session to be open at a time, any open session will be closed first, otherwise you
can open multiple sessions at a time.

Saving sessions

Save a session using any of the following options.

 File menu Save Session... saves all the session data to a file (*.mvm), prompting for a file
name if necessary

 File menu Save As... saves the session to a new file

or click on the Save Session icon on the standard toolbar.

or use the shortcut:

 + Save session

The Save Session dialog appears so you can choose the content and format of what gets saved.

The Save Session dialog

The session export dialog is very similar to the Export dialog, except here the format is set to .mvm.

Memory Validator Help477

Copyright © 2001-2025 Software Verify Limited

Choose the scope and type of data you want to record in the saved session, and set the file name before
saving.

Typically you'll accept the default settings of saving everything.

Scope section

· Allocated Memory all memory and resource allocations not deallocated and information about
damaged memory

· Reallocated Memory all allocations that have been reallocated

· Free Memory all allocations that have been deallocated

Type section

· Memory memory allocations, reallocations and deallocations

· Handle resource allocations and deallocations

The User Interface 478

Copyright © 2001-2025 Software Verify Limited

· Errors error conditions such as damaged memory, incorrect deallocation, uninitialized memory

· Trace TRACE() and OutputDebugString() messages

Unlike exports where stack traces are optional, here they are saved unfiltered for all selected data types.

File section

The file format for a saved session is set as a .mvm file

· File type the filename or Browse to a location

· OK saves the session

Check the overwrite existing file option if necessary.

3.17.2 Exporting Sessions

Exporting to HTML or XML

Exporting sessions allows you to use external tools to analyse or view session data for whatever reasons
you might need.

You can export to HTML or XML format:

 File menu Export Session... Choose HTML Report or XML Report shows the Export
Session dialog below

Exporting is not saving

You can't import session data.

Use save and load if you want to save session data for loading back into Memory Validator at a later
date.

The Export Session dialog

The Export Session dialog looks very similar to the Save Session dialog, except there are more options
enabled.

Memory Validator Help479

Copyright © 2001-2025 Software Verify Limited

Memory or Objects

Choose to export object data or memory data:

· Objects Report will export a set of data corresponding to the Objects tab view

· Memory Report will export memory allocations, types, callstacks etc

An Objects Report will disable all the other options apart from the File settings.

The User Interface 480

Copyright © 2001-2025 Software Verify Limited

If exporting a memory report, choose the options in the Scope, Type and Extra Information sections:

Scope section

· Allocated Memory all memory and resource allocations not deallocated and information about
damaged memory

· Reallocated Memory all allocations that have been reallocated

· Free Memory all allocations that have been deallocated

· Only Export Leaked Data check to export memory known to have leaked

Useful if using in-place leak detection during a session and want to export data before the
session completes.

Type section

Choose what type of data you want to include

· Memory memory allocations, reallocations and deallocations

· Handle resource allocations and deallocations

· Errors error conditions such as damaged memory, incorrect deallocation, uninitialized memory

· Trace TRACE() and OutputDebugString() messages

For each type of data

· Include Stack Trace includes the allocation stack trace information in the export

· Filter filters the exported data according to the global and the session filters

Leaving the export unfiltered (the default) will export all related data

Extra Information section

· Detailed Report adds Thread ID and timestamp information to the report

· Show Source Code if choosing a detailed report, includes the source code fragments displayed
with each callstack

· Colour Coded Report for HTML reports, exports a coloured HTML table layout

The colour scheme is not configurable.

If you want a custom style, export a detailed XML report and process that to generate the HTML
report.

Memory Validator Help481

Copyright © 2001-2025 Software Verify Limited

File section

File options are relevant whether exporting an Objects Report or a Memory Report.

· File type the filename or Browse to a location

· Format set whether exporting HTML or XML

Defaults to the menu option selected, but included here to more easily export one format and
then the other.

· Encoding set whether UTF-16 LE, UTF-8 or ASCII encoding. By default the exported file is saved
in the Windows Unicode format UTF-16 little endian. You can also save in UTF-8 and ASCII. ASCII
has no byte order mark at the start of the file.

· OK exports the session data

Check the overwrite existing file option if you want to be warned about overwrites.

3.17.2.1 XML Export Tags

This section describes the XML tags used to export session data from Memory Validator.

Application and program details

An exported XML file starts with a few details about Memory Validator and the target program:

<XML>

<VALIDATORINFO>Memory Validator information online</VALIDATORINFO>

<VALIDATOR>Memory Validator name</VALIDATOR>

<VALIDATORVERSION>Version</VALIDATORVERSION>

<VALIDATORDATE>Build date</VALIDATORDATE>

<VALIDATORTIME>Build time</VALIDATORTIME>

<TITLE>Target program name</TITLE>

<EXITCODE>Program exit status code and description</EXITCODE>

Session comparison data groups

The regression, improvements and leaks common to both sessions are in the following:

<REGRESSIONS>...</REGRESSIONS>

<IMPROVEMENTS>...</IMPROVEMENTS>

<COMMONLEAKS>...</COMMONLEAKS>

Allocation types

Allocation events are listed in one of three containers

The User Interface 482

Copyright © 2001-2025 Software Verify Limited

<ALLOCATED>...</ALLOCATED>

<REALLOCATED>...</REALLOCATED>

<FREE>...</FREE>

Allocation events

The next level of tags are shown in optional <EVENT> tags.

<EVENT>...</EVENT>

You can choose whether to include these event tags or omit them to produce a flat XML structure.

The options to omit the event tags are found:

· on the Session Export dialog
· on the Session Compare Export dialog
· via the -flatXMLSessionExport option when exporting sessions during regression testing
· via the -flatXMLSessionCompareExport option when exporting session comparisons during

regression testing

Reports that don't include event tags will include all the same inner tags except <ID>.

Here's an example for a non-detailed report. The detail report includes thread and timestamp entries:

<EVENT>

 <ID>37</ID>

 <File>E:\OM\C\memory32\examples\nativeExample\nativeExample.CPP</File>

 <Line>161</Line>

 <Address>0x00372d00</Address>

 <Size>0x00000004</Size>

 <AllocType>Allocation</AllocType>

 <Leaked>TRUE</Leaked>

 <Uninitialised>FALSE</Uninitialised>

 <Damaged>FALSE</Damaged>

 <Unused>FALSE</Unused>

 <SizeError>FALSE</SizeError>

 <IncorrectUsage>FALSE</IncorrectUsage>

 <Type>Unknown </Type>

 <AllocationID>166</AllocationID>

 <STACKTRACE>

 <SYMBOL>0x00401905 nativeExample.exe CTeststakApp::CTeststakApp : [E:\OM\C\memory32\examples\nativeExample\nativeExample.CPP Line 161]</SYMBOL>

 <SYMBOL>0x00401e58 nativeExample.exe $E320 : [E:\OM\C\memory32\examples\nativeExample\nativeExample.CPP Line 263]</SYMBOL>

 <SYMBOL>0x00401e33 nativeExample.exe $E323</SYMBOL>

 <SYMBOL>0x1020ad33 MSVCRTD.dll _initterm : [crt0dat.c Line 524]</SYMBOL>

 <SYMBOL>0x00412bfb nativeExample.exe wWinMainCRTStartup : [crtexe.c Line 274]</SYMBOL>

 <SYMBOL>0x7c816d4a KERNEL32.dll RegisterWaitForInputIdle</SYMBOL>

 </STACKTRACE>

</EVENT>

Not all of these tags will appear for a given data item in a session.

Some of them only appear when certain data items are monitored using Memory Validator.

Memory Validator Help483

Copyright © 2001-2025 Software Verify Limited

Depending on how you use Memory Validator you may in fact never see some of these tags.

All hexadecimal numbers will have leading zeros.

· <ID> the sequence number of the event in the recorded history of all events

· <File> the source file location of the allocation event

· <Line> the source line number in the file

· <Address> the hexadecimal address of the allocated object

· <Size> the hexadecimal size of the allocated object

· <AllocType> a string indicating allocation, reallocation, etc

· <Leaked> TRUE or FALSE

· <Uninitialised> TRUE or FALSE

· <Damaged> TRUE or FALSE

· <Unused> TRUE or FALSE

· <SizeError> TRUE or FALSE

· <IncorrectUsage> TRUE or FALSE

· <Type> a string indicating the datatype of the allocated object, if known

· <AllocationID> the allocation ID of the allocation

· <Handle> the value of the allocated handle

· <HandleType> the type of handle allocated, if known

· <Heap> the handle of the heap from which the allocation was made

· <BytesOverwrite> the number of bytes overwritten in a buffer overflow/buffer underflow error

· <Process> the handle of the process which made this allocation

· <THREAD> the id of the thread in which the allocation was made.

· <TIME> the timestamp of the allocation. This is a relative 'ticker' time rather than an absolute time,

and is not measured in hours/mins/secs.

· <ReportType> type of trace message

· <Message> a message from a TRACE() macro or OutputDebugString()

· <NumWords> the hexadecimal number of words that were found to be uninitialized in a data object

The User Interface 484

Copyright © 2001-2025 Software Verify Limited

· <UserData> user specified data for a user defined allocation

Only seen for data collected for custom heaps via the API functions mvUserCustomAlloc(),
mvUserCustomReAlloc(), and mvUserCustomFree().

· <RefCount> user specified data for a user defined allocation

Only seen for data collected for custom heaps via the API functions
mvUserCustomRefCountDecrement(), and mvUserCustomRefCountIncrement().

Stacktrace tags

The stacktrace for the event is defined in the tags

<STACKTRACE>...</STACKTRACE>

In the stacktrace are a number of symbols

<SYMBOL>symbol data</SYMBOL>

The symbol data includes:

· hexadecimal address
· dll/exe name terminated by a semi-colon
· function name
· filename and line number in square brackets, if known

Example (from the XML fragment above):

<SYMBOL>0x00401905 nativeExample.exe CTeststakApp::CTeststakApp : [E:

\OM\C\memory32\examples\nativeExample\nativeExample.CPP Line 161]</SYMBOL>

3.17.3 Exporting Virtual Memory Data

Exporting virtual memory data

On the Virtual tab of the main window, the Pages and Paragraphs tabs have an Export button at the top
right.

· Export enables the export of virtual memory data in HTML, XML or CSV file formats

Displays the Virtual Memory Data Export dialog below.

Memory Validator Help485

Copyright © 2001-2025 Software Verify Limited

The Virtual Memory Data Export dialog

Just set the file and format to export to:

· Filename enter or Browse to set the filename to export the data to

· Format HTML, XML, or CSV export formats,

 Auto selected based on the extension of the filename if you set that first

Examples of export formats

The following example fragments show the HTML, XML and CSV output for the same application.

Show exampe HTML fragment

<HTML>

 <HEAD>

 <META NAME="Validator Version" CONTENT="1.0">

 <META NAME="Validator Date" CONTENT="Aug 20 2005">

 <META NAME="Validator Time" CONTENT="15:09:41">

 <TITLE>nativeExample.exe:Sat Aug 20 15:10:20 2005 Virtual Memory</TITLE>

 </HEAD>

 <BODY>

 <H1>nativeExample.exe:Sat Aug 20 15:10:20 2005 Virtual Memory</H1>

 <TABLE BORDER>

 <TR><TH>Address</TH><TH>Size</TH><TH>Type</TH><TH>Description</TH></TR>

 <TR BGCOLOR="#ffffff"><TD>0x00000000</TD><TD>(64Kb) (0.06Mb)</TD><TD></TD><TD>Free</TD></TR>

 <TR BGCOLOR="#ffffff"><TD>0x00010000</TD><TD>(4Kb) (0.00Mb)</TD><TD>Private</TD><TD>Commited</TD></TR>

 ...

 <TR BGCOLOR="#ffc6ff"><TD>0x7c9c0000</TD><TD>(8272Kb) (8.08Mb)</TD><TD>Image</TD><TD>DLL: c:\windows\system32\shell32.dll</TD></TR>

 ...

 </TABLE>

 </BODY>

</HTML>

Show exampe XML fragment

The User Interface 486

Copyright © 2001-2025 Software Verify Limited

All the tags shown below are present in every report except the <TYPE> which is only present if type

information is known.

<XML>

 <VALIDATORVERSION>1.0</VALIDATORVERSION>

 <VALIDATORDATE>Aug 20 2005</VALIDATORDATE>

 <VALIDATORTIME>15:17:19</VALIDATORTIME>

 <TITLE>nativeExample.exe:Sat Aug 20 15:17:45 2005 Virtual Memory</TITLE>

 <VIRTUAL>

 <DATA>

 <ADDRESS>0x00000000</ADDRESS>

 <SIZE>(64Kb) (0.06Mb)</SIZE>

 <DESCRIPTION>Free</DESCRIPTION>

 </DATA>

 <DATA>

 <ADDRESS>0x00010000</ADDRESS>

 <SIZE>(4Kb) (0.00Mb)</SIZE>

 <TYPE>Private</TYPE>

 <DESCRIPTION>Commited</DESCRIPTION>

 </DATA>

 ...

 <DATA>

 <ADDRESS>0x7c9c0000</ADDRESS>

 <SIZE>(8272Kb) (8.08Mb)</SIZE>

 <TYPE>Image</TYPE>

 <DESCRIPTION>DLL: c:\windows\system32\shell32.dll</DESCRIPTION>

 </DATA>

 ...

 </VIRTUAL>

</XML>

Show exampe CSV fragment

Each line contains four comma delimited fields:

· hexadecimal address
· size in Kb and Mb
· memory type, or a blank space if not known
· description

0x00000000, (64Kb) (0.06Mb), , Free,
0x00010000, (4Kb) (0.00Mb), Private, Commited,

...

0x7c9c0000, (8272Kb) (8.08Mb), Image, DLL: c:\windows\system32\shell32.dll,
0x7d1d4000, (38000Kb) (37.11Mb), , Free,
0x7f6f0000, (28Kb) (0.03Mb), Mapped, Commited,
0x7f6f7000, (996Kb) (0.97Mb), Mapped, Reserved,
0x7f7f0000, (7936Kb) (7.75Mb), , Free,

Memory Validator Help487

Copyright © 2001-2025 Software Verify Limited

0x7ffb0000, (144Kb) (0.14Mb), Mapped, Commited,
0x7ffd4000, (20Kb) (0.02Mb), , Free,
0x7ffd9000, (4Kb) (0.00Mb), Private, Commited,
0x7ffda000, (4Kb) (0.00Mb), Private, Commited,
0x7ffdb000, (4Kb) (0.00Mb), Private, Commited,
0x7ffdc000, (4Kb) (0.00Mb), Private, Commited,
0x7ffdd000, (4Kb) (0.00Mb), Private, Commited,
0x7ffde000, (4Kb) (0.00Mb), Private, Commited,
0x7ffdf000, (4Kb) (0.00Mb), , Free,
0x7ffe0000, (4Kb) (0.00Mb), Private, Commited,
0x7ffe1000, (60Kb) (0.06Mb), Private, Reserved,
0x7fff0000, (60Kb) (0.06Mb), Private, Unknown,

3.18 Starting your target program

Starting options

There are seven ways to start a target program and have Memory Validator collect data from it.

· Launch your program in a specified directory, with as many command line arguments as you want

· Inject Memory Validator into an already running program

· Wait until a specific program starts to run before attaching to it - e.g. for programs started as an
OLE server

· Monitor a service

· Monitor IIS and ISAPI

· Use the Native API to start Memory Validator from code that you control

· Start Memory Validator from the command line, allowing you to automate your use of Memory
Validator

 If your program is linked statically to the C runtime libraries, you might want to read the topic before
you start.

3.18.1 Launch chooser

The launch chooser is displayed when you click on the rocket icon on the toolbar.

There are multiple application types and services that you may wish to use. The launch chooser provides
the mechanism for making that choice.

The User Interface 488

Copyright © 2001-2025 Software Verify Limited

Each button will display the launch dialog associated with the instruction displayed on the button.

Applications

· Launch Native and .Net Applications

· Launch .Net Core Applications

Services

· Monitor a Service

Web

· ASP.Net Core Web Application

· ASP.Net with IIS

· ASP.Net with Web Development Server

· ISAPI with IIS

 You can repeat the choice made using the launch chooser by using +

Memory Validator Help489

Copyright © 2001-2025 Software Verify Limited

3.18.2 Launching the program (native and .Net)

Launching the application

Having Memory Validator launch your program is the most common way to start up

When you're ready to start running a native or .Net program

 Launch menu Applications Launch Application Shows the launch program wizard or
dialog below

Or use the shortcut

 Launch application

You can easily re-launch the most recently run program.

User interface mode

There are two interface modes used while starting a program

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode has all options contained in a single dialog

All the options are the same - just in different places

In this section we'll cover the Wizard mode first and the Dialog mode later.

The start application wizard

On first use, the wizard appears with fields cleared, but here's an example with fields set:

The User Interface 490

Copyright © 2001-2025 Software Verify Limited

Enter the details for your program, or if you want to run a previous program select it from the application
list to repopulate the details.

After entering details click Next >> for the next page of the wizard.

Administrator privileges when launching your program

The following applies only if you did not start Memory Validator in administrator mode.

Anywhere you see the icon indicates that administrator privileges will be required to proceed.

If you started Memory Validator in administrator mode, you won't see any of these warnings, and
everything will behave as normal.

Memory Validator Help491

Copyright © 2001-2025 Software Verify Limited

Page 1: Entering details

· Application to start type or Browse to set the program name to launch

You can also choose a batch file and the first executable started in the batch file will be
launched.

You can also choose a powershell script and the first executable started in the powershell script
will be launched.

Manually typing a path will show red text until a valid path is entered, after which the text
becomes black.

· Application to monitor choose the application that actually gets monitored

This will typically just be the program that you set to start - unless otherwise specified.

Alternatively you can monitor another application which will get launched by the start program.

If the start application has already been added to the Applications to Monitor settings with a
default application then that default will be entered here automatically.

Otherwise, if nothing has been set up yet, you can do it from here:

· Edit... set the child applications that can be monitored for the start program

This uses the Applications to Monitor dialog - which is exactly equivalent to using the
Applications to Monitor settings page.

A fallback option is to start monitoring <<Any application that is launched>>.

 If in doubt, just use the same as the start application.

See also: Application to Monitor settings

· Launch Count when monitoring a child application, set its nth invocation as the one to monitor

If the application to start is the same as the application to monitor then this is set to 1 and
cannot be changed.

This will be reset to 1 every time the Application to Monitor field selection changes.

 If in doubt, leave it set to 1.

See also: Launch Count.

· Command Line Arguments enter program arguments exactly as passed to the target program

· Startup Directory enter or click Dir... to set the directory for the program to start in

When setting your target program, this will default to the location of the executable

The User Interface 492

Copyright © 2001-2025 Software Verify Limited

· Environment Variables click Edit... to set any additional environment variables before your
program starts

These are managed in the Environment Variables Dialog.

· File to supply to stdin optionally enter or Browse to set a file to be read and piped to the
standard input of the application

· File to supply to stdout optionally enter or Browse to set a file to be written with data piped from
the standard output of the application

Page 1: Using details from a previous run

The list at the bottom of the wizard shows previously run programs.

Selecting an item in the list populates all the details above as used on the last run for that program.

You can still edit those details before starting.

· Full path shows the full path to the executable in the list

· Image Name shows the short program name without path

· Delete removes a selected program from the list

· Reset clears all details in the wizard - including the list of previously run applications below

Page 2: Data collection and redirection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much
faster not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after
launch.

Memory Validator Help493

Copyright © 2001-2025 Software Verify Limited

· Redirect standard output Controls redirection of stdout and stderr

Use this option if you want to collect the output of stdout and stderr for later analysis.

Be aware that if the output of the program under test generates a lot of data via stdout or stderr
that this data will need to be stored in memory and could exhaust Memory Validator's
memory.

· Display command prompt Shows or hides the launched application.

If you are collecting stdout and stderr you may not be interested in viewing the application (or
the command prompt if it is a console application). This provides you the option to hide the
application when it is running.

Be aware that if you hide a command prompt you will not be able to type anything into the
application.

The User Interface 494

Copyright © 2001-2025 Software Verify Limited

Page 3: Summary and starting your program

The last page is just a summary of the options you have chosen.

 Something missing? The choice of launch method is no longer necessary and has been removed.

If you're happy with the settings, go ahead:

· Start Application... start your program and attach Memory Validator to it

· Cmd Line... display the command line builder

 If your program is linked statically to the C runtime libraries, you might want to read the topic before
you start.

Memory Validator Help495

Copyright © 2001-2025 Software Verify Limited

Administrator privileges in wizard mode

If administrator privileges are required you'll be reminded of the need to restart here:

· Start Application... shows the Administrator Privileges Required confirmation dialog before
restarting.

Dialog mode

In Dialog mode, all the settings are in one dialog which looks very much like the first page of the launch
wizard above.

The option to start collecting data is at the top.

· Launch start your program and attach Memory Validator to it

· Cmd Line... display the command line builder

Double clicking a program in the list will also start it immediately.

The User Interface 496

Copyright © 2001-2025 Software Verify Limited

Administrator privileges in dialog mode

If administrator privileges are required, the Launch button will show the privileges icon reminding you of
the need to restart.

· Launch shows the Administrator Privileges Required confirmation dialog before restarting

Memory Validator Help497

Copyright © 2001-2025 Software Verify Limited

If you started Memory Validator in administrator mode, you won't see any of these warnings, and
everything will behave as normal.

How do I use Application to Monitor and Launch Count?

The three fields Application to Start, Application to Monitor and Launch Count work together to
control which application actually gets monitored by Memory Validator.

Let's say we have a program P.

In the simplest case, simply:

· start P
· monitor P
· the Launch Count defaults to 1 and cannot be changed.

If P launches an application and you just want to monitor whatever that is:

· start P
· monitor <<Any application that is launched>>
· leave the Launch Count at 1

If P launches an application A and maybe others as well, and you specifically want to monitor only A as
it's launched:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· leave the Launch Count at 1

If P launches an application A many times and you specifically want to monitor the third invocation:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· set the Launch Count to 3

3.18.3 Launching the program (.Net Core)

Launching the application

Having Memory Validator launch your program is the most common way to start up

When you're ready to start running a .Net Core program

 Launch menu Applications Launch .Net Core Application Shows the .Net Core launch
dialog below

The User Interface 498

Copyright © 2001-2025 Software Verify Limited

Or use the shortcut

 + Launch .Net Core Application

You can easily re-launch the most recently run program.

.Net Core Application Type

Memory Validator Help499

Copyright © 2001-2025 Software Verify Limited

.Net Core applications can be self contained or framework dependent. This changes how the launch
dialog works.

· .Net Core application type choose which type of .Net Core application you are launching

.Net Core Self Contained Application

· Application to launch (*.exe) type or Browse to set the program name (*.exe) to launch

When you set this value the Application to launch DLL field will be automatically populated to have
the same name as the EXE field but with a .DLL extension.

· Application to launch (*.dll) type or Browse to set the program name (*.dll) to launch

· Application to monitor choose the application that actually gets monitored

This will typically just be the program that you set to start - unless otherwise specified.

Alternatively you can monitor another application which will get launched by the start program.

If the start application has already been added to the Applications to Monitor settings with a
default application then that default will be entered here automatically.

Otherwise, if nothing has been set up yet, you can do it from here:

· Edit... set the child applications that can be monitored for the start program

This uses the Applications to Monitor dialog - which is exactly equivalent to using the
Applications to Monitor settings page.

A fallback option is to start monitoring <<Any application that is launched>>.

 If in doubt, just use the same as the start application.

See also: Application to Monitor settings

.Net Core Framework Dependent Application

· Application to launch (*.exe) type or Browse to set the program name (*.exe) to launch

We don't auto-populate this field when you choose the Framework dependent application type. This
because you may have your .Net Core runtime stored in a location that we can't auto-detect.

To accommodate alternate locations for the .Net Core runtime we only auto-populate this field if it is
empty when you choose the application DLL.

· Application to launch (*.dll) type or Browse to set the program name (*.dll) to launch

If you set this when Application to launch EXE field is empty, the EXE field will be automatically
populated with the path to the system .Net Core framework dependent runtime.

The User Interface 500

Copyright © 2001-2025 Software Verify Limited

This is typically c:\program files\dotnet\dotnet.exe.

· Application to monitor choose the application that actually gets monitored

This will typically just be the program that you set to start - unless otherwise specified.

Alternatively you can monitor another application which will get launched by the start program.

If the start application has already been added to the Applications to Monitor settings with a
default application then that default will be entered here automatically.

Otherwise, if nothing has been set up yet, you can do it from here:

· Edit... set the child applications that can be monitored for the start program

This uses the Applications to Monitor dialog - which is exactly equivalent to using the
Applications to Monitor settings page.

A fallback option is to start monitoring <<Any application that is launched>>.

 If in doubt, just use the same as the start application.

See also: Application to Monitor settings

· .Net Core dotnet.exe arguments any arguments that will be passed to the .Net Core runtime to
control how the .Net Core runtime behaves.

· Edit... displays the .Net Core runtime arguments editor

Fields common to all .Net Core applications

· Launch Count when monitoring a child application, set its nth invocation as the one to monitor

If the application to start is the same as the application to monitor then this is set to 1 and
cannot be changed.

This will be reset to 1 every time the Application to Monitor field selection changes.

 If in doubt, leave it set to 1.

See also: Launch Count.

· Command Line Arguments enter program arguments exactly as passed to the target program

· Startup Directory enter or click Dir... to set the directory for the program to start in

When setting your target program, this will default to the location of the executable

· Environment Variables click Edit... to set any additional environment variables before your
program starts

These are managed in the Environment Variables Dialog.

Memory Validator Help501

Copyright © 2001-2025 Software Verify Limited

· File to supply to stdin optionally enter or Browse to set a file to be read and piped to the
standard input of the application

· File to supply to stdout optionally enter or Browse to set a file to be written with data piped from
the standard output of the application

Using details from a previous run

The list at the bottom of the wizard shows previously run programs.

Selecting an item in the list populates all the details above as used on the last run for that program.

You can still edit those details before starting.

· Full path shows the full path to the executable in the list

· Image Name shows the short program name without path

· Delete removes a selected program from the list

· Reset clears all details in the wizard - including the list of previously run applications below

Data collection and redirection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much
faster not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after
launch.

· Redirect standard output Controls redirection of stdout and stderr

Use this option if you want to collect the output of stdout and stderr for later analysis.

The User Interface 502

Copyright © 2001-2025 Software Verify Limited

Be aware that if the output of the program under test generates a lot of data via stdout or stderr
that this data will need to be stored in memory and could exhaust Memory Validator's
memory.

· Display command prompt Shows or hides the launched application.

If you are collecting stdout and stderr you may not be interested in viewing the application (or
the command prompt if it is a console application). This provides you the option to hide the
application when it is running.

Be aware that if you hide a command prompt you will not be able to type anything into the
application.

The option to start collecting data is at the top.

· Launch start your program and attach Memory Validator to it

Double clicking a program in the list will also start it immediately.

· Cmd Line... display the command line builder

Administrator privileges in dialog mode

If administrator privileges are required, the Launch button will show the privileges icon reminding you of
the need to restart.

· Launch shows the Administrator Privileges Required confirmation dialog before restarting

If you started Memory Validator in administrator mode, you won't see any of these warnings, and
everything will behave as normal.

How do I use Application to Monitor and Launch Count?

The three fields Application to Start, Application to Monitor and Launch Count work together to
control which application actually gets monitored by Memory Validator.

Memory Validator Help503

Copyright © 2001-2025 Software Verify Limited

Let's say we have a program P.

In the simplest case, simply:

· start P
· monitor P
· the Launch Count defaults to 1 and cannot be changed.

If P launches an application and you just want to monitor whatever that is:

· start P
· monitor <<Any application that is launched>>
· leave the Launch Count at 1

If P launches an application A and maybe others as well, and you specifically want to monitor only A as
it's launched:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· leave the Launch Count at 1

If P launches an application A many times and you specifically want to monitor the third invocation:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· set the Launch Count to 3

3.18.4 Re-launching the program

Re-launching the application

It's very easy to start another session using the most recently run program and settings:

 Launch menu Applications Re-Start Application... starts the most recently launched
program

or click on the re-launch icon on the session toolbar.

or use the shortcut

 Re-start application

The User Interface 504

Copyright © 2001-2025 Software Verify Limited

If the previously launched program was Native, .Net or .Net Core the application will be restarted
immediately. No wizards or dialogs appear.

If the previously launched program was a service the appropriate monitor service dialog will be displayed.

In the general questions see Why might Inject or Launch fail? for troubleshooting launch problems.

There is no difference between wizard and dialog interface mode when re-launching.

3.18.5 Injecting into a running program

Injecting into a running program

Memory Validator attaches to a running process by injecting the stub into the process so it can start
collecting data.

Choose one of these methods of starting the injection:

 Launch menu Applications Inject... shows the Attach to Running Process wizard or
dialog below

or click on the Inject icon on the session toolbar.

or use the shortcut

 Inject into running application

Injecting into a service?

If your process is a service, Memory Validator won't be able to attach to it.

Services can't have process handles opened by third party applications, even with Administrator
privileges.

In order to work with services, you can use the NT service API and monitor the service

User interface mode

There are two interface modes used while starting a program

· Wizard mode guides you through the tasks in a linear fashion

Memory Validator Help505

Copyright © 2001-2025 Software Verify Limited

· Dialog mode has all options contained in a single dialog

All the options are the same - just in slightly different places

In this section we'll cover the Wizard mode first and the Dialog mode later.

The attach to running process wizard

The first page of the wizard shows a list of running system and user processes.

The Arch column is not shown when running 32 bit Memory Validator because only 32 bit processes are
listed.

Any processes that have grayed out .Net values cannot instrument the .Net part of the application (native
components will be instrumented).

Choose the process and click Next >> for the next page of the wizard.

Page 1: Choosing the process

· System processes / Services / User processes show either of system or services or user
processes in the list, or both

· Full path shows the full path to the process executable in the list

· Image Name shows the short program name without path

The User Interface 506

Copyright © 2001-2025 Software Verify Limited

· Refresh update the list with currently running processes

Clicking on the headers of the list will sort them by ID or by name using the full name or short name,
depending on what's displayed.

Page 2: Data collection

Depending on your application, and what you want to validate, you may want to start collecting data as
soon as injection happens, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster not to
collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data from launch.

See the section on controlling data collection for how to turn collection on and off after launch.

Currently we only support attaching to native applications and the native part of mixed mode
applications.

Summary and starting your program

The second page confirms the process you have selected to inject into, and prompts you to attach:

· Attach... injects Memory Validator into the specified process, showing progress status

Memory Validator Help507

Copyright © 2001-2025 Software Verify Limited

 If your program is linked statically to the C runtime libraries, you might want to read the topic before
you start.

In the general questions see Why might Inject or Launch fail? for troubleshooting launch problems.

Dialog mode

In Dialog mode, all the settings are in one dialog which looks very much like the first page of the wizard
above.

The option to start collecting data is at the top, as is the Attach... button

3.18.6 Waiting for a program

Waiting for a program

Waiting for a program is essentially the same as injection except that instead of injecting into a running
program, Memory Validator watches for the process starting up and then injects.

If the process is a service, Memory Validator won't be able to attach to it as services can't have
process handles opened by third party applications, even with Administrator privileges.

Choose one of these methods of waiting:

The User Interface 508

Copyright © 2001-2025 Software Verify Limited

 Launch menu Applications Wait for Application... shows the Wait for application wizard
or dialog below

or click on the Wait (timer) icon on the session toolbar.

or use the shortcut

 Wait for application

Administrator privileges

The following applies only if you did not start Memory Validator in administrator mode.

If the application you want to wait for is running with Administrator privileges, Memory Validator will also
need to run with Administrator privileges.

When choosing the 'wait for program' method described in this topic, a restart of Memory Validator with
administrator privileges will be required to proceed.

Waiting for a service?

If your process is a service, Memory Validator won't be able to attach to it.

Services can't have process handles opened by third party applications, even with Administrator
privileges.

In order to work with services, you can use the NT service API and monitor the service

The wait for application dialog

The wait for application dialog lets you specify the application or choose one that you've waited for
previously.

Memory Validator Help509

Copyright © 2001-2025 Software Verify Limited

· Collect data from application do want to collect data from the instant you attach to the
application?

Depending on your application, and what you want to validate, you may want to start collecting data
as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster not
to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data from launch.

See the section on controlling data collection for how to turn collection on and off after launch.

· Application Path Policy specify how the specified executable is treated

o Path to executable exists the executable will be checked that it exists and is appropriate for

Memory Validator to work with

The User Interface 510

Copyright © 2001-2025 Software Verify Limited

o Path to executable is created dynamically most pre-wait checks are not performed - use this if

the path the executable is on does not exist at the time you start waiting for the process to start

· Application type choose the type of application

o Native and .Net

o .Net Core (Framework Dependent)

o .Net Core (Self Contained)

· Application Executable edit or Browse... the application to wait to start.

The name of the executable. For example c:\unitTests\test.exe or test.exe.

If Application Path Policy is Path to executable exists this must be the full path to the executable.
For example c:\unitTests\test.exe.

For native applications this is the application executable.

For .Net Framework applications this is the application executable.

For .Net Core Framework-dependent applications this is most likely going to be c:\program
files\dotnet\dotnet.exe.

For .Net Core Self-contained applications this is the application executable.

· Application DLL edit or Browse... the application DLL to wait to start. This field is only needed
for .Net Core applications.

The name of the DLL. For example c:\unitTests\test.dll or test.dll.

If Application Path Policy is Path to executable exists this must be the full path to the dll. For
example c:\unitTests\test.dll.

For native applications this is not used.

For .Net Framework applications this is not used.

For .Net Core Framework-dependent applications this is the application dll. (the name of the dll that
you would pass to dotnet.exe on the command line).

For .Net Core Self-contained applications this is the dll that has the same name as the application
executable. (for theApp.exe, the dll name is theApp.dll).

· Full path shows the full path to the process executable in the list

· Image Name shows the short program name without path

· Reset clears the list

· Wait for Process... starts waiting and then injects Memory Validator into the specified process,
showing progress status

· Stop Waiting stops the wait

Memory Validator Help511

Copyright © 2001-2025 Software Verify Limited

 If your program is linked statically to the C runtime libraries, you might want to read the topic before
you start.

What could go wrong?

The program you're waiting for might already be running, in which case you'll be given the option to
cancel or attach to the existing process:

Timing issues are inherit with native injecting into a program as it starts up.

This could cause the injection to fail in unpredictable ways and you may see dialogs like that below:

One case when this dialog can occur is if the program needs to run at an elevated privilege and is waiting
for the user to give permission via the UAC dialog.

Injection may fail for different reasons and you might see the following information dialog showing:

· messages relating to the specific failure
· a selection of reasons why failure might be occurring
· some possible solutions to the problem

The User Interface 512

Copyright © 2001-2025 Software Verify Limited

Sometimes retrying a few times might catch a better moment for attaching to the process.

In the general questions see Why might Inject or Launch fail? for troubleshooting launch problems.

Example Dialogs

Native

Memory Validator Help513

Copyright © 2001-2025 Software Verify Limited

The User Interface 514

Copyright © 2001-2025 Software Verify Limited

.Net

Memory Validator Help515

Copyright © 2001-2025 Software Verify Limited

.Net Core (Framework-dependent)

The User Interface 516

Copyright © 2001-2025 Software Verify Limited

.Net Core (Self-contained)

Memory Validator Help517

Copyright © 2001-2025 Software Verify Limited

3.18.7 Monitor a service

Monitoring a service

Monitoring a service works for:

· native services
· .Net services
· mixed mode services.

Native Services

If you are working with native services you must use the NT Service API in your service as well as
using the Monitor a service method below.

.Net Services

Memory Validator won't attach until some .Net code is executed.

If there is native code being called prior to the .Net code, Memory Validator won't monitor that code,
only the native code called after the first .Net code that is called.

To monitor any native code called prior to your .Net code, use the NT Service API.

 When working with Memory Validator and services, you still start the service the way you normally
do - e.g. with the service control manager.

The code that you have embedded into your service then contacts Memory Validator, which you should
have running before starting the service.

To start monitoring a service:

 Launch menu Services Monitor a service... shows the Monitor a service dialog below

Or use the shortcut

 Monitor a service

The monitor a service dialog

First ensure the service is installed, but not running.

Set the service to monitor, choose whether to start collecting data right away, and click OK.

The User Interface 518

Copyright © 2001-2025 Software Verify Limited

· Service to monitor type or Browse to set the service name to monitor

· OK waits for the service to start before injecting into it

Start the service in the normal manner, e.g. from the control panel, the command line or
programmatically.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after launch.

Examples

Example demonstrating how to monitor a service.

Example demonstrating how to monitor an application launched from a service (how to monitor any
application running on a service account).

Memory Validator Help519

Copyright © 2001-2025 Software Verify Limited

3.18.8 IIS

3.18.8.1 Monitor IIS and ISAPI

Monitoring ISAPI

Monitoring ISAPI works for:

· Native ISAPI extensions.

Native ISAPI

If you are working with native ISAPI you must use the NT Service API in your service as well as using
the Monitor ISAPI method below.

To start monitoring ISAPI:

 Launch menu Services Monitor IIS and ISAPI... shows the Monitor ISAPI dialog below

Or use the shortcut

 Monitor IIS and ISAPI

The monitor ISAPI dialog

Set the dll to monitor, the web root, the IIS process, an optional web browser to use and an optional url
to launch, and click OK.

The User Interface 520

Copyright © 2001-2025 Software Verify Limited

· ISAPI DLL type or Browse to set the ISAPI DLL that we're monitoring

· IIS web type or Browse to set the web root for the IIS website we're working with

· IIS process to monitor select the IIS process we're working with

· Web Browser select the web browser that you're going to use to load the web page

· URL to open in browser type the web page and arguments you want to load to cause the ISAPI
to be loaded in IIS

· OK resets IIS, setups all the variables, copies DLLs and settings into the web root and starts the
web browser to load the specified web page

 IIS is a protected process and can only execute, read and write files in specific directories. That's
why Memory Validator copies data to the web root so that it can be read, written or executed.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

Memory Validator Help521

Copyright © 2001-2025 Software Verify Limited

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after launch.

3.18.8.2 Monitor IIS and ASP.Net

Monitoring ASP.Net Application (IIS)

To start monitoring ASP.Net application running in IIS:

 Launch menu Services Monitor IIS and ASP.Net... shows the Start ASP.Net Application
dialog below

Or use the shortcut

 Monitor IIS and ASP.Net

The Start ASP.Net application dialog

Set the asp worker process, the web root, an optional web browser to use and an optional url to launch,
and click OK.

The User Interface 522

Copyright © 2001-2025 Software Verify Limited

· ASP.Net worker process select the IIS process we're working with. This can be any ASP.Net
process or a specific one. The default is Any IIS.

· IIS web type or Browse to set the web root for the IIS website we're working with

· Web Browser select the web browser that you're going to use to load the web page

· URL to open in browser type the web page and arguments you want to load to cause the ISAPI
to be loaded in IIS

· Start ASP.Net resets IIS, setups all the variables, copies DLLs and settings into the web root and
starts the web browser to load the specified web page

 IIS is a protected process and can only execute, read and write files in specific directories. That's
why Memory Validator copies data to the web root so that it can be read, written or executed.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

Memory Validator Help523

Copyright © 2001-2025 Software Verify Limited

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after launch.

Slow Startup

The first time you work with IIS and Memory Validator you may experience a delay during startup. This is
most likely because symbols are being downloaded from Microsoft's symbol servers to match the DLLs
and assemblies on your machine.

3.18.8.3 Reset & Stop IIS

Reseting IIS

 Launch menu Services Reset IIS resets Internet Information Server (stops it and starts it
again).

The session is not discarded when IIS is reset.

Stopping IIS

 Launch menu Services Stop IIS stops Internet Information Server.

The session is not discarded when IIS is stopped.

3.18.9 Web Development Server

3.18.9.1 Monitor Web Development Server and ASP.Net

Monitoring ASP.Net Application (WDS)

To start monitoring ASP.Net application running in IIS:

 Launch menu Services Monitor Web Development Server and ASP.Net... shows the
Start ASP.Net Application dialog below

Or use the shortcut

 Monitor Web Development Server and ASP.Net

The Start ASP.Net application dialog

The User Interface 524

Copyright © 2001-2025 Software Verify Limited

Set the web development server, the port to use, path to the web application, virtual path, an optional
web browser to use and an optional url to launch, and click OK.

· Web Development Server select the WDS process we're working with. The default is the most
recent version installed on the computer.

· Port select the port that the server will serve pages on. The default is 49158 (the same value that
Visual Studio uses).

· Path type or Browse to set the path to the ASP.Net application.

· Virtual Path type the path on the server that corresponds to the web application. The default is /.

· Web Browser select the web browser that you're going to use to load the web page.

· URL to open in browser type the web page and arguments you want to load to cause the ISAPI
to be loaded in IIS.

· OK resets IIS, setups all the variables, copies DLLs and settings into the web root and starts the
web browser to load the specified web page.

 Web Development Server is not a protected process like IIS. This can make working with WDS
much easier than working with IIS.

Memory Validator Help525

Copyright © 2001-2025 Software Verify Limited

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after launch.

Slow Startup

The first time you work with Web Development Server and Memory Validator you may experience a delay
during startup. This is most like because symbols are being downloaded from Microsoft's symbol servers
to match the DLLs and assemblies on your machine.

3.18.9.2 Stop Web Development Server

Stopping Web Development Server

 Launch menu Services Stop Web Development Server stops Web Development Server.

The session is not discarded when Web Development Server is stopped.

3.18.10 ASP.Net Core Web Application

Enter topic text here.

3.18.10.1 Start ASP.Net Core Web Application

Monitoring ASP.Net.Core Web Application

To start monitoring ASP.Net application running in IIS:

 Launch menu Web menu ASP.Net Core Web Application... shows the Start ASP.Net
Core Web Application dialog below

The User Interface 526

Copyright © 2001-2025 Software Verify Limited

Or use the shortcut

 Start ASP.Net Core Web Application

The Start ASP.Net Core application dialog

Set the web development server, the port to use, path to the web application, virtual path, an optional
web browser to use and an optional url to launch, and click OK.

· .Net Core Web Application (exe) select your ASP.Net Core web application to launch.

· .Net Core Web Application (dll) select your ASP.Net Core web application to launch.

· Startup Directory type or Dir... to set the path to the ASP.Net application.

This value will be auto-populated based on the path you specify for your application.

· Web Browser select the web browser that you're going to use to load the web page.

· URL to open in browser type the web page, port and arguments you want to load to cause the
ISAPI to be loaded in IIS.

This value will be auto-populated based on the path you specify for your application.

Example: https://localhost:7215

· Start ASP.Net Core starts your ASP.Net web application, then starts the web browser to load
the specified web page.

Memory Validator Help527

Copyright © 2001-2025 Software Verify Limited

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data immediately.

See the section on controlling data collection for how to turn collection on and off after launch.

Slow Startup

The first time you work with ASP.Net Core and Memory Validator you may experience a delay during
startup. This is most like because symbols are being downloaded from Microsoft's symbol servers to
match the DLLs and assemblies on your machine.

3.18.10.2 Stop ASP.Net Core Web Application

Stopping ASP.Net Core Web Application

 Launch menu Web menu Stop ASP.Net Core Web Application stops ASP.Net Core
web application.

The session is not discarded when the ASP.Net Core web application is stopped.

3.18.11 Linking to a program

Why link Memory Validator into your program?

There are cases when you might need to link Memory Validator directly into your program.

The User Interface 528

Copyright © 2001-2025 Software Verify Limited

Sometimes the normal methods of launching and injecting aren't enough to get the data needed for a
particular debugging task.

For example:

· maybe the data to be monitored has already been allocated before the stub was successfully
injected

· maybe there is conflict with DLLs or a timing problem stopping the injection process from work as
well as normal

These situations are rare, but given the variety of different applications, can happen.

In other cases you might want to use advanced features such as the extensions DLLs or the Memory
Validator API.

Linking to your program

The library that you must link to is:

· svlMemoryValidatorStubLib.lib for 32 bit
· svlMemoryValidatorStubLib_x64.lib for 64 bit

When linked and started, your program will automatically start Memory Validator.

More details on linking with the libraries can be found in the API section.

The libraries should be linked to your program's .exe, not to a DLL that is loaded into your program.

 If your program is linked statically to the C runtime libraries, you might want to read the topic before
you start.

3.18.12 Environment Variables

When launching an application, you might want to pass in some environment variables to your program.

The Environment Variables dialog lets you manage name/value pairs, including importing and exporting
for use between programs or sessions.

The Environment Variables dialog

The dialog initially has no entries.

The example below shows the equivalent of set QT_PLUGIN_PATH=%QTDIR%\plugins

Memory Validator Help529

Copyright © 2001-2025 Software Verify Limited

· Add... adds a new item to the list enter name in the first column, value in the second

· Delete deletes a selected item in the list

· Delete All clears the list

· Acquire fetches all system environment variables, adding them to the list

· Import... loads variables from a previously exported file, adding them to the list

· Export... saves all entries in the list to a file of your choice

The exported file is a simple ascii file with one entry per line of the form name=value

· OK accepts all changes

· Cancel ignores changes

3.18.13 .Net Core Runtime Arguments Editor

The .Net Core runtime arguments editor allows you to choose which options you pass to the .Net Core
runtime.

Typically no arguments or just "exec" are passed to the runtime, assuming everything that is needed is
in the same directory.

The User Interface 530

Copyright © 2001-2025 Software Verify Limited

Enabling each check box will add the appropriate option to the runtime arguments.

The field can populated using the Browse... button to display a file or folder browser, or edited directly if
you wish to add more than one path.

Some fields change depending on the SDK version chosen.

· --additionalprobingpath path containing probing policy and assemblies to probe

· --additional-deps path to an additional .deps.json file

· --depsfile path to the deps.json file.

· --runtimeconfig path to a runtimeconfig.json file

· --roll-forward how to apply roll forward for .Net Core SDK 3.0 and above

· --roll-forward-on-no-candidate-fx how to apply roll forward for .Net Core SDK 2.x

· --fx-version version of .Net runtime to use to run the application

· exec adds the "exec" keyword at the end of the arguments list

Memory Validator Help531

Copyright © 2001-2025 Software Verify Limited

If you don't know what these options are you should read the .Net runtime options document shown in
the link below before changing any of them.

We cannot advise you on how to set these values - except to say that if you're not setting them when
using .Net Core outside of this software tool you shouldn't be setting them when using this software tool.

.Net Core Runtime Options

.Net Core provides some options that allow you to control how .Net Core performs.

Detailed information on these options is provided by Microsoft at https://docs.microsoft.com/en-
us/dotnet/core/tools/dotnet#runtime-options.

3.19 Stopping your target program

Stopping the application

You can stop or kill your program at any time using the task manager, or debugger.

You can also stop your program from within Memory Validator.

 File menu Abandon Application... stop the target program

or click on the red cross icon on the session toolbar.

The target program is ended using ExitProcess() from inside the stub.

Since the session is discarded, using Memory Validator to stop the target program is usually quicker
and more convenient than external stop methods.

You can easily re-launch the program again using the same settings as before.

3.20 Command Line Builder

The command line builder helps you create command lines with valid options.

The command line builder is a two stage process, the first stage helping your choose how you want to
build the command line, and the second stage actually building the command line based on the choices
in the first stage.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet#runtime-options
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet#runtime-options

The User Interface 532

Copyright © 2001-2025 Software Verify Limited

There are five options for building your command line:

· I'll build my own you'll build your command line from scratch, with no predefined options

· Use a predefined template choose from a list of predefined command lines that you can
customize

The predefined templates cover a range of tasks you may want to perform from the command
line. These include running sessions, saving sessions, exporting to HTML, XML, and comparing
memory leak data.

Examples are provided for both Native and .Net applications, and .Net Core applications.

· Use an existing command line use the command line you use to start the tool you want to
detect memory leaks for

Example: e:\dev\paintpot\release\paintpot.exe e:\testimages\venn.png -invert -
mirror -phaseChange

· Use an existing Memory Validator command line use an existing Memory Validator
command line and customize that

Example: -program e:\dev\paintpot\release\paintpot.exe -hideUI -exportAsHTML e:
\testResults\gannt.html -allArgs e:\testimages\gantt.png -inflate:3

Memory Validator Help533

Copyright © 2001-2025 Software Verify Limited

· Use an existing Memory Validator command file use an existing Memory Validator
command file and customize that

Example: -commandFile e:\commandFiles\paintpot_gantt.cf

When you have made your choice the Next button moves you to the customization part of the command
line builder.

The image above shows the command line builder populated with one of the predefined template choices.
You can see a few entries refer to directories and files that do not exist on disk (they are red).

These are items you will need to customize to match the program you are testing.

For example, the -baseline session will need to have been created (by saving an appropriate session
from Memory Validator) created before you run the test.

Any entries that will only exist after they have been created by the test will also be shown in red.

The User Interface 534

Copyright © 2001-2025 Software Verify Limited

Editing

To edit an argument, double click the argument. A combo box will display a list of valid arguments you
can choose.

To edit a value, double the value. If the argument type has a list of known values a combo box will be
provided, directories will display a directory chooser, files will display a file chooser, numbers will only
allow numeric editing. All other values will be edited as text.

· Add add a new argument to the grid

· Remove remove the selected item

· Remove All removes all items in the grid

· Add Hide adds a -hideUI argument which will cause Memory Validator to hidden when running.
Memory Validator will close after the target program finishes running

· Add Debug adds various arguments which will cause Memory Validator to display error
messages if there are problems with the command line.

· Add Export adds export options that will cause Memory Validator to export html and/or xml
reports after the target program finishes running

· Add Compare adds compare options that will cause Memory Validator to load a session and
compare sessions after the target program finishes running

· Import... you can import a command file, the contents of which will replace all the items in the
grid

Command Line Output

There are two command line output styles.

· Command line with arguments generates a command line containing all arguments and values
shown in the grid

· Command line with command file generates a command file containing all arguments and
values shown in the grid, and a command line that references the command file

When this option is chosen the command file edit field and the Browse... and View... buttons
are enabled, allowing you to specify a command file name, and to view it's contents.

If a command file has not been specified when this option is selected you will be prompted to
select a name for the command file.

When the command file name is selected the command file will be created with the arguments
and values shown in the grid.

· Copy copies the command line to the clipboard so that you can paste the command line in cmd
prompts, batch files and automated scripts (Jenkins etc)

Memory Validator Help535

Copyright © 2001-2025 Software Verify Limited

· Browse... opens a Windows file dialog to allow you to specify the command file location

· View... opens the command file using the Windows shell, this allows you to view the command
file in your favourite editor

Testing

If you wish to test the command line, you have two options:

· Manual test use the Copy button to copy the command line, then paste it into a cmd prompt
and press return.

· Test Command Line a new instance Memory Validator is started with the specified command
line.

3.21 Data Collection

Collecting data

Once you've launched or injected into a program, you can stop and start data collection whilst the
program is running.

This is a high level switch that controls all data collection, regardless of any other settings.

With data collection off, the target program runs at close to normal speed.

Temporarily turning off collection can be a good idea if you need to take actions to get the program into
the right state for validation.

You can also turn data off from the start and only turn it on when you need it.

Starting and stopping data collection

 File menu Start collecting data... starts collecting data immediately

or click on the green icon on the session toolbar to start collecting.

 File menu Stop collecting data... stops collecting

or click on the red icon on the session toolbar to stop.

The User Interface 536

Copyright © 2001-2025 Software Verify Limited

3.22 Help

The help menu

The help menu provides access to useful help, tips and tutorials.

Each item is covered briefly below, in menu order.

Tips

 Help menu Tips... shows the tip dialog where you can browse tips in random order

Here you can also choose whether to display the tips dialog while launching programs.

Memory Validator Help537

Copyright © 2001-2025 Software Verify Limited

About box

 Help menu About Memory Validator... shows contact and copyright information, as well as
details of your license

Overview Video

 Help menu Overview Video... opens a new dialog showing a short video

The video has sound and does not play automatically.

The User Interface 538

Copyright © 2001-2025 Software Verify Limited

The video is also available on the product website. Visit https://www.softwareverify.com/products.php and
find the product link for Memory Validator.

Readme and version history

 Help menu Readme... opens the readme.html (from your installation) in your browser.

The readme file contains all the latest information about Memory Validator including:

· basic information about getting started and where to go for support
· known issues
· version history

To see what's changed since the version you have installed see the latest version history .

Help HTML

 Help menu Help topics... shows the HTML help dialog

You might be reading this right now!.

https://www.softwareverify.com/products.php
https://www.softwareverify.com/cpp-memory-change-history.php

Memory Validator Help539

Copyright © 2001-2025 Software Verify Limited

Or click on the question mark icon on the standard toolbar:

 The key also shows the help, but has the added bonus of jumping directly to the page relevant
for the current view or dialog.

 We occasionally get reports of customers seeing exception errors while viewing the HTML help.
Unfortunately, we don't have a solution for this!

Help PDF

 Help menu Help PDF shows the PDF version of this help

You will need a suitable PDF reader such as Adobe Acrobat Reader , but do beware of unwanted add-
on installs.

PDF help for all our products are online .

Help on softwareverify.com

 Help menu Help on softwareverify.com shows the online version of this help

Blog

 Help menu Blog shows the Software Verify Blog .

Library

 Help menu Library shows the Software Verify Library - all our best articles organised into
related topics for easy access.

Tutorials

The tutorials are intended to guide you through learning how to use aspects of Memory Validator.

All tutorials are available online in the form of short videos and examples covering popular topics.

 Help menu Tutorial simply selects the Tutorial tab to show a list of the tutorials

Double click on the row of a tutorial in the list to open it in a browser.

https://get.adobe.com/uk/reader/
https://www.softwareverify.com/help-pdfs.php
https://www.softwareverify.com/documentation/html/memoryValidator/index.html
https://www.softwareverify.com/blog/
https://www.softwareverify.com/library/memory-leaks/
https://www.softwareverify.com/library/memory-leaks/
https://www.softwareverify.com/tutorial/memory-validator-tutorial/

The User Interface 540

Copyright © 2001-2025 Software Verify Limited

 Help menu Tutorials on softwareverify.com... opens the online tutorials in a browser

Contact customer support

 Help menu Contact customer support shows the Contact customer support dialog.

How do I?

 Help menu How do I? shows the How do I? dialog.

https://www.softwareverify.com/tutorial/memory-validator-tutorial/

Memory Validator Help541

Copyright © 2001-2025 Software Verify Limited

Report a crash

 Help menu Report a crash displays the options for reporting a crash.

If an exception report for the Memory Validator user interface, or an exception report for an application
that Memory Validator was monitoring is available it will be displayed with options to copy it to the
clipboard and contact customer support at Software Verify.

The User Interface 542

Copyright © 2001-2025 Software Verify Limited

3.23 Software updates

This topic covers the three items on the Software Updates menu:

· checking for software updates
· configuring your update schedule
· renewing your software maintenance
· setting your software update credentials
· setting the software update directory

Software updates

If you've been notified of a new software release to Memory Validator or just want to see if there's a new
version, this feature makes it easy to update.

 Software Updates menu Check for software updates checks for updates and shows the
software update dialog if any exist

An internet connection is needed to be able to make contact with our servers.

 Before updating the software, close the help manual, and end any active session by closing
target programs.

If no updates are available, you'll just see this message:

Memory Validator Help543

Copyright © 2001-2025 Software Verify Limited

 Note that evaluation versions cannot be updated.

Software Update dialog

If a software update is available for Memory Validator you'll see the software update dialog, unless your
maintenance has expired.

· Download and install prompts you for login details if not known, and then downloads the update,
showing progress

 You may be asked for your login credentials, which you'll have received when you
purchased Memory Validator.

Once the update has downloaded, Memory Validator will close, run the installer, and restart.

You can stop the download at any time, if necessary.

· Don't download Doesn't download, but you'll be prompted for it again next time you start
Memory Validator

The User Interface 544

Copyright © 2001-2025 Software Verify Limited

· Skip this version Doesn't download the update and doesn't bother you again until there's an even
newer update

· Software update options... edit the software update schedule

· Manage software maintenance... opens your browser ready for maintenance renewal

Problems downloading or installing?

If for whatever reason, automatic download and installation fails to complete:

· Log in to https://www.softwareverify.com/authdownload.php with the details provided when you
purchased Memory Validator

· Download the latest installer manually, via one of the .exe, .xyz or .zip files that are available

Make some checks for possible scenarios where files may be locked by Memory Validator as follows:

· Ensure any open sessions are completed

· Ensure any target programs started by Memory Validator are closed

· Ensure Memory Validator and its help manual is also closed

· Ensure any error dialogs from the previous installation are closed

Have your license details handy as you may need to copy information into the license dialog

You should now be ready to run the new version.

Software maintenance expiry

If the software maintenance period has expired you won't be able to automatically update Memory
Validator as above.

Instead, you'll see the software update maintenance expiry dialog:

You can manage your software maintenance or choose to stop receiving any more software updates.

Software update schedule

Memory Validator can automatically check to see if a new version of Memory Validator is available for
downloading.

https://www.softwareverify.com/authdownload.php

Memory Validator Help545

Copyright © 2001-2025 Software Verify Limited

 Software Updates menu Configure software updates shows the software update schedule
dialog

The update options are:

· never check for updates
· check daily (the default)
· check weekly
· check monthly

The most recent check for updates is shown at the bottom.

Managing software maintenance

 Software Updates menu Renew software updates shows the software update
maintenance renewal dialog

· Renew software maintenance Opens your browser, logging you in to our website from which
you can purchase maintenance

Your maintenance expiry date is shown. If you don't need to do anything just Close the dialog.

Managing software update credentials

You can configure your software update credentials within the application.

https://www.softwareverify.com/authdownload.php

The User Interface 546

Copyright © 2001-2025 Software Verify Limited

 Software Updates menu Set software update credentials shows the Software update
login details dialog

The text will be shown in red if the email address looks incorrectly formatted.

Testing the login details checks they're valid:

· Test login details check your entered details are valid (requires an internet connection)

Valid details will be confirmed:

Invalid details may mean you entered credentials for another application in the Validator suite,
or they could have been entered incorrectly.

You should have received the correct credentials when you purchased Memory Validator, or
with any software update emails.

If you experience problems, check with your system administrator or contact Software Verify.

Memory Validator Help547

Copyright © 2001-2025 Software Verify Limited

If you need to clear the update credentials, you can do this directly from the menu.

 Software Updates menu Reset software update credentials clears the email and
password details stored in the application

You will be asked to confirm the reset. After resetting the credentials, no software updates will
occur.

If you later need to restore your credentials, you should have received that information when you
purchased Memory Validator, or with any software update emails.

Software update directory

It’s important to be able to specify where software updates are downloaded to because of potential
security risks that may arise from allowing the TMP directory to be executable. For example, to
counteract security threats it's possible that account ownership permissions or antivirus software blocks
program execution directly from the TMP directory.

The TMP directory is the default location but if for whatever reason you're not comfortable with that, you
can specify your preferred download directory. This allows you to set permissions for TMP to deny
execute privileges if you wish.

 Software Updates menu Set software update directory shows the Software update
download directory dialog

The User Interface 548

Copyright © 2001-2025 Software Verify Limited

An invalid directory will show the path in red and will not be accepted until a valid folder is
entered.

Example reasons for invalid directories include:

· the directory doesn't exist
· the directory doesn't have write privilege (update can't be downloaded)
· the directory doesn't have execute privilege (downloaded update can't be run)

 When modifying the download directory, you should ensure the directory will continue to be valid.
Updates may no longer occur if the download location is later invalidated.

· Reset reverts the download location to the user's TMP directory

The default location is c:\users\[username]\AppData\Local\Temp

Part

IV

Tag Tracking 550

Copyright © 2001-2025 Software Verify Limited

4 Tag Tracking

Tag trackers

Tag trackers are a powerful method of classifying data at runtime.

An allocation or group of allocations can be marked with a tag that can later be used to filter allocation
events.

Tag tracking is implemented using a svlDataTracker C++ class which allows the tag tracking to have
automatic scope on the stack, so that cleanup is not required.

Even if you're not using C++, do continue reading, as there are API functions you can call to get the
same effect.

4.1 Data Tracking with svlDataTracker

Tag trackers allow allocations to be marked with a tag that can later be used to filter allocation events.

Examples of using tag trackers in code

Here's a simple example function using tag trackers:

void exampleFunc()

{
 int i;

 for(i = 0; i < getNumWorkUnits(); i++)

 {
 svlDataTracker trackWorkUnits("workunit"); // Set current tracker to be 'workunit'

 processWorkUnits(i);
 }
}

In this example all memory allocations, reallocations and deallocations that happen inside
processWorkUnits() have the tag workunit.

In the more complex code fragment below, three tags are used to classify the actions of the functions
called.

Note that when the Flowers tracker starts, the Cats tracker is temporarily suspended, to be resumed
when the Flowers tracker falls out of scope.

Memory Validator Help551

Copyright © 2001-2025 Software Verify Limited

 createAFish("Pike"); // no tracker

 {
 svlDataTracker tracker_cats("Cats");

 createAnAnimal("Lion"); // cats tracker

 createAnAnimal("Tiger"); // cats tracker

 createAnAnimal("Panther"); // cats tracker

 {
 svlDataTracker tracker_flowers("Flowers");

 createAFlower("Daffodil"); // flowers tracker

 createAFlower("Rose"); // flowers tracker

 {
 svlDataTracker tracker_trees("Trees");

 createATree("Oak"); // trees tracker

 createATree("Sycamore"); // trees tracker

 createATree("Ash"); // trees tracker

 createATree("Horse Chestnut");// trees tracker

 }

 createAFlower("Lily"); // flowers tracker

 }

 createAnAnimal("Leopard"); // cats tracker

 createAnAnimal("Cheetah"); // cats tracker

 createAnAnimal("Cougar"); // cats tracker

 }

 createAFish("Salmon"); // no tracker

svlDataTracker class usage

The svlDataTracker class used in the examples above is defined in svlDataTracker.h and
svlDataTracker.cpp which should be in the API folder of the Memory Validator installation directory.

The class is written so as not to include any dependencies on Memory Validator into your application.

The class will only activate the Memory Validator functionality if using Memory Validator with your
application, and otherwise does nothing.

To use svlDataTracker in your application:

· #include svlDataTracker.h into each file you will be using svlDataTracker

· use the svlDataTracker class as shown above

 Do not dynamically create svlDataTracker objects as this will break the tag scoping rules and make
them behave unpredictably.

Tag Tracking 552

Copyright © 2001-2025 Software Verify Limited

Not using C++?

If you're not using C++, here's a couple of options:

An object oriented solution

If you're using an object oriented language such as Delphi you can create a Delphi equivalent to
svlDataTracker.

You'll find the source code for svlDataTracker in svlDataTracker.cpp and this should be easy enough
to understand for you to be able to create a suitable implementation for your object orientated language.

An API solution

The C++ and object orientated solutions both use the Memory Validator API.

You can also link your own program with the Memory Validator stub, and use the API directly.

The API provides two functions (among others) exported from svlMemoryValidatorStub.dll:

· mvPushTracker(char *trackerName) pushes a tag tracker on to the tag stack, making it the

'current' tag

· mvPopTracker() pops the current tag tracker from the top of the tag stack, making the next one
(if any) current

You can find out more about the API solution for tag tracking as well as other API functions in these
topics:

· The Native API

· Calling the API functions using GetProcAddress

· Calling the tag tracker functions above

Part

V

Command Line / Regression Testing 554

Copyright © 2001-2025 Software Verify Limited

5 Command Line / Regression Testing

Manual or automated testing

There are two ways you can use Memory Validator for regression testing:

· Manual (interactive) testing of a session with any previous session

Interactively comparing sessions allows a flexible approach in looking for regressions (or
improvements!).

This frequently forms part of the day-to-day development process.

· Automated testing, comparing against a baseline session

Compare the results of multiple independent test runs against the baseline and create a suite of
results to act on.

Often part of a continuous quality assurance program, especially where test suites can run to
many thousands of tests.

Need some help building the command line?

If you find creating command lines from nothing to be a bit daunting we've created a Command Line
Builder tool to help you build command lines.

You'll still need to complete some details, but the builder will help prevent you making some mistakes.

Command Lines and Floating Licences

Memory Validator works from the GUI and from the command line with all types of software licence
(floating licences and non-floating licences).

When floating licences are being used Memory Validator will wait to acquire a floating licence before
proceeding to process the command line options.

There are no options to:
· Checkout a floating licence
· Release a floating licence
· Query for available licences

These options are managed automatically by Memory Validator, there is no need for such options to be
manually controlled from the command line.

Memory Validator Help555

Copyright © 2001-2025 Software Verify Limited

5.1 Manual Regression Testing

Manual testing by comparing sessions

Comparing sessions will identify:

· Regressions since a baseline session

· Improvements from the baseline session to the other

· Leaks common to both sessions

Choosing the sessions to compare

Manual regression testing is possible using the Session Manager to compare two sessions with each
other.

 Managers menu Session Manager... shows the Session Chooser dialog below, highlighting
the current session

· Compare... shows the Compare Sessions dialog

Only enabled when at least two different sessions are loaded.

 For there to be at least two loaded sessions, you need to switch off auto purge or increase the
maximum number of sessions so as not to limit the number of open sessions.

Choose two sessions from the drop down lists in the Compare Sessions dialog, one as the baseline
session and the other to compare against it.

Command Line / Regression Testing 556

Copyright © 2001-2025 Software Verify Limited

 Check the sessions in the drop down lists are the ones you want to compare.

· Compare... shows progress of analysis and then the Session Memory Comparison dialog

Using filters when comparing sessions

Each session will have some session filters that may or may not be the same.

Checkboxes at the top of the dialog and under each selected session let you choose whether to apply
global or session filters during comparison

Although you can apply the session filters during the comparison, you need to be sure that the filters are
the same, in order for the comparison to be fair.

 During comparison, it's generally best to apply global filters rather than session filters.

The session memory comparison dialog

The dialog shows details of memory leaks grouped as follows:

Memory Validator Help557

Copyright © 2001-2025 Software Verify Limited

· Regressions: leaks that occur in the second session but not in the first (the baseline)

· Improvements: leaks that were in the first session but not in the second

· Common Leaks: those leaks found in both sessions

Underneath the memory information are some statistics:

· Total (1) and (2): The total amount of memory leaked and number of handles leaked for each
session

· Totals: The amount of leaked memory attributed to regressions, improvements and common leaks

· Objects: The number of leaked objects for each of regressions, improvements and common leaks

The comparison data may be quite long so there are a few convenience buttons to scroll the data to each
section

· Goto Regressions scrolls to the start of the regression data

· Goto Improvements scrolls to improvements

· Goto Common scrolls to common data

Command Line / Regression Testing 558

Copyright © 2001-2025 Software Verify Limited

The data in this comparison dialog is displayed the same as other tab views such as the Memory tab.

You can expand the items to view the allocation callstack and source code snippets.

There's an option to expand lower level data automatically:

· Auto Expand if checked, causes every item's callstack to be expanded automatically when
expanding one of the three top level items

Reducing the amount of data displayed

You might well find that you have a lot of data, or you might be looking for regressions of a particular
nature.

· Filter... shows the session comparison private filters dialog

The comparison filters are used in an identical way to Local Filters, using the Filter Definition
dialog.

· Find... shows the Find Memory dialog to search the comparison data for particular allocation
criteria or object types

The Find Memory dialog is the same as that used when searching for memory in the Memory
tab views.

Items in the comparison dialog that match the search criteria are highlighted gray:

Memory Validator Help559

Copyright © 2001-2025 Software Verify Limited

Exporting the session comparison

You might need to export the session comparison data to share it with team members who don't have
Memory Validator

· Export shows the Session Compare Export dialog

Choose the file location and the format: XML or HTML.

If exporting as XML, you can optionally include the event id tags in the data.

Command Line / Regression Testing 560

Copyright © 2001-2025 Software Verify Limited

5.2 Automated Regression Testing

Automated testing overview

While manual regression testing is possible using the session comparison feature, automated
unattended testing is purely command line driven.

Typically, command line options allow Memory Validator to run by specifying:

· the target program to run
· arguments to pass to the target program
· the working directory to run in
· a baseline session to compare with
· where and how to save results
· whether to run with or without the user interface

Usually Memory Validator would exit between automated tests, but it can be made to stay running if
necessary.

See the command line reference for an alphabetical listing all the available commands.

To run 32 bit memory validator run C:\Program Files (x86)\Software Verify\Memory Validator
x86\memoryValidator.exe

To run 64 bit memory validator run C:\Program Files (x86)\Software Verify\Memory Validator
x64\memoryValidator_x64.exe

Command line argument usage

There are a few basic rules to remember when using the command line arguments:

· separate arguments by spaces

· quote arguments if they contain spaces

· some arguments are only useful in conjunction with others

· some arguments are incompatible with others

If your command line is very long, consider using -commandFile to specify a command file for your
arguments.

5.2.1 Example Command Lines

Typical command line examples

The following examples demonstrate a few different scenarios in which you might want to use Memory
Validator via the command line.

Memory Validator Help561

Copyright © 2001-2025 Software Verify Limited

To run 32 bit memory validator run C:\Program Files (x86)\Software Verify\Memory Validator
x86\memoryValidator.exe

To run 64 bit memory validator run C:\Program Files (x86)\Software Verify\Memory Validator
x64\memoryValidator_x64.exe

Example 1 - running a session (native or .Net)

A command line to run a program in a directory, using two arguments, and save the session without
showing the Memory Validator interface:

memoryValidator_x64.exe -hideUI -program c:\myProgram.exe -arg " -macro c:
\macros\testMacro1.vba" -arg "secondArg" -directory c:\testbed -saveSession c:
\results\testMacro1.mvm

A brief explanation of each argument:

Option Argument Description

-hideUI Don't show the user interface during the test

-program c:\myProgram.exe The target program to launch

-arg " -macro c:\macros\testMacro1.vba" An argument to the target program

-arg "secondArg" A second argument to the program

-directory c:\testbed The current directory for the application to work
in

-saveSession c:\results\testMacro1.mvm Where to save the session after the application
finishes

Add the following to the first example to compare against a baseline session and export the comparison
results in HTML and XML format:

-baseline c:\baselines\testMacroBaseline.mvm -sessionCompareHTML c:
\regression\testMacro1.html -sessionCompareXML c:\regression\testMacro1.xml

Option Argument Description

-baseline c:
\baselines\testMacroBaseline

The baseline session to compare against
(loaded at startup)

-sessionCompareHTML c:
\regression\testMacro1.html

Saved HTML format results of comparison

-sessionCompareXML c:\regression\testMacro1.xml Saved XML format results of comparison

To show the ui and leave the Memory tab open to inspect leaks after completion, omit -hideUI in the first
example and add -refreshMemory

Example 2 - running a session (.Net Core, Self Contained)

Command Line / Regression Testing 562

Copyright © 2001-2025 Software Verify Limited

This example starts a .Net Core application, showing no progress dialog whilst attaching to the process.

On completion, the resulting session is saved, and some tabs are refreshed.

The last tab refreshed is displayed, resulting in the Functions tab being the current tab.

memoryValidator_x64.exe -program "c:\myDotNetCoreApp.exe" -dotNetCoreLaunchType
SelfContained -saveSession "c:\myResults\session2.mvm" -displayUI

A brief explanation of each argument:

Option Argument Description

-program "c:
\myDotNetCoreA
pp.exe"

The target program to launch

-
dotNetCoreLaunc
hType

SelfContained The .Net Core program is self contained

-saveSession "c:
\myResults\sessi
on2.mvm"

After the application finishes, the session should be
saved in this file

-displayUI Show the user interface during the performance test

Example 3 - running a session (.Net Core, Framework Dependent)

This example starts a .Net Core application, showing no progress dialog whilst attaching to the process.

On completion, the resulting session is saved, and some tabs are refreshed.

The last tab refreshed is displayed, resulting in the Functions tab being the current tab.

memoryValidator_x64.exe -program "c:\dotNetCoreApp.dll" -dotNetCoreLaunchType
FrameworkDependent -saveSession "c:\myResults\session3.mvm" -displayUI

A brief explanation of each argument:

Option Argument Description

-program "c:
\dotNetCoreApp.d
ll"

The target program to launch with the .Net runtime

-
dotNetCoreLaunc
hType

FrameworkDepen
dent

The .Net Core program is framework dependent

Memory Validator Help563

Copyright © 2001-2025 Software Verify Limited

-saveSession "c:
\myResults\sessi
on3.mvm"

After the application finishes, the session should be
saved in this file

-displayUI Show the user interface during the performance test

5.2.2 Environment variables

Environment variables can be referenced on the command line.

This allows you to set an environment variable outside of Memory Validator (cmd prompt, batch file, etc)
and then reference it on the command line.

For example:

-program %BUILD_DIR%\testProgram.exe

If the BUILD_DIR environment variable is set to e:\dev\debug the above would evaluate to -
program e:\dev\debug\testProgram.exe

What if I can't set an environment variable?

There are situations where you it isn't desirable, or possible to set the environment variable value prior to
starting Memory Validator.

In those situations you can set the environment variable on the command line using -setenvironment.

-setenvironment BUILD_DIR=e:\dev\debug -program %BUILD_DIR%\testProgram.exe

Problems with environment variable substitution

If you are running from a command prompt, or batch file, or any process that will handle environment
variable substitution using %ENV_VAR% you will find that referencing the environment variable on the
command line won't work when using -setenvironment, because by the time Memory Validator sees the
command line the %ENV_VAR% values have already been substituted.

To get around this, using ENV_VAR instead of %ENV_VAR%.

-setenvironment BUILD_DIR=e:\dev\debug -program $BUILD_DIR$\testProgram.exe

-setenvironment

Set environment variables for Memory Validator, as a series of name/value pairs.

Use this option once for each environment variable you wish to set.

Usage of -setenvironment for any environment variable must appear on the command line prior to
any reference to that environment variable on the command line.

 To pass quotes along with the string, escape a pair of inner quotes like the example below

Command Line / Regression Testing 564

Copyright © 2001-2025 Software Verify Limited

Examples:

-setenvironment APP_FLAG=ON;
-setenvironment "APP_FAG=ON;"
-setenvironment "APP_COMMS=ON; APP_DEBUG=OFF;"
-setenvironment "APP_MSG=\"A quoted string with spaces\";"
-setenvironment BUILD_DIR=e:\dev\debug

Note that this is not the same as -environment, which allows you to specify environment values that
you can pass to the program being launched.

5.2.3 Target Program & Start Modes

Specifying the target application

The folllowing options let you launch a program (with various startup modes), inject into a running
program or wait for a program to start before attaching.

Launching a program

-program

Specifies the full file system path of the executable target program to be started by Memory
Validator, including any extension.

Not compatible with -injectName, -injectID, -waitName or -monitorAService.

See -arg below to pass arguments to your program, and -directory to set where it runs.

See -programToMonitor to monitor a different program than the program you launch.

Examples:

-program c:\testbed.exe
-program "c:\new compiler\version2\testbed.exe"

-programToMonitorEXE
 -programToMonitor

-programToMonitor has been replaced by -programToMonitorEXE. -programToMonitor will be
honoured to provided backward compatibility.

Specifies the full path of the program from which the data is collected, but does not change which
process is initially launched. Include the extension.

This program will be monitored by Memory Validator only when the program specified using -
program starts it.

Memory Validator Help565

Copyright © 2001-2025 Software Verify Limited

If no path is specified, the first child process that has the same name will be monitored.

To monitor any program that is launched specify <<Any>> as the program argument. In batch files
and powershell scripts you will need to quote this to get it accepted by the file parser.

See -programToMonitorLaunchCount to change which instance of the program is monitored.

Only valid in conjunction with -program.

Examples:

-programToMonitorEXE c:\testbed-child-process.exe
-programToMonitorEXE "c:\new compiler\version2\testbedChildProcess.exe"
-programToMonitorEXE testbed-child-process.exe
-programToMonitorEXE "<<Any>>"

-program c:\testbed.exe -programToMonitorEXE c:\testbed-child-process.exe

In this last example c:\testbed.exe is launched but not monitored. Only when testbed.exe
launches a child process c:\testbed-child-process.exe is that child process monitored.

-programToMonitorDLL

This option provides a qualifying DLL to identify different .Net Core processes, which are typically
launched using the same .Net Core runtime. Include the dll extension.

Only valid in conjunction with -program and -programToMonitorEXE.

Examples:

-programToMonitorDLL c:\test\dotNetCoreApp.dll

-program c:\testbed.exe -programToMonitorEXE "c:\program files\dotnet\dotnet.exe" -
programToMonitorDLL c:\test\dotNetCoreApp.dll

In this last example c:\testbed.exe is launched but not monitored. Only when testbed.exe
launches a child process c:\program files\dotnet\dotnet.exe to run the application c:
\test\dotNetCoreApp.dll is that child process monitored.

-programToMonitorLaunchCount

Specify the nth invocation of the program specified by -programToMonitor which is to have its data
collected.

Any value which is invalid (including anything less than 1) will default to 1.

Only valid in conjunction with -programToMonitor and consequently also -program.

Examples:

-programToMonitorLaunchCount 1
-programToMonitorLaunchCount 34

Command Line / Regression Testing 566

Copyright © 2001-2025 Software Verify Limited

-program c:\testbed.exe -programToMonitor c:\testbed-child-process.exe -
programToMonitorLaunchCount 1

In the above example c:\testbed.exe is launched but not monitored. As soon as
testbed.exe launches a child process c:\testbed-child-process.exe then that child
process monitored.

If the value 1 was changed to a 2, then only the second invocation of c:\testbed-child-
process.exe would get monitored, with the first invocation being ignored.

-arg

Passes command line arguments to the target program, and can be used multiple times.

 To pass quotes along with the string, escape a pair of inner quotes like the example below

Only valid with: -program

-arg myProgram.exe
-arg "c:\Program Files\myApp\myProgram.exe"
-arg "-in infile -out outfile"
-arg "\"a quoted string\""

-allArgs

Passes the remainder of the command line (after -allArgs) to the program being launched.

Unlike -arg above, there is no need to escape the quotes as the content is passed verbatim.

Only valid with: -program

Example:

-allArgs anything put here is passed to the target program "even stuff in quotes" is passed

-directory

Sets the working directory in which the program is executed. If -directory is not specified the
program is run in its current directory.

Only valid with: -program

Examples:

-directory c:\development\
-directory "c:\research and development\"

-environment

Memory Validator Help567

Copyright © 2001-2025 Software Verify Limited

Environment variables for program, as a series of name/value pairs. Not to be confused with -
setenvironment.

Use this option once for each environment variable you wish to set.

 To pass quotes along with the string, escape a pair of inner quotes like the example below

Only valid with: -program

Examples:

-environment APP_FLAG=ON;
-environment "APP_FAG=ON;"
-environment "APP_COMMS=ON; APP_DEBUG=OFF;"
-environment "APP_MSG=\"A quoted string with spaces\";"

-dataCollectType

Specifies the type of data collection that you want. Native, .Net or mixed mode (both native and .Net).

Valid with -program and -monitorAService.

Examples:

-dataCollectType native
-dataCollectType dotNet
-dataCollectType mixedMode

-stdin

Specifies a file to be read and piped to the standard input of the application being tested.

If the filename contains spaces, the filename should be quoted.

An error occurs if the file does not exist. See -ignoreMissingStdin to avoid this error.

Examples:

-stdin c:\settings\input.txt
-stdin "c:\reg tests settings\input.txt"

-stdout

Specifies a file to be written with data piped from the standard output of the application being tested.

If the filename contains spaces, the filename should be quoted.

An error occurs if the file does not exist. See -ignoreMissingStdout to avoid this error.

Command Line / Regression Testing 568

Copyright © 2001-2025 Software Verify Limited

Examples:

-stdout c:\settings\output.txt
-stdout "c:\reg tests results\output.txt"

-ignoreMissingStdin

If this flag is specified and the file specified by -stdin does not exist, no error is reported.

-ignoreMissingStdout

If this flag is specified and the file specified by -stdout does not exist, no error is reported.

Target program startup modes

-createProcessStartupThread
-normalStartupThread
-idleStartupThread
-suspendStartupThread
-pauseStartupThread
-noSuspendInStubDuringAttach

All these options are obsolete and will be ignored if present on command lines or in command files.

Injecting into a program

-injectName

Sets the name of the process for Memory Validator to attach to.

Not compatible with -program, -injectID, -waitName or -monitorAService.

Examples:

-injectName c:\testbed.exe
-injectName "c:\new compiler\version2\testbed.exe"

-injectID

Sets the numeric id of a process for Memory Validator to attach to.

Not compatible with -program, -injectName, -waitName or -monitorAService.

Example:

-injectID 1032

Memory Validator Help569

Copyright © 2001-2025 Software Verify Limited

Waiting for a program

-waitNameEXE
 -waitName

-waitName has been replaced by -waitNameEXE. -waitName will be honoured to provided
backwards compatibility.

Sets the name of a process that Memory Validator will wait for.

When the named process starts Memory Validator will attach to the process.

Not compatible with -program, -injectName, -injectID or -monitorAService.

Examples:

-waitNameEXE c:\testbed.exe
-waitNameEXE "c:\new compiler\version2\testbed.exe"

-waitNameDLL

Sets the name of a process DLL that Memory Validator will wait for.

When the named process starts Memory Validator will attach to the process.

Examples:

-waitNameDLL c:\dotNetApp.dll
-waitNameDLL "c:\new compiler\version2\dotNetApp.dll"

For use with -waitNameEXE when you want to wait for .Net Core applications.

-waitNameEXE "c:\program files\dotnet\dotnet.exe" -waitNameDLL "c:
\testApps\dotNetCoreApp\release\dotNetCoreApp.dll"

Monitoring a service

-monitorAService

Sets the full file system path of a service including any extension.

Memory Validator will wait for the service to start and attach to it.

Not compatible with -program, -injectName, -injectID or -waitName.

Examples:

-monitorAService c:\service.exe
-monitorAService "c:\new compiler\version2\service.exe"

Command Line / Regression Testing 570

Copyright © 2001-2025 Software Verify Limited

.Net Core specific arguments

-dotNetCoreArg

Specifies and argument to pass to the .Net Core runtime. You can specify -dotNetCoreArg as many
times as you need to pass as many arguments as you need.

See this Microsoft document for the list of .Net Core runtime configuration options
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet#runtime-options.

Use this argument with -program.

Examples:

-dotNetCoreArg "--roll-forward LatestPatch"
-dotNetCoreArg "--runtimeconfig ./configUnitTest.json"

-dotNetCoreLaunchType

Specifies the type of program being launched by the .Net Core runtime. You can specify -
dotNetCoreLaunchType once. If specified more than once, the last definition is used.

Use this argument with -program.

Examples:

-dotNetCoreLaunchType SelfContained
-dotNetCoreLaunchType FrameworkDependent

Data Collection

-collectData

Enables or disables the collection of flow tracing data

Examples:

-collectData:On
-collectData:Off

-collectStdout

Enables or disables the collection of standard output (stdout)

Examples:

-collectStdout:On
-collectStdout:Off

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet#runtime-options

Memory Validator Help571

Copyright © 2001-2025 Software Verify Limited

5.2.4 User interface visibility

User interface visibility

You can choose to hide or show Memory Validator during the test, as well as the window of the target
application.

-displayUI

Forces the Memory Validator user interface to be displayed during the test.

This is useful for debugging a command line session that is not working, for example inspecting the
Diagnostic tab for messages related to the test.

You wouldn't normally use this option when running unattended regression tests.

-doNotInteractWithUser

This causes Memory Validator to never display dialog boxes in the target application that is being
profiled.

 This applies even for warning and error dialog boxes.

The intended use for this option is for when you are running command line sessions on unattended
computers and you have automated processes that may kill the Memory Validator user interface if
something goes wrong. Actions such as this then cause the stub to recognise the user interface has
gone away and display an error warning.

-hideUI

Hides the Memory Validator user interface during the test.

-launchAppHidden

Hides the target application during the test.

Depending on your application, this may not work and may not even be suitable.

This is equivalent to setting the wShowWindow member of the STARTUPINFO struct to SW_HIDE when
using the Win32 CreateProcess() function.

It's useful if you're testing console applications that have no user interaction, as it prevents the
console/command prompt from being displayed.

For GUI applications this option very much depends on how your application works.

For interactive applications, it's clearly has no use, but for some, hiding the GUI may help prevent
various windows messages from being processed.

Command Line / Regression Testing 572

Copyright © 2001-2025 Software Verify Limited

Typically, for complex applications, it's better to design this capability into your application and
control it via a command line, which can be passed in from Memory Validator via the -arg option.

5.2.5 Session Management

Session management

The following options let you control the sessions during testing

-baseline

Loads a previous session as the baseline session against which the recorded session is compared
for regressions or improvements.

Examples:

-baseline c:\baseline\testMacro1.mvm
-baseline "c:\base line\testMacro1.mvm"

 Ensure your session manager is configured to hold at least 2 sessions or use -numSessions to
specify how many sessions to use.

-numSessions

Sets the number of sessions that can be loaded at once.

This is equivalent to the same setting in the session manage and can't be less than 1.

Example:

-numSessions 2

-saveSession

Saves the session data when all data has finished being collecting from the target program.

Examples:

-saveSession c:\results\testMacro1.mvm
-saveSession "c:\test results\testMacro1.mvm"

-sessionLoad

Loads a previously created session to act as the comparison session and which will be compared
against a baseline session, for regression testing.

This might be used when a series of tests have been performed and the sessions saved.

Memory Validator Help573

Copyright © 2001-2025 Software Verify Limited

The regression test results can then be generated by using -baseline and -sessionLoad to load two
sessions and compare them.

Use in conjunction with: -baseline,

Not compatible with: -program, -injectName, -injectID, -waitName, as regression tests will be
performed using the wrong session data (the session from -sessionLoad rather than the session
from -baseline).

Examples:

-sessionLoad c:\results\testMacro1.mvm
-sessionLoad "c:\test results\testMacro1.mvm"

 Ensure your session manager is configured to hold at least 2 sessions or use -numSessions to
specify how many sessions to use.

-sessionCompareHTML
-sessionCompareXML

Compare two sessions, producing an HTML or XML report detailing any regression and
improvements.

A description of the XML tags used to produce the report is here.

The two sessions can be loaded using one of these options:

-baseline and -sessionLoad

-baseline and running a program using one of -program, -injectName, -injectID, or -
waitName

Examples:

-sessionCompareXML c:\regtests\testMacro1.xml
-sessionCompareHTML "c:\reg tests\testMacro1.html"

 Ensure your session manager is configured to hold at least 2 sessions or use -numSessions to
specify how many sessions to use.

-flatXMLSessionCompareExport

Use the old style XML report without the <EVENT> tag when exporting the results of a session
comparison.

A similar option -flatXMLSessionExport is available for exporting the session data.

See also the description of the XML export tags.

Command Line / Regression Testing 574

Copyright © 2001-2025 Software Verify Limited

5.2.6 Session Export Options

Session export format - HTML or XML

-exportAsHTML
-exportAsXML

Export the session data as an HTML or XML file when Memory Validator has finished collecting data
from the target program.

Example:

-exportAsHTML c:\results\html\testMacro1.html
-exportAsXML "c:\test results\xml\testMacro1.html"

Example fragment of a detailed HTML export

<TR BGCOLOR="#008080"><TD>Thread:0x000000d0</TD>

<TD>Time:7/14 13:32:03 651ms</TD>

<TD>File:E:\OM\C\memory32\examples\nativeExample\nativeExample.CPP</TD>

<TD>Line:161</TD>

<TD>Address:0x00375668</TD>

<TD>Size:0x00000004</TD>

<TD>Type:Allocation</TD>

<TD>Leaked:TRUE</TD>

<TD>Uninitialised:FALSE</TD>

<TD>Damaged:FALSE</TD>

<TD>Unused:FALSE</TD>

<TD>SizeError:FALSE</TD>

<TD>IncorrectUsage:FALSE</TD>

<TD>Type:Unknown </TD>

<TD>Allocation ID:157</TD>

</TR>

 <TR><TD COLSPAN=10><TABLE>

 <TR><TD>0x00401905 nativeExample.exe CTeststakApp::CTeststakApp : [E:\OM\C\memory32\examples\nativeExample\nativeExample.CPP Line 161]
</TD></TR>

 <TR><TD>0x00401e58 nativeExample.exe $E320 : [E:\OM\C\memory32\examples\nativeExample\nativeExample.CPP Line 263]
</TD></TR>

 <TR><TD>0x00401e33 nativeExample.exe $E323
</TD></TR>

 <TR><TD>0x1020ad33 MSVCRTD.dll _initterm : [crt0dat.c Line 524]
</TD></TR>

 <TR><TD>0x00412bfb nativeExample.exe wWinMainCRTStartup : [crtexe.c Line 274]
</TD></TR>

 <TR><TD>0x7c816d4a KERNEL32.dll RegisterWaitForInputIdle
</TD></TR>

 </TABLE></TD>

</TR>

See also the section on XML Export Tags.

Session export encoding - HTML or XML

These options allow you to export the session data as UTF-16, UTF8 or ASCII. UTF-16 and UTF-8 will
add a byte order mark (BOM) to the start of the exported file.

-exportAsHTML_BOM

Memory Validator Help575

Copyright © 2001-2025 Software Verify Limited

The exported HTML will be exported with the appropriate format.

-exportAsHTML_BOM ASCII
-exportAsHTML_BOM UTF8
-exportAsHTML_BOM UTF16

-exportAsXML_BOM

The exported XML will be exported with the appropriate format.

-exportAsXML_BOM ASCII
-exportAsXML_BOM UTF8
-exportAsXML_BOM UTF16

HTML and XML export options

The following options control settings for HTML and XML export of the recorded session results

All the export settings take the form option:On or Option:Off

Example:

-htmlAllocMemory:On
-xmlReAllocMemory:Off

All these options are equivalent to the settings used in the Export Session dialog.

-htmlAllocMemory
-xmlAllocMemory

Include allocated memory data in the export

-htmlReAllocMemory
-xmlReAllocMemory

Include reallocated memory data in the export

-htmlFreeMemory
-xmlFreeMemory

Include free memory data in the export

-htmlLeaksOnly
-xmlLeaksOnly

Only include information about leaked data

-htmlMemory
-xmlMemory

Include data describing memory allocations

-htmlMemoryStackTrace
-xmlMemoryStackTrace

Include stack traces for memory allocations

-htmlMemoryFilter
-xmlMemoryFilter

Apply filters (session or global) to data memory allocations

-htmlHandles
-xmlHandles

Include data describing handle allocations

-htmlHandleStackTrace
-xmlHandleStackTrace

Include stack traces for handle allocations

Command Line / Regression Testing 576

Copyright © 2001-2025 Software Verify Limited

-htmlHandleFilter
-xmlHandleFilter

Apply filters (session or global) to data for handle allocations

-htmlErrors
-xmlErrors

Include data describing error conditions

-htmlErrorStackTrace
-xmlErrorStackTrace

Include stack traces for error conditions

-htmlErrorFilter
-xmlErrorFilter

Apply filters (session or global) to data for error conditions

-htmlTrace
-xmlTrace

Include data describing TRACE and OutputDebugString
information

-htmlTraceStackTrace
-xmlTraceStackTrace

Include stack traces for trace information

-htmlTraceFilter
-xmlTraceFilter

Apply filters (session or global) to data for trace information

-htmlDetailedReport
-xmlDetailedReport

Include Thread ID and Timestamp information as additional data

-htmlDoColourCode Make the HTML export colour coded (not relevant for XML
export)

-flatXMLSessionExport Use the old style (flat) XML report without the <EVENT> tag.
See XML Export Tags.

Exporting objects

Exporting data about objects doesn't correspond to any corresponding setting in the user interface.

When running automated regression tests in unattended mode, you won't be able to manually inspect
the Types tab, so exporting this data can be very useful.

You can choose to export all the Objects data or just the data for leaked objects.

-exportSessionObjectsHTML
-exportSessionObjectsXML

Exports the data on the Types tab (sub tab "DLL", for all threads) as an HTML or XML file when
Memory Validator has finished collecting data from the target program.

Example:

-exportSessionObjectsHTML c:\results\html\testMacro1Objects.html
-exportSessionObjectsHTML "c:\test results\xml\testMacro1Objects.html"

-exportSessionLeakedObjectsHTML
-exportSessionLeakedObjectsXML

Memory Validator Help577

Copyright © 2001-2025 Software Verify Limited

As above, but only data for objects with a non-zero Count value is exported.

Since the Count column indicates live allocations a non-zero count indicates leaked objects once
the target program has exited.

See also -filterSessionLeakedObjectsHTML / XML for applying global filters to exported session
objects.

Example of an Objects XML export

<XML>

 <VALIDATORVERSION>1.0</VALIDATORVERSION>

 <VALIDATORDATE>Apr 14 2014</VALIDATORDATE>

 <VALIDATORTIME>11:48:30</VALIDATORTIME>

 <TITLE>nativeExample.exe [All Objects]</TITLE>

 <OBJECTS>

 <OBJECT>

 <NAME>CtestParsing_c</NAME>

 <NUMBER>3</NUMBER>

 <MAX>3</MAX>

 <TOTAL>3</TOTAL>

 <SIZE>4</SIZE>

 <CUMUMLATIVE_SIZE>12</CUMUMLATIVE_SIZE>

 </OBJECT>

 <OBJECT>

 <NAME>char*</NAME>

 <NUMBER>0</NUMBER>

 <MAX>2</MAX>

 <TOTAL>2</TOTAL>

 <AVERAGE_SIZE>672.50</AVERAGE_SIZE>

 <CUMUMLATIVE_SIZE>1345</CUMUMLATIVE_SIZE>

 </OBJECT>

 </OBJECTS>

</XML>

5.2.7 Filter options

Filter options

Filters can be used during session comparison to exclude data from the test results.

Filters are usually stored in the default filter file.

To save your own set of filters for use in a regression test, you can save the filters to a file from the Filter
Manager dialog.

-sessionFilters
-globalFilters

Specify filters to be applied to the sessions loaded for the regression test.

Command Line / Regression Testing 578

Copyright © 2001-2025 Software Verify Limited

For most use cases you'll want to use -globalFilters so that the same filters are applied to the
baseline session and the recorded session.

Examples:

-sessionFilters c:\filters\testMacro1.mvf
-globalFilters "c:\reg tests filters\testMacro1.mvf"

-compareUseBaselineFilters

Apply the filters loaded using -sessionFilters to the baseline session.

-compareUseGlobalFilters

Apply the filters loaded using -globalFilters to the baseline session and the comparison session.

-filterSessionLeakedObjectsHTML
-filterSessionLeakedObjectsXML

When the session objects are exported to an HTML or XML file, the output is filtered using the filters
loaded using -globalFilters.

5.2.8 File Locations

File Locations

When using the command line it's convenient to store settings and options in files that can be easily
referenced.

Those files include:

· Global settings files

· File locations for source, third party source, PDB or MAP files

· DLL hook files

Each of these file types can be saved or exported from Memory Validator.

Loading global settings from a file

Global settings are usually stored in the registry, but you can save a specific set of settings for use in
regression tests:

· Settings menu Save settings...

Memory Validator Help579

Copyright © 2001-2025 Software Verify Limited

-settings

Points to a previously saved settings file to be used for the test.

Examples:

-settings c:\settings\testMacro1.mvs
-settings "c:\reg tests settings\testMacro1.mvs"

File locations for source, PDB or MAP files

File location files can be easily generated by exporting file locations from the File Locations page of the
settings dialog.

-fileLocations

Specify a plain text file listing file locations to be used during testing. See the format of the file
below.

Each set of file types (one per line) is preceded by a header line in the file.

· [Files] Source files
· [Third] Third party source files
· [PDB] PDB files
· [MAP] MAP files

Example:

-fileLocations c:\regressionsTests\testFileLocations1.mvxfl

Example file:

[Files]

c:\work\project1\

[Third]

d:\VisualStudio\VC98\Include

[PDB]

c:\work\project3\debug

c:\work\project3\release

[MAP]

c:\work\project3\debug

c:\work\project3\release

Files listing DLLs to hook

DLL hook files can be easily generated by exporting DLL hooks from the Hooked DLLs page in the
Filters section of the settings dialog.

-dllHookFile

Points to a file listing the DLLs to be hooked for the test.

Command Line / Regression Testing 580

Copyright © 2001-2025 Software Verify Limited

Examples:

-dllHookFile c:\settings\testMacroDLLs.mvx
-dllHookFile "c:\reg tests settings\testMacroDLLs.mvx"

The first line of text in the DLL hooks file is one of the following:

· Rul e: DoNot Hook DLLs marked as enabled will not be hooked. All other DLLs will be
hooked

· Rul e: DoHook DLLs marked as enabled will be hooked. All other DLLs will not be
hooked

· Rul e: HookAl l All DLLs will be hooked regardless of the settings in the list

 Capitalization is important.

The remaining lines list one DLL filename or folder path and an enabled state on each line.

Example:

Rule:DoNotHook
nativeExample.exe enable=FALSE
MFC42D.DLL enable=TRUE
MSVCRTD.dll enable=TRUE
KERNEL32.dll enable=TRUE
ole32.dll enable=TRUE

Example:

Rule:DoHook
E:\OM\C\memoryValidator\examples\nativeExample\DebugNonLink
enable=TRUE

Example:

Rule:DoHook
E:\OM\C\memoryValidator\examples\nativeExample with
spaces\DebugNonLink enable=TRUE

Example:

Rule:DoHook
%ENV_VAR%\DebugNonLink enable=TRUE

Here, the environment variable ENV_VAR is used to replace the text %ENV_VAR% in the path
definition.

The file can be ANSI or UNICODE text and paths with spaces do not need quotes.

5.2.9 Command Files

Using a command file

Memory Validator Help581

Copyright © 2001-2025 Software Verify Limited

If your command line is very long, consider using -commandFile to specify a command file for your
arguments.

-commandFile

Specify a file from which to read the command line arguments.

Useful when command lines become unwieldy or longer than the windows command shell limits.

Use -- to insert comments into the file, including when commenting out option.

Examples:

-commandFile c:\regtests\testMacro1.cf
-commandFile "c:\reg tests\testMacro1.cf"

Example command file

-hideUI

-program c:\testbed\testApp.exe

-- arguments for application

-arg argumentOne

-arg argumentTwo

-arg "-s wobble"

-directory c:\testbed\test1

-settings c:\testbed\settings_test1.mvs

-- do export and save of the results

-exportAsHTML c:\testbed\results\test1.html

-saveSession c:\testbed\results\test1.mvm

For any argument that can be supplied to a command in a command file, you can also specify an
environment variable substitution.

-directory %DIR%
-program %DIR%\testProgram.exe

The environment variables must have been set prior to starting Memory Validator.

You cannot specify a command with an environment variable substitution.

5.2.10 Help, Errors & Return Codes

The following options may help with using and debugging the command line driven automated regression
testing.

Command line help

-help
-?

Command Line / Regression Testing 582

Copyright © 2001-2025 Software Verify Limited

Command line help is printed on the standard output.

Debugging command driven testing

If you're having problems with using the command line, check the following, try displaying error
messages using the option below, and look at the exit return codes.
.

· separate command line arguments with spaces

· all command line options that include spaces need to have quotes around them

· some arguments are only useful in conjunction with others - check notes against each option

· some arguments are incompatible with others - check notes against each option

-showErrorsWithMessageBox

Forces errors to be displayed using a message box when running from the command line.

This can be very useful when debugging a command line that does not appear to work correctly.

Exit return codes

Memory Validator returns the following status codes when running from the command line.

· 0 All ok
· -1 Unknown error. An unexpected error occurred starting the runtime
· -2 Application started ok. You should not see this code returned
· -3 Application failed to start. E.g. runtime not present, not an executable or injection dll not

present,
· -4 Target application is not an application
· -5 Don't know what format the executable is, cannot process it
· -6 Not a 32 bit application
· -7 Not a 64 bit application
· -8 Using incorrect MSVCR(8|9).DLL that links to CoreDLL.dll (incorrect DLL is from WinCE)
· -9 Win16 app cannot start these because we can't inject into them
· -10 Win32 app - not used
· -11 Win64 app - not used
· -12 .Net application
· -13 User bailed out because app not linked to MSVCRT dynamically
· -14 Not found in launch history
· -15 DLL to inject was not found
· -16 Startup directory does not exist
· -17 Symbol server directory does not exist
· -18 Could not build a command line
· -19 No runtime specified, cannot execute script (or Java) (obsolete)
· -20 Java arguments are OK - not an error (obsolete)
· -21 Java agentlib supplied that is not allowed because Java Memory Validator uses it (obsolete)
· -22 Java xrun supplied that is not allowed because Java Memory Validator uses it (obsolete)
· -23 Java cp supplied that is not allowed because Java Memory Validator uses it (obsolete)
· -24 Java classpath supplied that is not allowed because Java Memory Validator uses it (obsolete)

Memory Validator Help583

Copyright © 2001-2025 Software Verify Limited

· -25 Firefox is already running, please close it (obsolete)
· -26 Lua runtime DLL version is not known (obsolete)
· -27 Not compatible software
· -28 InjectUsingCreateProcess, no DLL name supplied
· -29 InjectUsingCreateProcess, Unable to open PE File when inspecting DLL
· -30 InjectUsingCreateProcess, Invalid PE File when inspecting DLL
· -31 InjectUsingCreateProcess, No Kernel32 DLL
· -32 InjectUsingCreateProcess, NULL VirtualFree() from GetProcAddress
· -33 InjectUsingCreateProcess, NULL GetModuleHandleW() from GetModuleHandleW
· -34 InjectUsingCreateProcess, NULL LoadLibraryW() from LoadLibraryW
· -35 InjectUsingCreateProcess, NULL FreeLibrary() from FreeLibrary
· -36 InjectUsingCreateProcess, NULL VirtualProtect() from GetProcAddress
· -37 InjectUsingCreateProcess, NULL VirtualFree() from GetProcAddress
· -38 InjectUsingCreateProcess, unable to find DLL load address
· -39 InjectUsingCreateProcess, unable to write to remote process's memory
· -40 InjectUsingCreateProcess, unable to read remote process's memory
· -41 InjectUsingCreateProcess, unable to resume a thread
· -42 UPX compressed - cannot process such executables
· -43 Java class not found in CLASSPATH
· -44 Failed to launch the 32 bit svlGetProcAddressHelperUtil.exe
· -45 Uknown error with svlGetProcAddressHelperUtil.exe
· -46 Couldn't load specified DLL into svlGetProcAddressHelperUtil.exe
· -47 Couldn't find function in the DLL svlGetProcAddressHelperUtil.exe
· -48 Missing DLL argument svlGetProcAddressHelperUtil.exe
· -49 Missing function argument svlGetProcAddressHelperUtil.exe
· -50 Missing svlGetProcAddressHelperUtil.exe
· -51 Target process has a manifest that requires elevation
· -52 svlInjectIntoProcessHelper_x64.exe not found
· -53 svlInjectIntoProcessHelper_x64.exe failed to start
· -54 svlInjectIntoProcessHelper_x64.exe failed to return error code
· -55 getImageBase() worked ok
· -56 ReadFile() failed in getImageBase()
· -57 NULL pointer when trying to allocate memory
· -58 CreateFile() failed in getImageBase()
· -59 ReadProcessMemory() failed in getImageBase()
· -60 VirtualQueryEx() failed in getImageBase()
· -61 Bad /appName argument in svlInjectIntoProcessHelper_x64.exe
· -62 Bad /dllName argument in svlInjectIntoProcessHelper_x64.exe
· -63 Bad /procId argument in svlInjectIntoProcessHelper_x64.exe
· -64 Failed to OpenProcess in svlInjectIntoProcessHelper_x64.exe
· -65 A DLL that the .exe depends upon cannot be found
· -66 A stdin file was specified, but Validator could not open it
· -67 A stdout file was specified, but Validator could not open it
· -68 Failed to create the child output pipe
· -69 Failed to create a duplicate of the output write handle for the std error write handle. This is

necessary in case the child application closes one of its std output handles
· -70 Failed to create the child input pipe
· -71 Failed to create a duplicate output read temporary file
· -72 Failed to create a duplicate input write temporary file
· -73 User was trying to launch a service as an application that was linked to MV APIs. User

cancelled when informed of this fact
· -74 Returned by Memory Validator if user performs a baseline comparison and memory leaks are

detected
· -75 Shutdown and restart as 32 bit Memory Validator

Command Line / Regression Testing 584

Copyright © 2001-2025 Software Verify Limited

· -76 Shutdown and restart as 64 bit Memory Validator
· -77 Entry point in executable is NULL.
· -78 Application is .Net Core.
· -79 Entry point is for a .Net application.

· -80 VirtualAllocEx() returned NULL
· -81 InjectUsingCreateProcess, NULL GetLastError() from GetProcAddress

Updating data after test completion

You can run automated tests that leave the user interface open after completion,

The following options are used to automatically refresh the main data tabs in Memory Validator once a
test is complete.

-refreshMemory
-refreshObjects
-refreshHotspot
-refreshAnalysis
-refreshPages

5.2.11 Command Line Reference

Command line reference

The following alphabetical list provides a convenient look-up for all the command line arguments used in
automated regression testing.

Option Description

-? Print command line help on the standard output.

-allArgs Pass the remainder of the command line (after -allArgs) to the
program being launched.

-arg Pass command line arguments to the target program. Can be
used multiple times.

-baseline Load a previous session as the baseline session against which
the recorded session is compared for regressions or
improvements.

-collectData Turn data collection on or off

-collectStdout Turn collection of stdout on or off

-commandFile Specify a file from which to read the command line arguments.

-compareUseBaselineFilters Apply the filters loaded using -sessionFilters to the baseline
session.

-compareUseGlobalFilters Apply the filters loaded using -globalFilters to the baseline
session and the comparison session.

-createProcessStartupThread Obsolete and ignored if present.

Memory Validator Help585

Copyright © 2001-2025 Software Verify Limited

-directory Set the working directory in which the program is executed.

-displayUI Force the Memory Validator user interface to be displayed
during the test.

-dllHookFile Point to a file listing the DLLs to be hooked for the test.

-doNotInteractWithUser Never display dialog boxes (including error boxes) in the target
application that is being profiled

-dotNetCoreArg Specify a runtime configuration option to the .Net runtime.

-dotNetCoreLaunchType Specify if you are launching a self contained or framework
dependent .Net Core application.

-environment Environment variables for program, as a series of name/value
pairs

-exportAsHTML
-exportAsXML

Export the session data as an HTML or XML file when Memory
Validator has finished collecting data from the target program.

-exportAsHTML_BOM
-exportAsXML_BOM

Specify the file encoding for the exported file

-
exportSessionLeakedObjectsH
TML
-
exportSessionLeakedObjectsX
ML

Export the data on the Types tab as an HTML or XML file when
Memory Validator has finished collecting data from the target
program. Only data for objects with a non-zero Count value is
exported.

-exportSessionObjectsHTML
-exportSessionObjectsXML

Exports the data on the Types tab as an HTML or XML file
when Memory Validator has finished collecting data from the
target program.

-fileLocations Specify a plain text file listing file locations to be used during
testing.

-exportSessionObjectsHTML
-exportSessionObjectsXML

When the session objects are exported to an HTML or XML file,
output is filtered using the filters loaded using -globalFilters.

-
flatXMLSessionCompareExport

Use the old style XML report without the <EVENT> tag when
exporting the results of a session comparison.

-flatXMLSessionExport Use the old style (flat) XML report without the <EVENT> tag.

-globalFilters Specify filters to be applied to the sessions loaded for the
regression test.

-help Print command line help on the standard output.

-hideUI Hide the Memory Validator user interface during the test.

-htmlAllocMemory Include allocated memory data in the export.

-htmlDetailedReport Include Thread ID and Timestamp information as additional
data.

-htmlDoColourCode Make the HTML export colour coded.

-htmlErrorFilter Apply filters (session or global) to data for error conditions.

-htmlErrors Include data describing error conditions.

-htmlErrorStackTrace Include stack traces for error conditions.

Command Line / Regression Testing 586

Copyright © 2001-2025 Software Verify Limited

-htmlFreeMemory Include free memory data in the export

-htmlHandleFilter Apply filters (session or global) to data for handle allocations.

-htmlHandles Include data describing handle allocations.

-htmlHandleStackTrace Include stack traces for handle allocations.

-htmlLeaksOnly Only include information about leaked data.

-htmlMemory Include data describing memory allocations.

-htmlMemoryFilter Apply filters (session or global) to data memory allocations.

-htmlMemoryStackTrace Include stack traces for memory allocations.

-htmlReAllocMemory Include reallocated memory data in the export.

-htmlTrace Include data describing TRACE and OutputDebugString
information.

-htmlTraceFilter Apply filters (session or global) to data for trace information.

-htmlTraceStackTrace Include stack traces for trace information.

-idleStartupThread Obsolete and ignored if present.

-injectID Set the numeric id of a process for Memory Validator to attach
to.

-injectName Set the name of the process for Memory Validator to attach to.

-launchAppHidden Hide the target application during the test.

-monitorAService Specify the full file system path to the service to monitor with
Memory Validator, including any extension. The service is not
started by Memory Validator but my an external means.

-normalStartupThread Obsolete and ignored if present.

-
noSuspendInStubDuringAttach

Obsolete and ignored if present.

-numSessions Set the number of sessions that can be loaded at once.

-pauseStartupThread Obsolete and ignored if present.

-program Specify the full file system path of the executable target
program to be started by Memory Validator, including any
extension.

-programToMonitorDLL Specify the .Net Core DLL that identifies the program being
monitored. Use in conjunction with -programToMonitorEXE.

-programToMonitorEXE
-programToMonitor

Changes which program the data is collected from but does not
change
which process Memory Validator initially launches.

-
programToMonitorLaunchCou
nt

Specify the nth invocation of the programToMonitor which is to
have its
data collected.

-refreshAnalysis Automatically refresh the Analysis tab in Memory Validator
once a test is complete.

Memory Validator Help587

Copyright © 2001-2025 Software Verify Limited

-refreshHotspot Automatically refresh the Hotspots tab in Memory Validator
once a test is complete.

-refreshMemory Automatically refresh the Memory tab in Memory Validator
once a test is complete.

-refreshObjects Automatically refresh the Types tab in Memory Validator once a
test is complete

-refreshPages Automatically refresh the Pages tab in Memory Validator once
a test is complete.

-saveSession Save the session data when all data has finished being
collecting from the target program.

-sessionCompareHTML
-sessionCompareXML

Compare two sessions, producing an HTML or XML report
detailing any regression and improvements.

-sessionFilters Specify filters to be applied to the sessions loaded for the
regression test.

-sessionLoad Load a previously created session to act as the comparison
session and which will be compared against a baseline
session, for regression testing.

-showErrorsWithMessageBox Force errors to be displayed using a message box when
running from the command line.

-setenvironment Environment variables for Memory Validator, as a series of
name/value pairs

-settings Point to a previously saved settings file to be used for the test.

-suspendStartupThread Obsolete and ignored if present.

-waitNameDLL Name a .Net Core dll that identifies the process to wait for. Use
in conjunction with -waitNameEXE.

-waitNameEXE
-waitName

Set the name of a process that Memory Validator will wait for.

-xmlAllocMemory Include allocated memory data in the export.

-xmlDetailedReport Include Thread ID and Timestamp information as additional
data.

-xmlErrorFilter Apply filters (session or global) to data for error conditions.

-xmlErrors Include data describing error conditions.

-xmlErrorStackTrace Include stack traces for error conditions.

-xmlFreeMemory Include free memory data in the export.

-xmlHandleFilter Apply filters (session or global) to data for handle allocations.

-xmlHandles Include data describing handle allocations.

-xmlHandleStackTrace Include stack traces for handle allocations.

-xmlLeaksOnly Only include information about leaked data.

-xmlMemory Include data describing memory allocations.

-xmlMemoryFilter Apply filters (session or global) to data memory allocations.

Command Line / Regression Testing 588

Copyright © 2001-2025 Software Verify Limited

-xmlMemoryStackTrace Include stack traces for memory allocations.

-xmlReAllocMemory Include reallocated memory data in the export.

-xmlTrace Include data describing TRACE and OutputDebugString
informationApply.

-xmlTraceFilter Apply filters (session or global) to data for trace information.

-xmlTraceStackTrace Include stack traces for trace information.

To run 32 bit memory validator run C:\Program Files (x86)\Software Verify\Memory Validator
x86\memoryValidator.exe

To run 64 bit memory validator run C:\Program Files (x86)\Software Verify\Memory Validator
x64\memoryValidator_x64.exe

5.2.12 Troubleshooting

Running from the command line can cause some problems, often because you can't be sure that what
you put on the command line did what you thought would do.

Ensure the arguments supplied are what you expected.

-echoArgsToUser

If you are testing a console application, make sure you can see it.

-showCommandPrompt

If an errors occur when processing the command line, make sure you can see those.

-showErrorsOnCommandPrompt

-showErrorsWithMessageBox

Look on the diagnostic tab to ensure the diagnostic data collected makes sense.

If you've got -hideUI in your command line, comment it out temporarily (make it -xhideUI so that it's not
recognised).

What if the tool hangs?

If you're running from the command line, most likely you'll be running from a cmd prompt, or possibly
powershell.

We've only ever had one customer report a hang with any of our tools when running from the command
line.

We eventually found the problem, and it wasn't with the software tool.

The problem was that they were running the tool in hidden mode (-hideUI) from a command prompt and
for unknown reasons the tool would never exit.

Memory Validator Help589

Copyright © 2001-2025 Software Verify Limited

When they added a simple change to their command the problem went away.

They added cmd /c to the start of their command line. This opens a new command prompt and instructs
it to launch the command line and wait for it to exit.

Problem command line:

"c:\program files (x86)\Software Verify\Memory Validator x64\memoryValidator_x64.exe" -program c:\testProgram.exe -hideUI

Working command line:

cmd /c "c:\program files (x86)\Software Verify\Memory Validator x64\memoryValidator_x64.exe" -program c:\testProgram.exe -hideUI

Part

VI

Memory Validator Help591

Copyright © 2001-2025 Software Verify Limited

6 Native API

The Memory Validator API

There are some features of Memory Validator that are useful to call directly from your program, including
tracking of memory in custom heap managers.

Memory Validator has an API that makes this possible; just include svlMPAPI.c and svlMPAPI.h to
your codebase. There is no library to link to, dlls to copy.

Source files

The source files can be found in the API directory in the Memory Validator install directory.

svlMVAPI.h

svlMVAPI.c

Just add these files to your project and build.

If you are using precompiled headers you will need to disable them for svlMVAPI.c.

Working with services?

If you are working with services you to attach Memory Validator to a service and to start Memory
Validator, you should use the NT Service API, not the functions in this API.

All the other functions in this API can be used with applications and with services.

Unicode or ANSI?

All the API functions are provided in Unicode and ANSI variants where strings are used. We've also
provided a character width neutral #define in the same fashion that the Windows.h header files do.

For example the function for naming a heap is provided as mvSetHeapNameA(), mvSetHeapNameW() with
the character width neutral mvSetHeapName() mapping to mvSetHeapNameW() for unicode and
mvSetHeapNameA() for ANSI.

In this document we're going to use TCHAR like the Window.h header files do.

Deploying on a customer machine

You can use the API without incurring any dependency on Memory Validator.

If Memory Validator is not installed on the machine the software runs on, nothing will happen.

Native API 592

Copyright © 2001-2025 Software Verify Limited

This allows you to add the Memory Validator API to your software without need to have a separate build
for use with Memory Validator.

Loading the Profiler

For most use cases won't need to load the profiler, as the profiler will have been loaded when your
launched your program from Memory Validator, or when you injected into your program using Inject or
Wait For Application.

However if you're running your program from outside of Memory Validator and want to load the profiler
from inside your program you can use mvLoadProfiler() to do that. You'll then need to call
mvStartProfiler() to start it.

Starting the Profiler

To start the profiler from your API code you need to call the function mvStartProfiler() from your code
before you call any API functions. Ideally you should call this function as early in your program as
possible.

If you prefer to start the profiler from the user interface or command line you can omit the
mvStartProfiler() call. You can leave it present if you wish to start Memory Validator from your program.

Naming threads

You can name threads using the mvSetThreadName() function.

Naming heaps

You can name threads using the mvSetHeapName() function.

Turning data collection on and off

You can turn data collection on and off using the mvSetCollect() function.

You can use mvGetCollect() to inspect the data collection status.

Tagging many allocations with the same identifier

You can group many related allocations together by assigning them a tag tracker.

You do this by pushing a tag tracker on to the tag tracker stack.

Any allocations that happen when there are tag trackers on the stack are assigned to that tag tracker.

When you have finished with that tag tracker you can pop it off the stack.

Memory Validator Help593

Copyright © 2001-2025 Software Verify Limited

This can be useful for clustering related database allocations, or related game allocations.

For example:

 mvPushTracker(_T("Flowers"));

 f = new Daffodil();

 flowers.push_back(f);

 f = new Rose();

 flowers.push_back(f);

 f = new Geranium();

 flowers.push_back(f);

 mvPopTracker();

Having configured "Flowers" as above, in the user interface in the various filtering options you can select
Flowers in the tag tracker (or in the Statistics view) to see which Flowers are still allocated without
seeing data for any other allocation.

You can also do this with a helpful class: svlDataTracker. When the class does out of scope the top of
the tag tracker stack is popped.

You can push more than one tag tracker at a time.

 {
 svlDataTracker(_T("Plants"));

 {
 svlDataTracker(_T("Trees"));

 t = new Oak(); // Trees tag tracker

 trees.push_back(t);

 t = new Sycamore(); // Trees tag tracker

 trees.push_back(t);

 t = new Cyrpress(); // Trees tag tracker

 trees.push_back(t);
 }

 {
 svlDataTracker(_T("Flowers"));

 f = new Daffodil(); // Flowers tag tracker

 flowers.push_back(f);

 f = new Rose(); // Flowers tag tracker

 flowers.push_back(f);

 f = new Geranium(); // Flowers tag tracker

 flowers.push_back(f);
 }

Native API 594

Copyright © 2001-2025 Software Verify Limited

 g = new Grass(); // Plants tag tracker

 }

 str = new string("weebles wobble but they don't fall down"); // no tag tracker

Placing watermarks to identify the start and end of behaviours in the target
application

You can place watermarks to identify locations in the stream of memory allocations being monitored.

Done carefully this can allow you to provide easy ways to check that particular parts of your application
are behaving as expected.

For example you could place a watermark before a database transaction, and a watermark after a
database transaction. Then either during a session, or at the end of the session (when you have the leak
report) you can display all allocations between the two watermarks.

You can also place watermarks interactively, but automated watermark placement is much faster, and
easier to place them in the correct place.

 mvSetWatermarkEx(_T("Start purchase"));

 if (processPurchase())

 {
 commitTransaction();
 }
 else

 {
 rollbackTransaction();
 }

 mvSetWatermarkEx(_T("End purchase"));

Having created two watermarks you can now configure various filtering options on many of Memory
Validator's user interfaces to show you data before a watermark, after a watermark and between two
watermarks.

If there is nothing shown between two watermarks it's because anything that was allocated between the
creation of those two watermarks has been deallocated.

6.1 Native API Reference

Unicode or ANSI?

All the API functions are provided in Unicode and ANSI variants where strings are used. We've also
provided a character width neutral #define in the same fashion that the Windows.h header files do.

For example the function for naming a heap is provided as mvSetThreadNameA(), mvSetThreadNameW()
with the character width neutral mvSetThreadName() mapping to mvSetThreadNameW() for unicode and
mvSetThreadNameA() for ANSI.

In this document we're going to use TCHAR like the Window.h header files do.

Memory Validator Help595

Copyright © 2001-2025 Software Verify Limited

All the API functions are declared as extern "C", so they can be used by C users and C++ users.

To use these functions #include svlMVAPI.h into your code.

Documentation, A or W?

Where there are functions that take strings we document the function as mvFunction(), but they will be
implemented as mvFunctionA() for ANSI or mvFunctionW() for Unicode, using the same convention that
Microsoft uses to document their functions.

6.1.1 Loading and Starting the Profiler

mvLoadProfiler

Loads the profiler DLL into memory, but does not start the profiler.

Use this for:
32 bit applications with a 32 bit Memory Validator GUI
64 bit applications with a 64 bit Memory Validator GUI

For most use cases won't need to load the profiler, as the profiler will have been loaded when your
launched your program from Memory Validator, or when you injected into your program using Inject or
Wait For Application.

However if you're running your program from outside of Memory Validator and want to load the profiler
from inside your program you can use mvLoadProfiler() to do that. You'll then need to call
mvStartProfiler() to start it.

extern "C"

int mvLoadProfiler();

Returns:
TRUE Successfully loaded MV DLL into target application.
FALSE Failed to load the MV DLL.into target application.
 Check that the PATH environment variable points to the Memory Validator
install directory contains svlMemoryValidatorStub*.dll.

Do not use this function if you are working with services, use the NT Service API.

mvLoadProfiler6432

Loads the profiler DLL into memory, but does not start the profiler.

Use this for:
32 bit applications with a 64 bit Memory Validator GUI

For most use cases won't need to load the profiler, as the profiler will have been loaded when your
launched your program from Memory Validator, or when you injected into your program using Inject or
Wait For Application.

Native API 596

Copyright © 2001-2025 Software Verify Limited

However if you're running your program from outside of Memory Validator and want to load the profiler
from inside your program you can use mvLoadProfiler6432() to do that. You'll then need to call
mvStartProfiler() to start it.

extern "C"

int mvLoadProfiler6432();

Returns:
TRUE Successfully loaded MV DLL into target application.
FALSE Failed to load the MV DLL.into target application.
 Check that the PATH environment variable points to the Memory Validator
install directory contains svlMemoryValidatorStub*.dll.

Do not use this function if you are working with services, use the NT Service API.

mvStartProfiler

To start the profiler from your API code you need to call the function mvStartProfiler() from your code
before you call any API functions. Ideally you should call this function as early in your program as
possible.

extern "C"

int mvStartProfiler();

Returns:
TRUE Successfully started MV profiler.
FALSE Failed to start the MV profiler.

If you prefer to start the profiler from the user interface or command line you can omit the
mvStartProfiler() call. You can leave it present if you wish to start Memory Validator from your
program.

Do not use this function if you are working with services, use the NT Service API.

mvIsValidatorPresent

To test if Memory Validator has loaded into this application call mvIsValidatorPresent().

extern "C"

int mvIsValidatorPresent();

Returns:
TRUE Memory Validator is loaded into this process.
FALSE Memory Validator is not loaded into this process.

6.1.2 Custom Heap Tracking

API functions for tracking allocations in custom heaps

Memory Validator Help597

Copyright © 2001-2025 Software Verify Limited

The following group of API functions notify Memory Validator of allocation behaviour in a custom memory
manager.

The functions cover:

· allocation
· reallocation
· free
· object reference count changes (increment and decrement)

The dllId parameter is the index of the Memory Validator extension DLL (if any) to use.

You can pass two items of user defined data.

The Ex functions take an extra tagTracker parameter - an id returned from a call to mvAddTracker(), or
0 if you don't have one.

mvUserCustomAlloc()
mvUserCustomAllocEx()

extern "C"

void mvUserCustomAlloc(void* address, // address of allocation

 SIZE_T size, // size of allocation (bytes)

 DWORD_PTR userData1,
 DWORD_PTR userData2,
 DWORD dllId = -1); // extDll id, -1 if none

extern "C"

void mvUserCustomAllocEx(void* address, // address of allocation

 SIZE_T size, // size of allocation (bytes)

 DWORD_PTR userData1,
 DWORD_PTR userData2,
 DWORD dllId = -1, // extDll id, -1 if none

 DWORD tagTracker); // see mvAddTracker() to get tracker id

mvUserCustomReAlloc()
mvUserCustomReAllocEx()

extern "C"

void mvUserCustomReAlloc(void* oldAddress, // address of allocation

 void* newAddress, // address of allocation

 SIZE_T newSize, // size of allocation (bytes)

 DWORD userData1,
 DWORD userData2,
 DWORD dllId = -1); // extDll id, -1 if none

Native API 598

Copyright © 2001-2025 Software Verify Limited

extern "C"

void mvUserCustomReAllocEx(void* oldAddress, // address of allocation

 void* newAddress, // address of allocation

 SIZE_T newSize, // size of allocation (bytes)

 DWORD_PTR userData1,
 DWORD_PTR userData2,
 DWORD dllId = -1, // extDll id, -1 if none

 DWORD tagTracker); // see mvAddTracker() to get tracker id

mvUserCustomFree()
mvUserCustomFreeEx()

extern "C"

void mvUserCustomFree(void* address, // address of free

 DWORD userData1,
 DWORD userData2,
 DWORD dllId = -1); // extDll id, -1 if none

extern "C"

void mvUserCustomFreeEx(void* address, // address of free

 DWORD_PTR userData1,
 DWORD_PTR userData2,
 DWORD dllId = -1, // extDll id, -1 if none

 DWORD tagTracker); // see mvAddTracker() to get tracker id

mvUserCustomRefCountDecrement()
mvUserCustomRefCountDecrementEx()

Notifies Memory Validator that a specific object has had its reference count decremented.

This is to provide support for those software using reference counting, but have no way of easily tracking
where and when reference counts change.

extern "C"

void mvUserCustomRefCountDecrement(DWORD data, // address of allocation

 DWORD userData,
 DWORD userData2,
 DWORD dllId = -1); // extDll id, -1 if none

extern "C"

void mvUserCustomRefCountDecrementEx(DWORD data, // address of allocation

 DWORD_PTR userData,
 DWORD_PTR userData2,
 DWORD dllId = -1, // extDll id, -1 if none

 DWORD tagTracker); // see mvAddTracker() to get tracker id

mvUserCustomRefCountIncrement()
mvUserCustomRefCountIncrementEx()

Notifies Memory Validator that a specific object has had its reference count incremented.

Memory Validator Help599

Copyright © 2001-2025 Software Verify Limited

extern "C"

void mvUserCustomRefCountIncrement(DWORD data, // address of allocation

 DWORD userData1,
 DWORD userData2,
 DWORD dllId = -1); // extDll id, -1 if none

extern "C"

void mvUserCustomRefCountIncrementEx(DWORD data, // address of allocation

 DWORD_PTR userData1,
 DWORD_PTR userData2,
 DWORD dllId = -1, // extDll id, -1 if none

 DWORD tagTracker); // see mvAddTracker() to get tracker id

6.1.3 Naming Heaps

API Function for naming heaps

Named heaps are very useful if you want to use the filters to display data.

Filtering heaps with real names make it much easier to watch events than using a thread id, especially
as thread ids are quite likely be different between sessions.

mvSetHeapName()

Tells Memory Validator to name a specific heap.

extern "C"

void mvSetHeapName(HANDLE hHeap, // must be a HeapCreate() handle

 const TCHAR* name);

6.1.4 Naming Threads

API Function for naming heaps

Named threads are very useful if you want to use the thread filter to display data.

Filtering threads with real names make it much easier to watch events than using a thread id, especially
as thread ids are quite likely be different between sessions.

mvSetThreadName()

Tells Memory Validator to name a specific thread.

Native API 600

Copyright © 2001-2025 Software Verify Limited

extern "C"

void mvSetThreadName(DWORD threadID, // id identifying a thread (CreateThread, CreateProcess, beginthread(), beginthreadex(), GetCurrentThreadId()...)

 const TCHAR* name);

6.1.5 Setting Watermarks & Bookmarks

API Functions setting watermarks and bookmarks

mvSetWatermark()

Creates a named watermark in Memory Validator. This watermark applies to data regardless of which
thread the data is collected on.

You can use this watermark in the main tab views when filtering results and detecting memory leaks.

The watermarks can also be used in the API to notify your target program (via a callback) of leaks
detected after or between named watermarks.

The watermark created will reference the most recent data trace recorded at the time of calling.

extern "C"

void mvSetWatermark(const TCHAR *name);

mvSetWatermarkEx()

Creates a named watermark in Memory Validator. This watermark applies to data collected on this
thread only.

This is unlike mvSetWatermark which applies to data regardless of which thread the data is collected
on.

You can use this watermark in the main tab views when filtering results and detecting memory leaks.

The watermarks can also be used in the API to notify your target program (via a callback) of leaks
detected after or between named watermarks.

The watermark created will reference the most recent data trace recorded at the time of calling.

extern "C"

void mvSetWatermarkEx(const TCHAR *name);

mvSetBookmark()

Creates a named bookmark, referencing the most recent data trace recorded at the time of calling.

This is useful to automatically generate a point of interest in the event history that you might want to
locate easily in the main tab views.

Memory Validator Help601

Copyright © 2001-2025 Software Verify Limited

extern "C"

void mvSetBookmark(const TCHAR *name);

6.1.6 Callbacks for Leaks & Uninitialized Data

API Function callbacks for leaks and uninitialized data

The API leak detection callback facility can call a function in your application if one of the following
happens:

· each time a leak is found before the program ends.

· a leak is detected for an allocation made after or between specified watermarks

· uninitialized memory is detected in the C runtime heap

You can setup each callback with an item of user data which will be passed back into the callback.

mvLeakDetect()

A specified callback in your program is called for each item of leaked memory.

Usually leaks are detected by monitoring the entire program execution, and are viewed once the target
program ends.

Data not deallocated by the time the program ends is deemed to have been leaked, unless it is pointed
to by a pointer in static memory, when it is regarded as 'potentially in use'.

 Use with caution. This function is not very efficient and can take a long time to execute if there are
lots of allocations. However, it's useful if you really need to know about leaked items before the program
has ended.

extern "C"

int mvLeakDetect(API_LEAK_CALLBACK callback, // The callback to call when leaked memory is found

 void* userData, // User data you want to pass back into the callback

 DWORD flags); // Flags used to control what memory is searched when checking for memory leaks

The callback needs to have the form:

void leakCallback(API_MEMORY_INFO *data, // Information about the leaked memory. If NULL, the leaked memory detection is complete

 void *userData); // The value you supplied to mvLeakDetect()

The following values are available as flags that can be passed to mvLeakDetect(). These flags can be
combined using the OR operator. These flags are defined in the allEnum.h header file.

Native API 602

Copyright © 2001-2025 Software Verify Limited

LEAK_DETECT_NONE 0x00000000 // No leak detects are performed

LEAK_DETECT_CPP 0x00000001 // Scan CRT debug heap

LEAK_DETECT_C 0x00000002 // Scan C heap (see heapwalk())

LEAK_DETECT_WIN32_HEAPS 0x00000004 // Scan Win32 heaps (see HeapWalk())

LEAK_DETECT_GLOBAL 0x00000008 // Scan non-dynamic memory in DLLs (variables in non-stack memory that are not dynamically allocated)

LEAK_DETECT_STACK 0x00000010 // Scan the stack space of the current thread

LEAK_DETECT_ALL_STACKS 0x00000020 // Not implemented

LEAK_DETECT_ALL_TLS 0x00000040 // Not implemented

LEAK_DETECT_ALL_HEAPS (LEAK_DETECT_CPP | LEAK_DETECT_C | LEAK_DETECT_WIN32_HEAPS)
LEAK_DETECT_ALL_EXCEPT_STACK (LEAK_DETECT_CPP | LEAK_DETECT_C | LEAK_DETECT_WIN32_HEAPS | LEAK_DETECT_GLOBAL)
LEAK_DETECT_ALL (LEAK_DETECT_CPP | LEAK_DETECT_C | LEAK_DETECT_WIN32_HEAPS | LEAK_DETECT_GLOBAL | LEAK_DETECT_STACK)

We recommend using the flag value LEAK_DETECT_ALL_EXCEPT_STACK.

We don't recommend scanning the stack space of the current thread for references to pointers in local
variables.

The reasons we don't recommend LEAK_DETECT_STACK are:

· Identifying just the stack space used for local variables is slow. This is a serious performance
overhead.

· We can't identify the stack space used for local variables for any functions that don't have full debug
information. This means any Microsoft code and any third party code (shell extensions etc).

· Scanning all the stack space means we're scanning workspace that was previous used but is now just
workspace for any functions on the stack. This space can contain old values from previous function
calls leading to FALSE positive identifications of pointers which would be incorrectly reported as found
(not leaked).

mvLeakDetectFromWatermark()

Here you specify a watermark, for which a callback is only called for leaks detected for memory
allocated after the watermark was created.

The watermark can be created via the API using mvSetWatermark or interactively by the user.

extern "C"

int mvLeakDetectFromWatermark(const TCHAR* watermarkName, // The name of the watermark

 API_WATERMARK_CALLBACK callback, // The callback to call when leaked memory is found

 void* userData); // User data you want to pass back into the callback

The callback has the form:

void leakCallback(DWORD address, // Address of the leaked memory

 void *userData); // The value you supplied to mvLeakDetectFromWatermark()

mvLeakDetectBetweenWatermarks()

Memory Validator Help603

Copyright © 2001-2025 Software Verify Limited

Similar to mvLeakDetectFromWatermark, but the callback is only made for leaks where the memory
allocation is between two named watermarks.

extern "C"

int mvLeakDetectBetweenWatermarks(const TCHAR* firstWatermarkName, // The name of the first watermark

 const TCHAR* lastWatermarkName, // The second watermark

 API_WATERMARK_CALLBACK callback, // The callback to call when leaked memory is found

 void* userData); // User data you want to pass back into the callback

The callback has the same form as mvLeakDetectFromWatermark above.

mvDetectUninitialised()

Sets a callback to be called once per item of data if uninitialized data is detected in the C runtime heap.

extern "C"

int mvDetectUninitialised(API_UNINITIALISED_CALLBACK callback, // The callback to call when uninitialized data is found

 void* userData); // User data you want to pass back into the callback

The callback needs to have the same form as used with mvLeakDetect:

void leakCallback(API_MEMORY_INFO *data, // Information about the uninitialized memory. If NULL, uninitialized data detection is complete

 void *userData); // The value you supplied to mvLeakDetect()

6.1.7 Tag Tracking

API functions for tracking tags

The following group of API functions help your program associate trackable data tags with your memory
allocations.

The tags can then be tracked and used as filters to display events in the main display tabs.

The API functions let you:

· create a tag, and get an id for it

· manage a 'stack' of tags, pushing and popping a tag to change the 'current' tag.

· pass a tag id when notifying Memory Validator (via the API) of allocations on a custom heap

mvAddTracker()

Add a tag tracker name. Unlike mvPushTracker this does not make it the current tag tracker.

The id for the named tracker is returned and can be used with the API functions when making allocations
on a custom heap

Native API 604

Copyright © 2001-2025 Software Verify Limited

extern "C"

DWORD mvAddTracker(const TCHAR *trackerName);

mvPushTracker()

Push a tag tracker on to the tag stack, making it the 'current' tag tracker associated with allocations.

extern "C"

int mvPushTracker(const TCHAR *trackerName);

mvPopTracker()

Pop the current tag tracker from the top of the tag stack.

If any more tags are on the stack, the top one becomes current.

extern "C"

int mvPopTracker();

6.1.8 Data Collection

mvSetCollect()

Enables or disables data collection - i.e. whether data is sent to Memory Validator from your target
application.

extern "C"

void mvSetCollect(int enable); // TRUE to enable, FALSE to disable

mvGetCollect()

Returns whether data collection is on.

extern "C"

int mvGetCollect(); // Returns TRUE or FALSE

mvIgnoreThisThread()

Use this function to tell Memory Validator to ignore this thread or pay attention to this thread.

extern "C"

int mvIgnoreThisThread(); // Returns TRUE or FALSE

The return code indicates Memory Validator previous ignore state. You can use this value in a
subsequent call to mvIgnoreThisThread().

Memory Validator Help605

Copyright © 2001-2025 Software Verify Limited

Example:

int prevValue;

prevValue = mvIgnoreThisThread(TRUE); // tell MV to ignore this thread and record the previous ignore state

doBakeCake(); // these operations on this thread are ignored

mvIgnoreThisThread(prevValue); // tell MV to restore the previous ignore this thread state

6.1.9 Lifetime Allocations

Some application designs make use of allocations that are intended to last the lifetime of the application.

Typically such allocations will be assigned to static variables and they will never be deallocated.

It is useful if these allocations can be marked as "lifetime allocations" that are intended to leak.

The Memory Validator user interface will not identify lifetime allocations as leaks, thus removing clutter
from your memory leak reports.

mvMarkMemoryAsLifetimeAllocation()

Mark memory at this address as a lifetime allocation.

extern "C"
void mvMarkMemoryAsLifetimeAllocation(void *address);

mvMarkHandleAsLifetimeAllocation()

Mark this handle as a lifetime allocation.

extern "C"
void mvMarkHandleAsLifetimeAllocation(HANDLE handle);

6.1.10 Playing Sounds

You can use the API to play sounds from the Memory Validator GUI.

mvPlaySound()

Plays a sound.

The sound is specified by a full path to a Windows .wav file.

extern "C"

void mvPlaySound(const TCHAR *fullPathToWavFile);

example:

mvPlaySound(_T("c:\\windows\\media\\Windows Notify Email.wav"));

Native API 606

Copyright © 2001-2025 Software Verify Limited

The request to play the sound is added to the data stream sent to the GUI. The sound is played when
the Memory Validator user interface reads this event data.

This allows you to add mvPlaySound() calls alongside other API calls and have then effectively sound at
the same time the other events arrive at the GUI.

For example you might want to play a sound to announce that a particular event has happened in the
program, and also associate a watermark with that event. You can do that with two API calls.

mvSetWatermark(_T("Data Processing Queue Start"));
mvPlaySound(_T("c:\\windows\\media\\Windows Notify Email.wav"));

6.1.11 Utility Functions

API utility functions

The API utility functions provide access to a few tools such as

· Dumping leaked objects to a callback or a data file

· Force a garbage collection on the C runtime heap

· Running an integrity check on the C runtime heap

· Shutting down Memory Validator

mvUserDumpLeaks()

Dumps any leaked memory objects to the specified callback, or to a data file, depending on the
dumpMethod parameter.

extern "C"

DUMP_RESULT mvUserDumpLeaks(DUMP_METHOD dumpMethod, // how to do the dump DUMP_TO_FILE_HOST, DUMP_TO_FILE_REMOTE, or DUMP_TO_CALLBACK

 const TCHAR* fileName, // NULL if no file,

 USER_DUMP_CALLBACK callback, // NULL if not to callback

 DWORD userData); // userdata to pass to callback

mvGarbageCollect()

Forces garbage collection to be performed on the C runtime heap.

This facility is useful to allow cleanup after a function has leaked and would like to start from a known
state of 'not leaked'.

Use with caution. Memory Validator is not designed to be used as a garbage collector, and this
function is not very efficient. It can take a long time to execute if there are lots of allocations.

Memory Validator Help607

Copyright © 2001-2025 Software Verify Limited

extern "C"

int mvGarbageCollect();

mvIntegrityCheck()

Perform an integrity check on the C runtime heap.

extern "C"

int mvIntegrityCheck(); // Returns TRUE or FALSE depending on whether the check passed

mvShutdownMemoryValidator()

Call from your target application to turn off Memory Validator functionality.

extern "C"

int mvShutdownMemoryValidator();

6.1.12 Example code

Example : apiExample

Please see the apiExample application for a simple application that demonstrates the usage of the API.

You can find this in the examples folder in the Memory Validator installation directory.

Example : Load and start profiler then set watermarks during execution

This simple code snippet shows how you might use the API in your application.

This example is for a simplistic cooking machinery that mixes ingredients and bakes them into a cake.

Note that when run on a computer that doesn't have Memory Validator installed these API calls will have
no effect, and there are no dependencies upon Memory Validator - you can ship your product with these
API calls in it.

#include "svlMVAPI.h"

int main(int argc,

 char *argv[])
{
 if (mvLoadProfiler())
 {
 // profiler loaded OK

 if (mvStartProfiler())
 {
 // profiler started OK
 // ensure we have data collection turned on (don't call this if you wish to honour the data collection setting in the Memory Validator GUI)

Native API 608

Copyright © 2001-2025 Software Verify Limited

 mvSetCollect(TRUE);
 }
 else
 {
 // failed to start profiler
 }
 }
 else
 {
 // failed to load profiler (is Memory Validator installed on the machine?)
 }

 // place watermarks before and after all major events
 // we can then use the watermarks in the GUI to see which parts of the application leak memory

 mvSetWatermark(_T("Start"));

 doInit();

 mvSetWatermark(_T("AddIngredients"));

 doAddIngredients();

 mvSetWatermark(_T("MixIngredients"));

 doMixIngredients();

 mvSetWatermark(_T("Bake"));

 doBake();

 mvSetWatermark(_T("Cool"));

 doCooldown();

 mvSetWatermark(_T("Shutdown"));

 doShutdown();

 mvSetWatermark(_T("End"));
}

Memory Validator Help609

Copyright © 2001-2025 Software Verify Limited

6.2 C# API

The C# API is a wrapper around the native API.

For all of these APIs see the native API for more details.

Adding the API to your application

The C# API is provided as a source code svlMVAPI.cs file that you add to your application. The source
file is in the API directory in the Memory Validator install directory.

The C# API does not add any dependencies to your application - if Memory Validator is present the API
functions work, if Memory Validator is not present the API functions do nothing.

The C# API

The C# API is implemented by the MemoryValidator class in the SoftwareVerify namespace.

6.2.1 Snapshots

makeSnapshot()

Create a snapshot of .Net objects with the name snapshotName.

public static void makeSnapshot(string snapshotName);

makeSnapshotComparison()

Native API 610

Copyright © 2001-2025 Software Verify Limited

Create a comparison of the most recent 2 snapshots with the name comparisonName.

public static void makeSnapshotComparison(string comparisonName);

6.2.2 Object Inactivity

setStaleStartupThreshold()

Mark this location in program execution as the the stale startup threshold location.

public static void setStaleStartupThreshold();

setStaleIgnoreThreshold()

Set the number of garbage collections to use as the stale object ignore threshold.

public static void setStaleIgnoreThreshold(UInt32 threshold);

enableObjectActivityDataCollection()

Enable object activity data collection.

public static void enableObjectActivityDataCollection(bool enable);

setStaleInactivityStart()

Set the stale inactivity start location.

public static void setStaleInactivityStart();

setStaleInactivityEnd()

Set the stale inactivity end location.

public static void setStaleInactivityEnd();

setStaleInactivityIgnore()

Set the stale inactivity ignore threshold. Specify the number of garbage collections to ignore.

public static void setStaleInactivityIgnore(UInt32 ignore);

Memory Validator Help611

Copyright © 2001-2025 Software Verify Limited

6.2.3 Watermarks & Bookmarks

setWatermark()

Set a watermark at the current location.

public static void setWatermark(string name);

setWatermarkEx()

Set a watermark at the current location.

public static void setWatermarkEx(string name);

watermarkRangeStart()

Mark the start of a watermark range.

public static void watermarkRangeStart(string name);

watermarkRangeEnd()

Mark the end of a watermark range. The specified name must match the name passed to previous call to
watermarkRangeStart.

public static void watermarkRangeEnd(string name);

setBookmark()

Set a bookmark at the current location.

public static void setBookmark(string name);

6.2.4 Tag Tracking

addTracker()

Add a tag tracker. The tag tracker is not made the current tracker. It's ID is returned from the function for
future use with tag tracking functions.

public static UInt32 addTracker(string trackerName);

Native API 612

Copyright © 2001-2025 Software Verify Limited

pushTracker()

Push a tag tracker onto the tag tracker stack. The tag tracker at the top of the stack (if there is one) will
be used to tag memory and handle allocations.

public static void pushTracker(string trackerName);

popTracker()

Pop a tag tracker from the tag tracker stack. The tag tracker at the top of the stack (if there is one) will
be used to tag memory and handle allocations.

public static void popTracker();

6.2.5 Data Collection

collectOn()

Turn data collection on.

public static void collectOn();

collectOff()

Turn data collection off.

public static void collectOff();

setCollect()

Turn data collection on or off.

public static void setCollect(bool enable);

getCollect()

Determine if data collection is turned on or off.

public static bool getCollect();

6.2.6 Utility Functions

isPresent()

Memory Validator Help613

Copyright © 2001-2025 Software Verify Limited

Returns true if Memory Validator is loaded into the process.

public static bool isPresent();

shutdownMemoryValidator()

Shutdown Memory Validator. After this call completes Memory Validator's stub will do no work.

public static void shutdownMemoryValidator();

enableStubSymbols()

Enable symbols in the stub.

public static void enableStubSymbols();

6.3 Calling the API via GetProcAddress

Calling API functions using GetProcAddress

If you don't want to use the svlMVAPI.c/h files you can use GetProcAddress() to find the interface
functions in the Memory Validator DLL.

The interface functions have different names and do not use C++ name mangling, but have identical
parameters to the API functions.

To determine the function name take any native API name, replace the leading mv with api. For example
mvSetWatermarkEx() becomes apiSetWatermarkEx();

Example usage

typedef void (*mvSetWatermark_FUNC)(const TCHAR *name);

HMODULE getValidatorModule()
{
 HMODULE hModule;

 hModule = GetModuleHandle(_T("svlMemoryValidatorStub6432.dll")); // 32 bit DLL with 64 bit Memory Validator GUI
 if (hModule == NULL)

 hModule = GetModuleHandle(_T("svlMemoryValidatorStub_x64.dll")); // 64 bit DLL with 64 bit Memory Validator GUI
 if (hModule == NULL)

 hModule = GetModuleHandle(_T("svlMemoryValidatorStub.dll")); // 32 bit DLL with 32 bit Memory Validator GUI

 return hModule;

}

Native API 614

Copyright © 2001-2025 Software Verify Limited

HMODULE hMod;

// get module, will only succeed if Memory Validator launched this app or is injected into this app

hMod = getValidatorModule();
if (hMod != NULL)

{
 // MV is present, lookup the function and call it to set a watermark for this location in the code

 mvSetWatermark_FUNC pFunc;

 // "apiSetWatermark" is equivalent to linking against "mvSetWatermark"

 pFunc = (mvSetWatermark_FUNC)GetProcAddress(hMod, "apiSetWatermark");
 if (pFunc != NULL)

 {
 (*pFunc)(watermarkName);
 }
}

API functions and their GetProcAddress names

For any API functions not listed, try looking up the name in svlMemoryValidatorStub.dll using
depends.exe or PE File Browser.

Show API functions and GetProcAddress names

API Name GetProcAddress() Name

mvAddTrackerA

mvAddTrackerW

mvDetectUninitialised

mvGarbageCollect

mvGetCollect

mvIntegrityCheck

mvLeakDetect

mvLeakDetectBetweenWatermarksA

mvLeakDetectBetweenWatermarksW

mvLeakDetectFromWatermarkA

mvLeakDetectFromWatermarkW

mvPushTrackerA

mvPushTrackerW

mvPopTracker

mvSetBookmarkA

mvSetBookmarkW

mvSetCollect

mvSetHeapNameA

mvSetHeapNameW

mvSetThreadNameA

mvSetThreadNameW

mvSetWatermarkA

mvSetWatermarkW

mvShutdownMemoryValidator

mvUserCustomAlloc

mvUserCustomReAlloc

mvUserCustomFree

apiAddTrackerA

apiAddTrackerW

apiDetectUninitialised

apiGarbageCollect

apiGetCollect

apiIntegrityCheck

apiLeakDetect

apiLeakDetectBetweenWatermarksA

apiLeakDetectBetweenWatermarksW

apiLeakDetectFromWatermarkA

apiLeakDetectFromWatermarkW

apiPushTrackerA

apiPushTrackerW

apiPopTracker

apiSetBookmarkA

apiSetBookmarkW

apiSetCollect

apiSetHeapNameA

apiSetHeapNameW

apiSetThreadNameA

apiSetThreadNameW

apiSetWatermarkA

apiSetWatermarkW

apiShutdownMemoryValidator

informAlloc

informReAlloc

informFree

https://dependencywalker.com/
https://www.softwareverify.com/product/pe-file-browser/

Memory Validator Help615

Copyright © 2001-2025 Software Verify Limited

mvUserCustomRefCountDecrement

mvUserCustomRefCountIncrement

mvUserDumpLeaks

informRefCountDecrement

informRefCountIncrement

informDumpLeaks

Other exported functions

You may see some other functions exported from svlMemoryValidatorStub.dll(_x64).dll.

 These other functions are for Memory Validator's use. Using them may damage memory locations
and/or crash your code. Best not to use them!

6.4 Convenience functions

Convenience functions

One convenience function is provided that will start the Memory Validator GUI (if it is not already
running), then load the Memory Validator leak tracker into your process and start monitor memory
usage.

extern "C"
int loadValidatorIntoApplication();

Returns:
TRUE Successfully loaded MV DLL into target application and successfully
started the profiler.
FALSE Failed to load the MV DLL or failed to start the profiler.

To use this function #include loadValidatorIntoApplication.h into your code.

The source files can be found in the API directory in the Memory Validator install directory.

loadValidatorIntoApplication.h

loadValidatorIntoApplication.c

Just add these files to your project and build.

Part

VII

Memory Validator Help617

Copyright © 2001-2025 Software Verify Limited

7 Working with IIS and Services

 When working with NT services your account must have the appropriate privileges described in the
User Permissions topic.

Attaching to your service

To use Memory Validator with NT Services you need to link a small library to your application and call
two functions in the library.

The NT Service API

The NT Service API is provided to enable Memory Validator to work with services.

The API works just as well with normal applications, and the same considerations outlined here also
apply generally.

When the NT Service API is used, source code symbols are acquired in the stub and sent to the
Memory Validator user interface.

Monitoring the service

When working with Memory Validator and services using the NT Service API you don't start the service
using Memory Validator.

Instead, you start the service the way you normally start the service - e.g. with the service control
manager.

The code that you have embedded into your service then contacts Memory Validator, which you should
have running before starting the service.

Once you've exercised your service and stopped it, Memory Validator will show the usual leak
information

See the section on monitoring a service for details.

Examples and help

We provide some Example Service Source Code to demonstrate how to embed the service code into
your service.

If you have problems using Memory Validator with services, please contact us at
support@softwareverify.com.

mailto:support@softwareverify.com

Working with IIS and Services 618

Copyright © 2001-2025 Software Verify Limited

7.1 NT Service API

The Memory Validator stub service libraries

The NT Service API is very simple, consisting of functions to load, start and unload the Memory Validator
DLL.

We have also provided some debugging functions to help you debug the implementation of the NT
Service API because getting data into and out of services is not always straightforward.

The stub service libraries used for this are shown in the following table:

32 bit Memory Validator 64 bit Memory Validator
32 bit service svlMVStubService.lib

svlMVStubServiceMD.lib
svlMVStubServiceMT.lib

svlMVStubService6432.lib

64 bit service N/A svlMVStubService_x64.lib
svlMVStubServiceMD_x64.lib
svlMVStubServiceMT_x64.lib

All the functions exported from these libraries are exported as extern "C" so that C and C++ users can
use them.

Library name suffixes

The MD suffix indicates the library was built with the /MD compiler switch.
The MT suffix indicates the library was built with the /MT compiler switch.

Directory Name: 2010 or 2012?

Visual Studio 6 to Visual Studio 2010
If you are using Visual Studio 2010 or earlier, use libraries from a directory with 2010 in the directory
name.

Visual Studio 2010 to Visual Studio 2022
If you are using Visual Studio 2012 or later, use libraries from a directory with 2012 in the directory
name.

Header files

The header files can be found in the svlMVStubService directory in the Memory Validator install
directory.

The headers file provide an error enumeration and the NT Service API functions.

svlMVStubService.h

svlServiceError.h

Linker Problems

Memory Validator Help619

Copyright © 2001-2025 Software Verify Limited

Some linkers cannot link the stub service library file. If you have this problem see What do I do if I
cannot use svlMVStubService.lib?

Loading the Memory Validator DLL into your service

To load the Memory Validator stub dll svlMemoryValidatorStub(_x64).dll into your service, call
svlMVStub_LoadMemoryValidator(), not LoadLibrary().

If you are monitoring a 32 bit service with the 64 bit Memory Validator user interface you should use
svlMVStub_LoadMemoryValidator6432().

Shutting down the Memory Validator DLL from your service.

To shutdown Memory Validator's monitoring of the service , call
svlMVStub_ShutdownMemoryValidator().

This sends the shutting down notification and removes any hooks for your process.

Calling this function is optional. You can stop your service without calling this function.

Unloading the Memory Validator DLL from your service.

To unload the Memory Validator stub dll, call svlMVStub_UnloadMemoryValidator(), not
FreeLibrary().

Calling this function is optional. You can stop your service without calling this function.

Setting a service notification callback

Once you have successfully loaded the Memory Validator DLL you can setup a service callback so that
the service control manager can be kept updated during the process of starting the validator.

When a service is starting, Windows requires the service to inform the Service Control Manager (SCM)
that is starting at least every ten seconds.

Failure to do so results in Windows concluding that the service has failed to start, and the service is
terminated.

Instrumenting your service may well take more than 10 seconds, depending on the complexity and size
of your service.

The solution is for Memory Validator to periodically call a user supplied callback from which you can
regularly inform the SCM of the appropriate status.

You can set the service callback with svlMVStub_SetServiceCallback(callback, userParam).

Usage

Here is an example callback which ignores the userParam.

Working with IIS and Services 620

Copyright © 2001-2025 Software Verify Limited

 void serviceCallback(void *userParam)

 {
 static DWORD dwCheckPoint = 1;

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 ssStatus.dwControlsAccepted = 0;

 ssStatus.dwCurrentState = dwCurrentState;
 ssStatus.dwWin32ExitCode = dwWin32ExitCode;
 ssStatus.dwWaitHint = dwWaitHint;

 ssStatus.dwCheckPoint = dwCheckPoint++;

 // Report the status of the service to the service control manager.

 return SetServiceStatus(sshStatusHandle, &ssStatus);

 }

Starting Memory Validator DLL in your service

To start Memory Validator detecting memory leaks in your service call
svlMVStub_StartMemoryValidator.

Starting Memory Validator DLL in IIS

To start Memory Validator profiling IIS call svlMVStub_StartMemoryValidatorForIIS().

Setting a filename for all logging data to be written to

To set the filename for all debugging/logging information to be written to call
svlMVStub_setLogFileName().

Deleting the logfile

To delete the log file call svlMVStub_deleteLogFile().

Writing text to the logfile

To write a standard ANSI character string to the log file call svlMVStub_writeToLogFileA(text). The
ANSI string will be converted to Unicode prior to writing to the log file.

To write a Unicode character string to the log file call svlMVStub_writeToLogFileW(text).

Writing error code descriptions to the logfile

Memory Validator Help621

Copyright © 2001-2025 Software Verify Limited

To write a human readable description of the SVL_SERVICE_ERROR error code to the log file call
svlMVStub_writeToLogFile(errCode).

Writing LastError code descriptions to the logfile

To write a human readable description of the Windows error code to the log file call
svlMVStub_writeToLogFileLastError(errCode).

Dumping the PATH environment to the logfile

To write the contents of the PATH environment variable to the log file call
svlMVStub_dumpPathToLogFile().

This can be useful if you want to know what the search path is when trying to debug why a DLL wasn't
found during an attempt to load the Validator DLL.

7.1.1 Changes to the NT Service API

API changes - February 2018

To make the API easier to use with services we made the following changes:

· Changed the API by adding many debugging functions to allow you to easily log information.

· We also extended the error enumeration to provide additional error status values.

· We also split the function of loading and starting Memory Validator into two functions - a load
function and a start function.

· We split the functionality so that you could setup a service callback prior to calling the start
function.

The service callback allows the service control manager to be informed that the service is still active
during time consuming operations, such as starting the Memory Validator when the service is non-
trivial in scope.

Failure to inform the service control manager results in the service being killed by the service control
manager because it thinks the service has hung.

This change in the API is to ensure you get better results from using our software.

What do you need to do to move from the old API to the new API?

Change all SVL_ERROR declarations to SVL_SERVICE_ERROR.

Your previous startup code probably looked like this:

Working with IIS and Services 622

Copyright © 2001-2025 Software Verify Limited

 SVL_ERROR errCode;

 errCode = svlMVStub_LoadMemoryValidator();

Change it to this:

 SVL_SERVICE_ERROR errCode;

 errCode = svlMVStub_LoadMemoryValidator();

 errCode = svlMVStub_SetServiceCallback(serviceCallback, NULL);

 errCode = svlMVStub_StartMemoryValidator();

The serviceCallback would look something like this:

 void serviceCallback(void *userParam)

 {
 static DWORD dwCheckPoint = 1;

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 ssStatus.dwControlsAccepted = 0;

 ssStatus.dwCurrentState = dwCurrentState;
 ssStatus.dwWin32ExitCode = dwWin32ExitCode;
 ssStatus.dwWaitHint = dwWaitHint;
 ssStatus.dwCheckPoint = dwCheckPoint++;

 // Report the status of the service to the service control manager.

 return SetServiceStatus(sshStatusHandle, &ssStatus);

 }

In the code above we have omitted error handling. To see how to use the new logging function with error handling please examine the source code service.cpp in the example service project.

Important.

Once your service is running (rather than starting) your service callback should set the appropriate
running status SERVICE_RUNNING rather than SERVICE_START_PENDING.

 if (!ReportStatusToSCMgr(SERVICE_RUNNING, // service state

 NO_ERROR, // exit code

 0)) // wait hint

 {
 dwErr = GetLastError();
 if (bLogging)

 svlMVStub_writeToLogFileW(L"ReportStatusToSCMgr:5\r\n");
 goto cleanup;

 }

Memory Validator Help623

Copyright © 2001-2025 Software Verify Limited

An alternative solution is to prevent the service callback from being called once the
service status has been set to running.

 svlMVStub_SetServiceCallback(NULL, NULL);.

7.1.2 NT Service API Reference

The API consists of the following functions.

SVL_SERVICE_ERROR Enumeration

typedef enum _svlServiceError
{
 SVL_OK, // Normal behaviour
 SVL_ALREADY_LOADED, // Stub DLL already loaded into service
 SVL_LOAD_FAILED, // Failed to load stub DLL into service
 SVL_FAILED_TO_ENABLE_STUB_SYMBOLS, // Loaded DLL, but failed to enable stub symbols because couldn't find function
 SVL_NOT_LOADED, // Couldn't unload DLL because DLL not loaded
 SVL_FAIL_UNLOAD, // Couldn't unload DLL because couldn't find function
 SVL_FAIL_TO_CLEANUP_INTERNAL_HEAP, // Couldn't get the internal stub heap and thus couldn't clean it up
 SVL_FAIL_MODULE_HANDLE // Couldn't get the stub DLL handle so couldn't continue
 SVL_FAIL_SETSERVICECALLBACK, // Couldn't call the set service callback
 SVL_FAIL_COULD_NOT_FIND_ENTRY_POINT, // Couldn't find the DLL entry point to start the validator
 SVL_FAIL_TO_START, // Failed to start the Validator
 SVL_FAIL_SETSERVICECALLBACKTHRESHOLD, // Couldn't call the set service callback threshold
 SVL_FAIL_PATHS_DO_NOT_MATCH, // Path to service in env vars doesn't match the service being run
 SVL_FAIL_INCORRECT_PRODUCT_PREFIX, // Wrong validator
 SVL_FAIL_X86_VALIDATOR_FOUND_EXPECTED_X64_VALIDATOR, // Found wrong bit depth validator
 SVL_FAIL_X64_VALIDATOR_FOUND_EXPECTED_X86_VALIDATOR, // Found wrong bit depth validator
 SVL_FAIL_DID_YOU_MONITOR_A_SERVICE_FROM_VALIDATOR, // Looks like Monitor A Service wasn't used
 SVL_FAIL_ENV_VAR_NOT_FOUND, // Env Var not found
 SVL_FAIL_VALIDATOR_ENV_VAR_NOT_FOUND, // Env Var identifying validator not found
 SVL_FAIL_VALIDATOR_ID_NOT_SPECIFIED, // Validator process not specified
 SVL_FAIL_VALIDATOR_ID_NOT_A_PROCESS, // Validator process identified doesn't exist
 SVL_FAIL_VALIDATOR_NOT_FOUND, // Validator process identified doesn't exist
} SVL_SERVICE_ERROR;

svlMVStub_LoadMemoryValidator

extern "C"

SVL_SERVICE_ERROR svlMVStub_LoadMemoryValidator();

To load the Memory Validator stub svlMemoryValidatorStub.dll into your service, use
svlMVStub_LoadMemoryValidator(), not LoadLibrary().

This loads the DLL and sets up a few internal variables in the DLL to ensure that symbols are sent
from the stub to the Memory Validator user interface.

This is necessary because the Memory Validator user interface can't open a process handle to a
service and so is unable to get symbols from the process.

To solve this, symbols are sent from the stub to the user interface as needed.

Working with IIS and Services 624

Copyright © 2001-2025 Software Verify Limited

If you just call LoadLibrary() on the DLL, symbols will not be sent to the Memory Validator user
interface and you won't get meaningful function names in your stack traces.

This function can be used when monitoring:

· 32 bit services or applications with Memory Validator

· 64 bit services or applications with Memory Validator x64

If you are monitoring 32 bit applications with Memory Validator x64 you should use
svlMVStub_LoadMemoryValidator6432().

Which function you should call is shown in the table below.

32 bit Memory Validator 64 bit Memory Validator
32 bit service svlMVStub_LoadMemoryValidator() svlMVStub_LoadMemoryValidator6432()

64 bit service N/A svlMVStub_LoadMemoryValidator()

svlMVStub_LoadMemoryValidator6432

extern "C"

SVL_SERVICE_ERROR svlMVStub_LoadMemoryValidator6432();

To load the Memory Validator stub svlMemoryValidatorStub6432.dll into your service, use
svlMVStub_LoadMemoryValidator6432(), not LoadLibrary().

This loads the DLL and sets up a few internal variables in the DLL to ensure that symbols are sent
from the stub to the Memory Validator user interface.

This is necessary because the Memory Validator user interface can't open a process handle to a
service and so is unable to get symbols from the process.

To solve this, symbols are sent from the stub to the user interface as needed.

If you just call LoadLibrary() on the DLL, symbols will not be sent to the Memory Validator user
interface and you won't get meaningful function names in your stack traces.

This function should only be used when monitoring 32 bit services or applications with Memory
Validator x64.

svlMVStub_StartMemoryValidator

extern "C"

SVL_SERVICE_ERROR svlMVStub_StartMemoryValidator();

To start Memory Validator inspecting the service call svlMVStub_StartMemoryValidator().

svlMVStub_StartMemoryValidatorForIIS

extern "C"

Memory Validator Help625

Copyright © 2001-2025 Software Verify Limited

SVL_SERVICE_ERROR svlMVStub_StartMemoryValidatorForIIS();

To start Memory Validator inspecting IIS call svlMVStub_StartMemoryValidatorForIIS().

Example usage.

svlMVStub_ShutdownMemoryValidator

extern "C"

SVL_SERVICE_ERROR svlMVStub_ShutdownMemoryValidator();

To stop Memory Validator inspecing the service call svlMVStub_ShutdownMemoryValidator().

This sends the shutting down notification and removes any hooks for your process.

Calling this function is optional. You can stop your service without calling this function.

svlMVStub_UnloadMemoryValidator

extern "C"

SVL_SERVICE_ERROR svlMVStub_UnloadMemoryValidator();

To unload Memory Validator call svlMVStub_UnloadMemoryValidator(), do not call FreeLibrary().

Calling this function is optional. You can stop your service without calling this function.

svlMVStub_SetServiceCallback

extern "C"

SVL_SERVICE_ERROR svlMVStub_SetServiceCallback(serviceCallback_FUNC callback,
 void* userParam);

svlMVStub_SetServiceCallback is used to setup a service callback that is used to inform the Windows service control manager that the service is alive.

userParam is a value you can supply which will then be passed to the callback every time the callback
is called during instrumentation.

Why is a service callback needed?

When a service is starting, Windows requires the service to inform the Service Control Manager (SCM)
that is starting at least every ten seconds.

Failure to do so results in Windows concluding that the service has failed to start, and the service is
terminated.

Instrumenting your service may well take more than 10 seconds, depending on the complexity and
size of your service.

The solution is for Memory Validator to periodically call a user supplied callback from which you can
regularly inform the SCM of the appropriate status.

Working with IIS and Services 626

Copyright © 2001-2025 Software Verify Limited

We strongly recommend that you setup a service callback. Not setting a service callback can result in failure of your service to run because Windows kills it during startup and Memory Validator's instrumentation phase.

Debugging functions

The following functions are provided to help you log information about the progress, success or failure of
the NT Service API attaching Memory Validator to your service.

We strongly recommend that you use these logging functions so that you can understand why Memory
Validator might fail to connect to a service.

To see example usage of these debugging functions please look in service.cpp in the
examples\service directory in the Memory Validator install directory.

svlMVStub_setLogFileName

extern "C"

void svlMVStub_setLogFileName(const wchar_t* fileName);

Call svlMVStub_setLogFileName to set the name of the filename used for logging.

This function must be called before you can use any of the other debugging functions.

Setting this filename also sets the filename used by some of these API functions - you will find
additional logging data from those functions that will help debug any issues with the service.

svlMVStub_deleteLogFile

extern "C"

void svlMVStub_deleteLogFile();

This function deletes the log file.

svlMVStub_writeToLogFileA

extern "C"

void svlMVStub_writeToLogFileA(const char* text);

This function writes a standard ANSI character string to the log file.

The ANSI string will be converted to Unicode prior to writing to the log file.

svlMVStub_writeToLogFileW

extern "C"

Memory Validator Help627

Copyright © 2001-2025 Software Verify Limited

void svlMVStub_writeToLogFileW(const wchar_t* text);

This function writes a Unicode character string to the log file.

svlMVStub_writeToLogFile

extern "C"

void svlMVStub_writeToLogFile(SVL_SERVICE_ERROR errCode);

This function writes a human readable description of the SVL_SERVICE_ERROR error code to the log
file.

svlMVStub_writeToLogFileLastError

extern "C"

void svlMVStub_writeToLogFileLastError(DWORD errCode);

This function writes a human readable description of the Windows error code to the log file.

The errCode parameter is the error code returned from GetLastError().

svlMVStub_dumpPathToLogFile

extern "C"

void svlMVStub_dumpPathToLogFile();

This function writes the contents of the PATH environment variable to the log file.

This can be useful if you want to know what the search path is when trying to debug why a DLL wasn't
found during an attempt to load the Validator DLL.

7.1.3 Troubleshooting

Troubleshooting - Service fails to start

If a service takes too long to start the service control manager kills the service.

The way to stop this is for a service to call ReportStatusToSCMgr() to tell the service control manager
that the service is still OK.

Memory Validator can't do this for you as the call requires some data from any earlier call you have
made.

The solution is that you provide a callback using svlMVStub_SetServiceCallback() that Memory
Validator can call during the process of attaching to the service, and you can call the appropriate
function.

Example code to set the callback:

https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror

Working with IIS and Services 628

Copyright © 2001-2025 Software Verify Limited

errCode = svlMVStub_SetServiceCallback(serviceCallback, // the
callback

 NULL); // some
user data (we don't have any, so set NULL)

if (bLogging)

{

if (errCode != SVL_OK)

{

svlMVStub_writeToLogFileW(L"Setting service callback failed.
\r\n");

svlMVStub_writeToLogFile(errCode);

}

svlMVStub_writeToLogFileW(L"Starting Memory Validator\r\n");

}

Example callback:

static void serviceCallback(void *userParam)
{

// just tell the Service Control Manager that we are still busy

// in this example userParam is not used

//

// note that prior to the Validator loading it's DLL ssStatus.dwCurrentState
must have been initialised, most likely to SERVICE_START_PENDING

// you could pass a fixed value here, but it would need to change once the
service has finished starting up so that you don't unintentionally change the service
state

// when this callback is called. This callback is called whenever
instrumentation happens (when a DLL is loaded). Thus you can't assume this is only
called during service startup,

// it may also get called later in the service lifetime.

ReportStatusToSCMgr(ssStatus.dwCurrentState, // service state

NO_ERROR, // exit code

3000); // wait hint
}

We strongly recommend that you set a service callback. It won't harm your program and it will
remove any likelihood of your service being killed by the service control manager.

Troubleshooting - Service starts, Memory Validator gets no data

If you have problems getting Memory Validator to monitor your service you'll need to find out what's
failing.

Until Memory Validator loads correctly and successfully connects to the graphical user interface you
have no way of knowing what is happening.

The solution is to set a log file that Memory Validator can write status messages to. You can also write
your own status messages to this log file.

Memory Validator Help629

Copyright © 2001-2025 Software Verify Limited

Set the log file using svlMVStub_setLogFileName. Write to it using svlMVStub_writeToLogFile(),
svlMVStub_writeToLogFileA(), svlMVStub_writeToLogFileW().

Then when things are not working as expected take a look at the log file to see the errors. The Memory
Validator will often suggest what the problem is.

We strongly recommend that you configure the log file and use it when working with services. It
has saved us a lot of time.

7.2 Working with IIS

Configuring IIS for use with ISAPI

We assume that you are familiar with IIS. This is not a topic we can provide advice for.

That said, we wrote a blog article about configuring IIS for use with ISAPI.

Example ISAPI

We have provided an example ISAPI extension configured for use with Memory Validator.

This example is provided as source code and project files. You will need to build it yourself, you may
need to change an include path to find the appropriate headers. The resulting ISAPI will need to be
copied to your website for testing and the website configured to allow the ISAPI to execute (please see
the above mentioned blog article for details on that).

You can find the example ISAPI in the isapiExample folder in the Memory Validator installation
directory.

Using Memory Validator with IIS

IIS is a service application. It runs as one of the more restricted applications on Microsoft Windows.

Memory mapped files created by IIS cannot be opened by user mode programs (Memory Validator, for
example). DLLs, executables and files cannot be opened by IIS except if they are in directories which IIS
has access to. These are security measures intended to make your computer secure from attack.

These security measures make it hard for tools like Memory Validator to work.

· We have to communicate settings information to Memory Validator via text file
· All DLLs and helper programs we want to use need to be copied to the web root (or a subdirectory

within the web root) so that they can be used.
· We need to have our own data transport because our usual high speed memory mapped data transport

is not available.

It's also not possible to launch IIS or inject into a running IIS instance.

https://blog.softwareverify.com/setting-up-isapi-on-iis-10/
https://blog.softwareverify.com/setting-up-isapi-on-iis-10/

Working with IIS and Services 630

Copyright © 2001-2025 Software Verify Limited

The only way to work with IIS is by using the NT Service API, and using the
svlMVStub_StartMemoryValidatorForIIS() function instead of
svlMVStub_StartMemoryValidator().

We've provide some example code to show you how to attach and detach from your ISAPI extension.

Workflow

1) Start monitoring your ISAPI by using the Monitor ISAPI dialog.

 Launch menu IIS menu Monitor ISAPI...

2) When you have finished interacting with the web pages that use the ISAPI component shutdown IIS,
wait for Memory Validator's status to indicate "Ready" and examine the results.

 Launch menu IIS menu Stop IIS

7.3 Example Source Code

Service Example

Example demonstrating how to monitor a service.

Also see the example service that ships with Performance Validator.

You can find this in the \examples\service directory in the Performance Validator install directory.

Also see the example service and child process that ships with Performance Validator.

You can find this in the \examples\serviceWithAChildProcess directory in the Performance Validator
install directory.

IIS Example

Example demonstrating how to monitor an ISAPI DLL.

Also see the example ISAPI DLL that ships with Performance Validator.

You can find this in the \examples\isapiExample directory in the Performance Validator install
directory.

7.3.1 Example Service Source Code

Where to put your code

Memory Validator Help631

Copyright © 2001-2025 Software Verify Limited

When you use the functions to load and unload Memory Validator from your service, it is important that
you put the function calls in the correct place in your software.

The correct place to put them is in a 'balanced' location, such that you would expect no memory leaks to
occur between the load and the unload function call, assuming the service was working correctly.

Typically, this means that Memory Validator is:

· loaded as the first action in the service_main() function

· unloaded just before the service control manager is informed of the stopped status

The source code shown below shows an example service_main() function used in a service,
demonstrating where to load and unload Memory Validator.

The long comment covers problems with the way services are stopped and what may be displayed in a
debugger if this happens.

The code is extracted from service\service.cpp, part of the full example of an NT service, client
and a utility for controlling whether the service uses Memory Validator.

Show the C++ example service_main() function

void serviceCallback(void *userParam)

{
 // just tell the Service Control Manager that we are still busy

 // in this example userParam is not used

 static DWORD dwCheckPoint = 1;

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 ssStatus.dwControlsAccepted = 0;

 ssStatus.dwCurrentState = dwCurrentState;
 ssStatus.dwWin32ExitCode = dwWin32ExitCode;
 ssStatus.dwWaitHint = dwWaitHint;
 ssStatus.dwCheckPoint = dwCheckPoint++;

 // Report the status of the service to the service control manager.

 return SetServiceStatus(sshStatusHandle, &ssStatus);
}

void WINAPI service_main(DWORD dwArgc, LPTSTR *lpszArgv)

{
 if (bLogging)

 {
 svlMVStub_setLogFileName(SZLOGFILENAME);
 svlMVStub_deleteLogFile();
 }

Working with IIS and Services 632

Copyright © 2001-2025 Software Verify Limited

 // register our service control handler:

 sshStatusHandle = RegisterServiceCtrlHandler(TEXT(SZSERVICENAME), service_ctrl);
 if (sshStatusHandle != 0)

 {
 DWORD dwErr = 0;

 // **MV_EXAMPLE** start

#if _HONOUR_MV_MUTEX_LOAD
 if (bMemoryValidator)

#endif //#if _HONOUR_MV_MUTEX_LOAD

 {
 // load Memory Validator (but if monitoring a 32 bit service with C++ Memory

Validator x64 use svlMVStub_LoadMemoryValidator6432())

 if (bLogging)

 {
 svlMVStub_writeToLogFileW(_T("About to load C++ Memory Validator\r\n"));
 }

 SVL_SERVICE_ERROR errCode;
#ifdef IS6432
 // x86 with x64 GUI

 errCode = svlMVStub_LoadMemoryValidator6432();
#else //#ifdef IS6432

 // x86 with x86 GUI

 // x64 with x64 GUI

 errCode = svlMVStub_LoadMemoryValidator();
#endif //#ifdef IS6432

 if (bLogging)

 {
 if (errCode != SVL_OK)

 {
 DWORD lastError;

 lastError = GetLastError();
 svlMVStub_writeToLogFileW(_T("C++ Memory Validator load failed.
\r\n"));
 svlMVStub_writeToLogFileLastError(lastError);
 svlMVStub_writeToLogFile(errCode);

 svlMVStub_dumpPathToLogFile();
 }
 else

 {
 svlMVStub_writeToLogFileW(_T("C++ Memory Validator load success.
\r\n"));
 }
 }

 // setup a service callback so that the Service Control Manager knows the

service

 // is starting up even if instrumentation takes longer than 10 seconds (which

it will

 // for a non-trivial application)

Memory Validator Help633

Copyright © 2001-2025 Software Verify Limited

 if (bLogging)

 svlMVStub_writeToLogFileW(_T("Setting service callback C++ Memory
Validator\r\n"));

 errCode = svlMVStub_SetServiceCallback(serviceCallback, // the callback

 NULL); // some user data

(we don't have any, so set NULL)

 if (bLogging)

 {
 if (errCode != SVL_OK)

 {
 svlMVStub_writeToLogFileW(_T("Setting service callback failed. \r\n"));
 svlMVStub_writeToLogFile(errCode);
 }

 svlMVStub_writeToLogFileW(_T("Starting C++ Memory Validator\r\n"));
 }

 errCode = svlMVStub_StartMemoryValidator();
 if (bLogging)

 {
 if (errCode != SVL_OK)

 {
 DWORD lastError;

 lastError = GetLastError();
 svlMVStub_writeToLogFileW(_T("Starting C++ Memory Validator failed.
\r\n"));
 svlMVStub_writeToLogFileLastError(lastError);
 svlMVStub_writeToLogFile(errCode);
 }

 svlMVStub_writeToLogFileW(_T("Finished loading C++ Memory
Validator\r\n"));
 }
 }
#if _HONOUR_MV_MUTEX_LOAD
 else

 {
 if (bLogging)

 svlMVStub_writeToLogFileW(_T("Not using C++ Memory Validator, DLL will not
be loaded\r\n"));
 }
#endif //#if _HONOUR_MV_MUTEX_LOAD

 // **MV_EXAMPLE** end

 // SERVICE_STATUS members that don't change in example

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 // report the status to the service control manager.

 if (ReportStatusToSCMgr(SERVICE_START_PENDING, // service state

Working with IIS and Services 634

Copyright © 2001-2025 Software Verify Limited

 NO_ERROR, // exit code

 3000)) // wait hint

 {
 // deliberately allocate some memory so we can see that

 // with Memory Validator

 char *someLeakedMemory;

 someLeakedMemory = (char *)malloc((SIZE_T)3456);

 // do work

 dwErr = ServiceStart(dwArgc, lpszArgv);

 // finished doing work

 }

 // **MV_EXAMPLE** start

#if _HONOUR_MV_MUTEX_LOAD
 if (bMemoryValidator)

#endif //#if _HONOUR_MV_MUTEX_LOAD

 {
 // unload Memory Validator here

 // IMPORTANT.

 // Because of the way services work, you can find that this thread which is

trying to gracefully unload

 // MemoryValidator is ripped from under you by the operating system. This

prevents Memory Validator from

 // removing all its hooks successfully. If Memory Validator does not remove

all of its hooks successfully

 // because this happens, then you may get a crash when the service stops.

 //

 // An alternative fix is to spawn another thread which then unloads Memory

Validator.

 // See the code for ServiceStop() for comments relating to this.

 //

 // A callstack for such a crash is shown below. If you see this type of crash

you need to put your code to

 // unload Memory Validator somewhere else. The stack trace may be different,

but a fundamental point is the

 // code calling through doexit(), exit() and ExitProcess()

 //

 //NTDLL! 77f64e70()

 //SVLMEMORYVALIDATORSTUB!

 //MSVCRT! 78001436()

 //MSVCRT! 7800578c()

 //DBGHELP! 6d55da25()

 //DBGHELP! 6d55de83()

 //DBGHELP! 6d53705d()

 //DBGHELP! 6d51cc69()

 //DBGHELP! 6d51f6e8()

 //DBGHELP! 6d524ebf()

 //DBGHELP! 6d52a7b0()

Memory Validator Help635

Copyright © 2001-2025 Software Verify Limited

 //DBGHELP! 6d52b00a()

 //DBGHELP! 6d526487()

 //DBGHELP! 6d5264d7()

 //DBGHELP! 6d5264f7()

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //SVLMEMORYVALIDATORSTUB!

 //MSVCRT! 78001436()

 //MSVCRT! 780057db()

 //KERNEL32! 77f19fdb()

 //SVLMEMORYVALIDATORSTUB! ExitProcess hook

 //doexit(int 0x00000000, int 0x00000000, int 0x00000000) line 392

 //exit(int 0x00000000) line 279 + 13 bytes

 //mainCRTStartup() line 345

 //KERNEL32! 77f1b9ea()

 svlMVStub_UnloadMemoryValidator();
 }

 // **MV_EXAMPLE** end

 // try to report the stopped status to the service control manager.

 (VOID)ReportStatusToSCMgr(SERVICE_STOPPED, dwErr, 0);
 }

 return;

}

7.3.2 Example ISAPI Source Code

Where to put your code

When you use the functions to load and unload Memory Validator from your service, it is important that
you put the function calls in the correct place in your ISAPI extension.

Typically, this means that Memory Validator is:

· loaded as the first action in the GetExtensionVersion() function of your ISAPI extension.

· unloaded in the TerminateExtension() function of your ISAPI extension.

Example source code

The source code shown below shows an example GetExtensionVersion() and an example
TerminateExtension() used in an ISAPI, demonstrating where to load and unload Memory Validator.

Working with IIS and Services 636

Copyright © 2001-2025 Software Verify Limited

This example code logs errors. We strongly recommend that you do this in your example. Because IIS
is a protected process that can't communicate to the outside world except via HTTP/HTTPS when
anything fails during the loading and start of Memory Validator the only means we have of
communicating that failure to you is via the log file. Please use the log file, it will make debugging any
mistakes very much easier, simpler and quicker than any other method.

This process is almost identical to working with a regular service, except that
svlMVStub_StartMemoryValidator() is replaced with svlMVStub_StartMemoryValidatorForIIS().

This example assumes the web root is located C:\\testISAPIWebsite

Show the C++ example ISAPI functions
#include "svlMVStubService.h"
#include "svlServiceError.h"

BOOL WINAPI GetExtensionVersion(HSE_VERSION_INFO *pVer)
{

// some setup work to define what the extension is

pVer->dwExtensionVersion = HSE_VERSION;

strncpy(pVer->lpszExtensionDesc, "Validate ISAPI Extension",
HSE_MAX_EXT_DLL_NAME_LEN);

// load Validator here

svlMVStub_setLogFileName(L"C:\\testISAPIWebsite\\svl_MV_log.txt");

svlMVStub_deleteLogFile();

SVL_SERVICE_ERROR errCode;
#ifdef IS6432

// x86 with x64 GUI

errCode = svlMVStub_LoadMemoryValidator6432();
#else //#ifdef IS6432

// x86 with x86 GUI

// x64 with x64 GUI

errCode = svlMVStub_LoadMemoryValidator();
#endif //#ifdef IS6432

if (errCode != SVL_OK)

{
 DWORD lastError;

 lastError = GetLastError();
 svlMVStub_writeToLogFileW(L"C++ Memory Validator load failed. \r\n");
 svlMVStub_writeToLogFileLastError(lastError);
 svlMVStub_writeToLogFile(errCode);

 svlMVStub_dumpPathToLogFile();

}

else

{
 svlMVStub_writeToLogFileW(L"C++ Memory Validator load success. \r\n");

errCode = svlMVStub_StartMemoryValidatorForIIS();

if (errCode != SVL_OK)

Memory Validator Help637

Copyright © 2001-2025 Software Verify Limited

{

DWORD lastError;

lastError = GetLastError();

svlMVStub_writeToLogFileW(L"Starting C++ Memory Validator failed.
\r\n");

svlMVStub_writeToLogFileLastError(lastError);

svlMVStub_writeToLogFile(errCode);

}

svlMVStub_writeToLogFileW(L"Finished starting C++ Memory
Validator\r\n");

}

return TRUE;
}

BOOL WINAPI TerminateExtension(DWORD dwFlags)
{

// unload Validator here

svlMVStub_UnloadMemoryValidator();

return TRUE;
}

Part

VIII

Memory Validator Help639

Copyright © 2001-2025 Software Verify Limited

8 Working with Marmalade game SDK

This topic describes how to use C++ Memory Validator when you are developing programs with the
Marmalade game SDK.

Assumptions about Marmalade

We assume that you have installed the Marmalade SDK and Marmalade Hub in the default location of c:
\marmalade.

We assume that you are developing your game for many targets, but that for the purpose of testing with
C++ Memory Validator you are also targeting x86 Debug and x86 Release configurations.

Preparing your game

To work with C++ Memory Validator you need to build the x86 Debug configuration and/or the x86
Release configuration of your Marmalade project using Visual Studio.

These configurations need to be built so that they create debug information and so that a PDB file
containing debug information is created. The example projects that ship with Marmalade do not do this -
you will need to edit them to make the linker stage create debug information.

· Editing the compile stage debug information

https://www.madewithmarmalade.com/

Working with Marmalade game SDK 640

Copyright © 2001-2025 Software Verify Limited

· Editing the link stage debug information

You must ensure that both compile and link stages have the correct settings set. If only compile or only
link is set you will not get debugging symbols.

Debugging symbols are important for two reasons:

· Without symbols C++ Memory Validator cannot find the Marmalade memory allocators and will
not be able to track the Marmalade memory allocations your game makes

· Without symbols C++ Memory Validator will not be able to turn callstack addresses into class
names, function names, filenames and line numbers.

Preparing C++ Memory Validator

To work with Marmalade it's best to go back to a known state then make a few changes to setup C++
Memory Validator for use with Marmalade.

1. Open the settings dialog, click Reset.
2. Go to the Collect settings
3. Disable all check boxes in the Memory section, except for Marmalade.
4. Disable all check boxes in the Handles section.
5. Click OK.

Memory Validator Help641

Copyright © 2001-2025 Software Verify Limited

 The reason for selecting these options is that it prevents C++ Memory Validator from monitoring the
actions of the Marmalade simulator itself. If you're a developing a Marmalade game you only care about
what your game does - the memory and handle allocation behaviour of the simulator are not your
concern, thus you don't want to monitor them. That is why we've turned everything off except for the
Marmalade check box.

Launching the game

To launch a Marmalade game with C++ Memory Validator we launch the Marmalade simulator and
specify the game to run using the Marmalade -via command line argument.

If Marmalade is installed in c:\marmalade then the path to the simulator is

c:/marmalade/8.0/s3e\win32\s3e_simulator_release.exe

If an example game (shipped with Marmalade) is found at this location

c:
\Marmalade\8.0\examples\GameTutorial\Lua\Stage9\build_temp\build_stage9_vc14\Stage9
_vc14_release.via

then the command line is

-via:"c:
\Marmalade\8.0\examples\GameTutorial\Lua\Stage9\build_temp\build_stage9_vc14\Stage9
_vc14_release.via"

and the startup directory is

Working with Marmalade game SDK 642

Copyright © 2001-2025 Software Verify Limited

c:\Marmalade\8.0\examples\GameTutorial\Lua\Stage9\build_temp\build_stage9_vc14\

This is how the launch dialog looks when you are launching this game.

 We leave the Application to monitor unchanged. It should have the same value as Application to
launch.

Part

IX

Working with Intel Math Kernel Library 644

Copyright © 2001-2025 Software Verify Limited

9 Working with Intel Math Kernel Library

This topic describes how to use C++ Memory Validator when you are developing programs with the Intel
Math Kernel Library.

Intel Math Kernel Library

The Intel Math Kernal Library (MKL) provides memory allocation functions for you to use to allocate
memory aligned on specific memory boundaries for performance reasons.

The allocations functions provided by MKL mimic the basic C allocation functions malloc(), calloc(),
realloc() and free(). These are provided in the form of mkl_malloc(), mkl_calloc(), mkl_realloc() and
mkl_free().

It is natural that you would wish Memory Validator to track these allocations. MKL is provided in both
statically linked and dynamically linked forms. Because of the way MKL is built it is not possible for
Memory Validator to just track the MKL allocations as with a normal allocator. This is because MKL
uses the C runtime heap internally and also allocates various memory for housekeeping tasks. To track
your usage of MKL correctly we should not report on the internal workings of MKL or it's housekeeping
tasks.

The solution to this to call MKL functions via some Software Verify functions. We provide two source files
for you to permanently include in your software. If your program is not being profiled by Memory
Validator, the mkl functions are called directly. If your program is being profiled by Memory Validator, the
mkl function (de)(re)allocations are tracked and the associated underlying CRT allocations and
housekeeping are ignored.

Usage

Follow the following steps to change your program to use MKL and allow MKL allocations to be tracked
by Memory Validator.

Source Files
Include svl_mkl_helper.h and svl_mkl_helper.cpp in each DLL/EXE that uses Intel Math Kernel
Library.

You can use these two source files without any royalty payments to Software Verify Limited. We expect
these two files to be used by your software. While we believe these source files are fit for purpose and
we have tested them to our satisfaction, you use them at your own risk and should satisfy yourself that
they work correctly and to your satisfaction.

Initialisation
Call svl_mkl_init() before you call any MKL function. This applies to each DLL/EXE.

For example if your program has an EXE that uses MKL and a DLL that uses both the EXE and the DLL
must call svl_mkl_init().

Replace function calls
call svl_mkl_malloc() rather than mkl_malloc()
call svl_mkl_calloc() rather than mkl_calloc()
call svl_mkl_realloc() rather than mkl_realloc()
call svl_mkl_free() rather than mkl_free()

https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl

Memory Validator Help645

Copyright © 2001-2025 Software Verify Limited

call svl_mkl_free_buffers() rather than mkl_free_buffers()
call svl_mkl_free_thread_buffers() rather than mkl_free_thread_buffers()

The parameters passed to the svl_mkl_...() functions are the same as the parameters pass to mkl_...()
functions. No change is needed.

Running your program without Memory Validator

Your program will run as normal when Memory Validator is not present. The MKL library functions will be
called.

Running your program with Memory Validator

Your program will run as normal when Memory Validator is present. The MKL library functions will be
called and the allocations and deallocations will be tracked by Memory Validator

Part

X

Memory Validator Help647

Copyright © 2001-2025 Software Verify Limited

10 Working with Visual Basic 6 (VB6)

To work with VB6 you need to make two simple changes to your VB6 way of working.

Enable debug information

Debug information needs to be generated to enable Memory Validator to be able to report function
names, filename and line numbers.

To do this, in Visual Basic 6, go to the Project menu, choose Project Properties....

Then go to the Compile tab and select Create Symbolic Debug Info. Click OK.

Compile your program into an executable

The next step is to build your program as an executable.

From the File menu, choose Make <name-of-program.exe>.

Your program will be compiled as an executable. Another file will be created with the same name, but
instead of .exe (or .dll) as an extension, the extension will be .pdb. This file contains the debugging
information.

Working with Visual Basic 6 (VB6) 648

Copyright © 2001-2025 Software Verify Limited

For example test.exe will create a debugging information file called test.pdb.

If you always keep the pdb file in the same directory as the .exe Memory Validator will be able to find the
debugging symbols.

Part

XI

Extending Memory Validator 650

Copyright © 2001-2025 Software Verify Limited

11 Extending Memory Validator

There are a small set of cases where Memory Validator can be extended by user supplied DLLs:

· custom display of data associated with custom heap allocations

· notification of entry/exit for constructor and destructors

· handling of commands sent by the user via Memory Validator

User Interface extensions

User interface extensions affect data collected by the family of custom heap tracking functions in the
API.

The data is displayed by Memory Validator using your own custom message format defined in the
extension DLL.

A simple example of a ui extension DLL is provided with Memory Validator.

Stub extensions

Stub extensions allow custom code to be executed at the start and end of each constructor and
destructor that is called in the target program.

These extension functions are provided with:

· a 'this' parameter identifying the object being constructed or destructed
· a function address
· a function name

The stub extension DLL may choose to store the data in an internal store etc.

Stub extension DLLs also allow for a (char*) command to be sent from Memory Validator by the user to
one or all stub extension DLLs.

The extension DLL may act on the command as it wishes.

A simple example of a stub extension DLL is provided with Memory Validator.

 You should ensure that UI and stub extension DLLs don't have memory leaks or access violations
for example, as these will prevent Memory Validator from working correctly.

Memory Validator Help651

Copyright © 2001-2025 Software Verify Limited

11.1 Example user interface extension DLL

The user interface extension DLL functionality lets you provide additional descriptive messaging for
displaying with user defined allocations.

See also the mvUserCustomAlloc family of functions used for custom heap tracking using the Memory
Validator API.

Example UI extension project files

The example extension project can be found in the uiExtDLL subdirectory in the directory where Memory
Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

· uiExtDLL.dsp for Microsoft® Developer Studio® 6.0

· uiExtDLL.vcproj for Microsoft® Visual Studio / .net

UI extension DLL functions

A user interface extension DLL needs to provide just two functions:

· getDllID uniquely identifies the user interface extension DLL

DWORD getDllID();

Each ui extension DLL must return a different value than any of the other user interface
extension DLLs.

A value of -1 returned means that the DLL should not be used as an extension DLL.

· getDescription allocates a buffer to return the description of an object

int getDescription(DWORD userData1,

 DWORD userData2,

 DWORD address,

 DWORD size,

 DWORD refCount,

 wchar_t **description);

The function is passed the userData1 and userData2 values that were passed into the API
function that reported the object e.g. mvUserCustomAlloc().

The address, size and reference count are also passed in.

The function must allocate a buffer using HeapAlloc() and use it to return the description of the
object.

Extending Memory Validator 652

Copyright © 2001-2025 Software Verify Limited

The buffer should be on the program's default Heap as returned by GetProcessHeap().

Defining the functions for export and import

In the uiExtDLL example, the functions are defined as extern "C" functions which are exported from
the DLL.

See the header file uiExtDLL.h for an example way of declaring the functions so that when building the
DLL, the functions are exported, but anyone including the header file sees the functions as imported.

Example ui extension DLL code

The code snippet below is taken directly from the uiExtDLL.cpp implementation file in the uiExtDLL
project

Although userData1 and userData2 are not interpreted here, an example use might be to pass indices
into a known array of strings or enumerated values used to generate a message.

Show the C++ example ui extension functions

Memory Validator Help653

Copyright © 2001-2025 Software Verify Limited

//-NAME---------------------------------

// getDllID

//.DESCRIPTION..........................

// Provide ID for Memory Validator Extension DLL

//.PARAMETERS...........................

//.RETURN.CODES.........................

// -1 means don't use

// Otherwise return a unique ID to identify this DLL.

//--------------------------------------

UIEXTDLL_API DWORD getDllID()
{
 return 1; // make this ID unique amongst all the UI extension DLLs you have

}

//-NAME---------------------------------

// getDescription

//.DESCRIPTION..........................

// Generate a description for the data provided.

//.PARAMETERS...........................

// userData1 -in- Supplied to mvUserCustomAlloc

// userData2 -in- Supplied to mvUserCustomAlloc

// address -in- Address/Handle/ID to track

// size -in- Size for the address

// refCount -in- Reference count for the address

// **description -out- Returned string allocated with HeapAlloc(GetProcessHeap(), 0, sizeOfData)

//.RETURN.CODES.........................

// TRUE for got a description.

// FALSE for failed.

//--------------------------------------

UIEXTDLL_API int getDescription(DWORD userData1,

 DWORD userData2,
 DWORD address,
 DWORD size,
 DWORD refCount,
 wchar_t **description)

{
 TCHAR text[200];
 int len;

 _stprintf(text, _T(" UI-Ext-DLL UserObject: address:0x%08x size:0x%08x ref:%d 0x%08x 0x%08x"),
 address, size, refCount, userData1, userData2);
 len = _tcslen(text);

 *description = (TCHAR *)HeapAlloc(GetProcessHeap(), 0, sizeof(TCHAR) * (len + 1));

 if (*description != NULL)

 {
 _tcscpy(*description, text);
 return TRUE;

 }

 return FALSE;

}

Extending Memory Validator 654

Copyright © 2001-2025 Software Verify Limited

11.2 Example stub extension DLL

The stub extension DLL functionality allows a custom DLL to be notified at the start and end of each
constructor and destructor visited in the target program.

One additional function can receive a command which may be sent to all stub extensions or a specific
one.

Example stub extension project files

The example extension project can be found in the stubExtDLL subdirectory in the directory where
Memory Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

· stubExtDLL.dsp for Microsoft® Developer Studio® 6.0

· stubExtDLL.vcproj for Microsoft® Visual Studio / .net

UI extension DLL functions

A stub extension DLL can provide all or none of the following functions. If a function isn't defined, the stub
won't call it.

All of these functions return TRUE / FALSE for success or failure, but at the time of writing, the stub
doesn't act on the return codes.

Constructor notification:

· startConstructor called at the start of the C++ object's constructor, before any member variables
have been initialised

int startConstructor(void *thisPtr,
 void *functionAddress,
 char *functionName);

· finishConstructor called at the end of the C++ object's constructor, after any member variables
have been initialised

int finishConstructor(void *thisPtr,
 void *functionAddress,
 char *functionName);

Destructor notification:

· startDestructor called at the start of the C++ object's destructor

Memory Validator Help655

Copyright © 2001-2025 Software Verify Limited

int startDestructor(void *thisPtr,
 void *functionAddress,
 char *functionName);

· finishDestructor called at the end of the C++ object's destructor

int finishDestructor(void *thisPtr,
 void *functionAddress,
 char *functionName);

· command called when you use Memory Validator's send command to stub utility to send a
custom message to a one or all stub DLLs

int command(char *command);

Derived classes

For class B derived from class A, the startConstructor() and finishDestructor() calls will be
called for the constructor of class A and class B for the same object.

The same is true for destructors, but note that class B's destructor is called prior to that of class A for
the same object.

Example stub extension DLL code

Example code for all the above functions is provided in the stubExtDLL.cpp implementation file in the
stubExtDLL project

Defining the functions for export and import

In the stubExtDLL example, the functions are defined as extern "C" functions which are exported from
the DLL.

See the header file stubExtDLL.h demonstrating a way of declaring the functions so that when building
the DLL, the functions are exported, but anyone including the header file sees the functions as imported.

Part

XII

Memory Validator Help657

Copyright © 2001-2025 Software Verify Limited

12 Examples

The need for examples

We know Memory Validator is a complex product, but sometimes the programs that need to be validated
are even more complex, and are certainly all different.

For this reason, it's important to be able to test and demonstrate the features of Memory Validator in an
easy and repeatable way.

The example application makes this possible:

· It has examples of most of the types of errors that can be detected

· It lets you trigger events in your own time so you can observe them with Memory Validator

· It provides source code to demonstrate usage, correctly or otherwise!

This section has help for the example application followed by some examples of using it in conjunction
with Memory Validator.

Some additional projects provide examples of using NT Services.

All example projects are supplied as source code and projects. You'll need to build the example or
services before you can use them.

12.1 The example application

The example application

The example application is a great way to explore the capabilities of Memory Validator.

The source and projects are included in the installation, but you'll need to build the example application
yourself.

Once built, you can use nativeExample.exe in conjunction with Memory Validator to

· monitor the behaviour of the application as you use it

· easily allocate memory and handles in many different ways

· observe deliberate memory and handle leaks

· cause and catch allocation and corruption errors

Examples 658

Copyright © 2001-2025 Software Verify Limited

The example program can also be linked with the Memory Validator API to demonstrate API usage.

How to use these examples

The best way to understand how Memory Validator works is by example.

We recommend launching the example application from Memory Validator and observing how the menu
actions affect captured information.

Examining the source code is the best way to see what's going on in the example application.

For convenience, we have provided the source locations where each menu action runs a test.

All test locations are in the CTeststakView class of nativeExample\TESTSVW.CPP

Menu options - a summary

· File exit only!

· Allocation typical memory allocation, reallocation and deallocation as well as memory leaks

· Memory Errors typical memory errors, such as buffer overrun, underrun, corruption, incorrect
deallocation or reallocation, uninitialized data detection etc.

· Handles creation and deletion of Win32 resources. Thread creation and deletion to test cross
thread allocation detection

· Trace send example TRACE messages to Memory Validator

· DLL explicit loading and unloading of DLLs

· Reporting call various API functions dumping leaking or uninitialised objects to a file, or to
callback functions

· Help shows the about box (which allocates and leaks memory in the process)

We give more detail on the menu options in the example application, but the real detail of allocations and
errors are in the source code itself.

The code is commented and some areas have detailed explanations of what is going on and the likely
consequences so do take a look!

A warning!

Memory Validator Help659

Copyright © 2001-2025 Software Verify Limited

Some of the tests deliberately corrupt the C runtime heap or the program stack, to demonstrate errors
and Memory Validator's ability to detect them.

Generally, the example application is robust, but by the very nature of some of these examples, it's not
unreasonable that it may crash on occasion!

12.1.1 Building the example application

Where to find the example application

The example project is in the nativeExample subdirectory where Memory Validator installation
directory.

If the directory is not present, reinstall your software and choose custom or full installation to include the
examples.

Solutions and projects

There are a variety of solutions and projects for different versions:

· nativeExample.dsp for Microsoft® Developer Studio® 6.0

· nativeExample_VSx_x.sln for Microsoft® Visual Studio / .net

Configurations

There are a number of configurations in each project, the first two of which are linked with Memory
Validator for API use:

· Debug / Release linked to the svlMemoryValidatorStubLib(_x64).lib demonstrating use with
the Memory Validator API

The other configurations are standalone programs:

· DebugNonLink / ReleaseNonLink not linked for API use

· DebugStatic / ReleaseStatic statically linked to the C runtime and not linked for API use

· ESA Debug / ESA Release uses the Cherrystone Extremely Scalable Allocator (ESA)

 You'll need the full or evaluation version of ESA from Cherrystone Software Labs Inc. for these
configurations to work.

Using Visual Studio Express?

Examples 660

Copyright © 2001-2025 Software Verify Limited

You might find you can't build the example application with Express versions of Visual Studio because it
doesn't provide all the necessary libraries.

If that's the case, try searching for the missing libraries in one of the freely available Windows SDKs
from the Microsoft website.

 If you use Visual Studio Express to build your own application, Memory Validator will still work with
it just fine.

Other projects

There are some other projects installed alongside the nativeExample directory.

These optional projects build various DLLs that can be used by the example program, subject to user
interaction.

They demonstrate detection of the loading and unloading of DLLs, memory leaks caused in DLLs that
are subsequently unloaded, and other testable behaviours.

12.1.2 Allocation menu

The allocation menu

The Allocation menu tests and demonstrates different groups of allocation, reallocation and deallocation
examples.

Each test is listed below with the source code location in the example application.

How to use these examples

Click on the picture below to jump to the relevant sections:

http://en.wikipedia.org/wiki/Microsoft_Windows_SDK

Memory Validator Help661

Copyright © 2001-2025 Software Verify Limited

Allocation menu : C Runtime (C/C++) Heap

 Allocation menu C Runtime (C/C++) Heap submenu ...

Tests CRT heap allocation functions.

Examples 662

Copyright © 2001-2025 Software Verify Limited

 Allocate memory OnTestAllocatememory()

Prompts for a number of bytes to allocate and how many times to
do it.

The memory is not deallocated.

 Reallocate memory OnTestReallocatememory()

Prompts for a number of bytes to allocate and how many times to
reallocate it, growing in size each time.

The memory is not deallocated.

 Allocate using malloc() OnTestAllocateusingmalloc()

Allocates 100 bytes of memory.
The memory is not deallocated.

 Allocate using calloc() OnTestAllocateusingcalloc()

Prompts for a number of bytes to allocate.
The memory is not deallocated.

 Expand memory using
_expand()

OnTestExpandmemoryusingexpand()

Allocated memory and then expands it using _expand().
Two more calls to expand the memory pass incorrect memory

pointers.

 Shrink memory using
_expand()

OnTestShrinkmemoryusingexpand()

Allocates memory and then shrinks it using _expand().
Two more calls to shrink the memory pass incorrect memory

pointers.

 Allocate CObject OnTestAllocatecobject()

Allocates a CWnd object.

 Allocate CString OnTestAllocatecstring()

Allocates various TestClass objects freeing all but one.

 Multiple Allocation of
CObject

OnTestMultipleallocationofcobject()

Allocates 5 CWnd objects.

 Multiple Allocation of
CString

OnTestMultipleallocationofcstring()

Allocates 5 CString objects

 Multiple Allocation of
CObject Leaving 1

OnTestMultipleallocationofcobjectLeaving1()

Allocates 5 CWnd objects, then deletes 4 of them

 Multiple Allocation of
CObject Leaving 2

OnTestMultipleallocationofcobjectLeaving2()

Allocates 5 CWnd objects, then deletes 3 of them

 Multiple reallocation using
malloc() and realloc()

OnTestMultiplereallocation()

Allocates and reallocates 3 pointers in a loop so the callstacks for
each allocation are identical.

 Multi allocation,
reallocation, deallocation
using malloc, realloc, free

OnMultiAlloc()

Prompts for a number of allocations to make, each of random size.
Allocations are freed

Allocation menu : Heap

 Allocation menu Heap submenu ...

Memory Validator Help663

Copyright © 2001-2025 Software Verify Limited

Tests Win32 heap functions HeapCreate(), HeapDestroy(), HeapAlloc(), HeapRealloc() and
HeapFree().

 Create Heap OnHandlesCreateheap()

Create a heap using HeapCreate().
Do this first to enable the other tests.

 Destroy Heap OnHandlesDestroyheap()

Destroy the heap created above.

 Allocate Memory OnHeapAllocatememory()

Allocate 100 bytes on the heap

 Allocate and Reallocate OnHeapAllocateandreallocate()

Allocate 100 bytes and then reallocate 200 bytes on the heap

 Allocate and Free OnHeapAllocateanddelete()

Allocate 100 bytes on the heap and deallocate it

 Create Heap, Allocate
Memory, Destroy Heap

OnCreateHeapAllocateDestroy()

Creates a heap, makes three allocations and destroys the heap.
Allocations should not show as a leak.

Allocation menu : Local

 Allocation menu Local submenu ...

Tests Win32 local heap functions LocalAlloc(), LocalRealloc() and LocalFree().

 Allocate Memory OnLocalAllocatememory()

Allocate 4096 bytes using LocalAlloc().

 Allocate and Reallocate OnLocalAllocateandreallocate()

Allocates 4096 bytes and reallocates to 8192 bytes using
LocalRealloc().

 Allocate and Free OnLocalAllocateanddelete()

Allocates 4096 bytes and deallocates with LocalFree().

 Other functions that call
LocalAlloc()

OnLocalAllocFunctions()

Allocate and leak memory using indirect calls to LocalAlloc(), eg
FormatMessage().

Allocation menu : Global

 Allocation menu Global submenu ...

Tests Win32 global heap functions GlobalAlloc(), GlobalRealloc() and GlobalFree().

Examples 664

Copyright © 2001-2025 Software Verify Limited

 Allocate Memory OnGlobalAllocatememory()

Allocate 4096 bytes using GlobalAlloc().

 Allocate and Reallocate OnGlobalAllocateandreallocate()

Allocates 4096 bytes and reallocates to 8192 bytes using
GlobalRealloc().

 Allocate and Free OnGlobalAllocateanddelete()

Allocates 4096 bytes and deallocates with GlobalFree().

Allocation menu : Virtual

 Allocation menu Virtual submenu ...

Tests Win32 virtual memory allocation functions VirtualAlloc(), and VirtualFree().

 Allocate OnAllocationVirtualAllocate()

Commit virtual memory using VirtualAlloc().

 Free OnAllocationVirtualFree()

Decommit virtual memory using VirtualFree().

Allocation menu : VirtualEx

 Allocation menu Virtual submenu ...

Tests Win32 virtual memory allocation functions VirtualAllocEx(), and VirtualFreeEx().

 Allocate OnAllocationVirtualexAllocate()

Commit virtual memory using VirtualAllocEx().

 Free OnAllocationVirtualexFree()

Decommit virtual memory using VirtualFreeEx().

Allocation menu : Misc allocations

 Misc allocations OnMiscAllocations()

Tests various functions including environment strings and array
usage.
Some allocations are leaked.

Allocation menu : NetApi allocations

 NetApi allocations OnNetApiAllocations()

Tests various functions including api buffer use.
Some allocations are leaked.

Memory Validator Help665

Copyright © 2001-2025 Software Verify Limited

Allocation menu : Printers

 Printers OnTestPrinters()

Opens and closes a
printer and uses the
printer notification api.
Some allocations are
leaked.

Allocation menu : COM (CoTaskMemAlloc)

 Allocation menu Local submenu ...

Tests Win32 COM functions CoTaskMemAlloc(), CoTaskMemRealloc() and CoTaskMemFree().

 Allocate Memory OnCotaskmemAllocatememory()

Allocate 4000 bytes using CoTaskMemAlloc().

 Allocate and Reallocate OnCotaskmemAllocateandreallocate()

Allocates 4000 bytes and reallocates to 50000 bytes using
CoTaskMemRealloc().

 Allocate and Reallocate
and Free

OnCotaskmemAllocateandreallocateandfree()

Allocates 4000 bytes, reallocates to 50000 and deallocates with
CoTaskMemFree().

 Allocate and Free OnCotaskmemAllocateanddelete()

Allocate 4000 bytes, and deallocates with CoTaskMemFree().

Allocation menu : IMalloc (IMallocSpy)

 Allocation menu IMalloc (IMallocSpy) ...

Tests the Win32 OLE memory allocation spy functions via IMallocSpy.

All these functions use CoGetMalloc() to get the OLE allocator.

 Allocate Memory OnImallocAllocatememory()

Allocate 4000 bytes using the OLE allocator.

 Allocate and Reallocate OnImallocAllocateandreallocate()

Allocates 4000 bytes and reallocates to 50000 bytes.

 Allocate and Reallocate
and Free

OnImallocAllocateandreallocateandfree()

Allocates 4000 bytes, reallocates to 50000 and then deallocates it.

 Allocate and Free OnImallocAllocateanddelete()

Allocate 4000 bytes, and deallocates it.

Allocation menu : SysAllocString

Examples 666

Copyright © 2001-2025 Software Verify Limited

 SysAllocString OnAllocationSysallocstring()

Tests String use with SysAllocString(), SysReAllocString(),
SysFreeString(), etc.
Some allocations are leaked.

Allocation menu : CComVariant Test

 CComVariant Test OnAllocationCcomvarianttest()

Tests BSTR allocations use with Variant*() functions.
Some allocations are leaked.

Allocation menu : CoTaskMemFree hooks

 CoTaskMemFree hooks
(ole32)

OnTestCoTaskMemFreeHooks()

Tests various functions where memory is freed with
CoTaskMemFree.

Allocation menu : SysAllocString special test

 SysAllocString special
test

OnAllocationSysallocstringspecialtest()

Tests multiple allocations of zero length BSTRs.
Allocations are leaked.

Allocation menu : AddRef/Release Tests

 AddRef / Release Test OnAllocationAddrefreleasetest()

Tests reference counting using AddRef() and Release()
Allocations are leaked.

 AddRef / Release Test
 (with zero refcount error)

OnAllocationAddrefreleasetestzerocount()

As above but with additional attempt to Release() at a zero
refcount.
This may bring up the assertion dialog in the Debug versions

Allocation menu : Custom Allocator

 Allocation menu Custom Allocator submenu ...

Demonstrates use of a custom heap via the API for C++ and C.

 These tests require a version of the example application linked to the Memory Validator
Stub.

The Debug or Release Non Link configurations will disable these menu options.

Memory Validator Help667

Copyright © 2001-2025 Software Verify Limited

 Allocate Memory OnCustomAllocatememory()

Allocates memory using mvUserCustomAlloc()

 Allocate and Reallocate OnCustomAllocateandreallocate()

Allocates and then reallocates using mvUserCustomReAlloc()

 Allocate and Reallocate
and Free

OnCustomAllocateandreallocateandfree()

Allocates, reallocates and frees using mvUserCustomFree()

 Allocate and Free OnCustomAllocateanddelete()

Allocates and frees memory

 Increase Reference Count OnAllocationCustomallocatorIncreasereferencecount()

Demonstrates use of mvUserCustomRefCountIncrement()

 Decrease Reference Count OnAllocationCustomallocatorDecreasereferencecount()

Demonstrates use of mvUserCustomRefCountDecrement()

 mvCollect(TRUE) OnMvCollectTRUE()

Demonstrates use of mvSetCollect()

 mvCollect(FALSE) OnMvCollectFALSE()

Demonstrates use of mvSetCollect()

Allocation menu : #define'd Allocator

 #define'd Allocator OnAllocationDefinedallocator()

Demonstrates use of #define to define a wrapper macro around a
standard memory allocation function.
The Coverage tab is able to handle such cases.

Allocation menu : Test Many Hooks at once

 Test Many Hooks at once OnTestManyHooks()

A convenience test that includes a selection of the tests above and
more!

12.1.3 Memory Errors menu

The Memory Errors menu

This section tests and demonstrates different types of memory error, including:

· mismatched reallocations and deallocations
· memory and stack corruption
· uninitialised data
· buffer underrun and overrun
· other incorrect usage that can be detected

Each test is listed below with the source code location in the example application.

Examples 668

Copyright © 2001-2025 Software Verify Limited

How to use these examples

Click on the picture below to jump to the relevant sections:

Memory Errors menu : Incorrect Usage

 Memory Errors menu Incorrect Usage submenu ...

Demonstrates detection of incorrect methods for reallocating or deallocating allocated memory
using C Runtime Heap functions.

Includes memory that has not been allocated, or pointers near to pointers that have been
allocated.

Memory Validator Help669

Copyright © 2001-2025 Software Verify Limited

 Double delete of
memory

OnTestDoubledeleteofmemory()

Allocate a character array using new(), and deletes the array twice

 Double free() of memory OnTestDoublefreeofmemory()

Allocates a character array using malloc(), and frees the array twice

 Incorrect free() of
memory

OnTestIncorrectfreeofmemory()

Allocates an array with malloc(), then frees pointers that point into
the array, not at the start of it.

 Incorrect delete of
memory

OnTestIncorrectdeleteofmemory()

Delete a pointer and an array pointer that is not in the heap.
Allocates an array, and tries to delete pointers that point into the array,
but not at the start.
Deletes the array using the incorrect object form of delete.
Allocates an array, and deletes it using the correct array form of
delete.
Allocates an array, and deletes it incorrectly with object form of delete.
Allocates an object and deletes it using the wrong array form of delete.

 Incorrect realloc() of
memory

OnTestIncorrectreallocofmemory()

Tries to reallocate a pointer that is not in the heap.
Allocates using new, then tries to reallocate using realloc(), before
deleting.
Allocates using malloc(), then reallocates using pointers before and
after the correct memory location.
Reallocates the memory using realloc(), then frees the memory.

 Delete malloc'd memory OnMemoryerrorsIncorrectusageDeletemallocdmemory()

Allocates with malloc(), deallocates with delete, then delete [],
then free().
Allocates memory with calloc(), deallocate with delete, then delete
[], then free().

 Delete realloc'd memory OnMemoryerrorsIncorrectusageDeletereallocdmemory()

Allocates with malloc(), reallocates using realloc(), deallocates
with delete, then delete [], then free().

 Free new'd memory OnMemoryerrorsIncorrectusageFreenewdmemory()

Allocates using new, deallocates the memory using free(), then
deallocates using delete [].

 realloc() new'd memory OnMemoryerrorsIncorrectusageReallocnewdmemory()

Allocates using new, reallocates using realloc(), then deallocates
using delete [].

 Incorrect HeapRealloc() OnMemoryerrorsIncorrectusageIncorrectheaprealloc()

Allocates 4096 bytes on the heap and tries to reallocate wrong
locations inside and outside the allocated area

 Incorrect HeapFree() OnMemoryerrorsIncorrectusageIncorrectheapfree()

Allocates 4096 bytes and tries to free wrong locations inside and
outside the allocated area

Memory Errors menu : Memory Corruption

 Memory Errors menu Memory Corruption submenu ...

Examples 670

Copyright © 2001-2025 Software Verify Limited

Demonstrates corruption by overwriting the start and end of arrays allocated using C Runtime
Heap functions.

 Allocate memory and
overwrite end of memory

OnTestAllocatememoryandoverwriteendofmemory()

Prompts for a memory size to allocate, then zeros 1 byte after the end
of memory.

 Allocate memory and
overwrite beginning of
memory

OnTestAllocatememoryandoverwritebeginningofmemory()

Prompts for a memory size to allocate, then zeros 1 byte before the
start.

Memory Errors menu : Uninitialised Data

 Memory Errors menu Uninitialised Data submenu ...

Demonstrates detection of uninitialized data in C++ objects on both the stack and the C runtime
heap.

 Objects on Stack OnUninitialiseddataObjectsonstack()

Creates a TestClass object on the stack.
Some of its constructors deliberately leave data members uninitialized
so can be tracked.

 Objects on Heap OnUninitialiseddataObjectsonheap()

Creates a TestClass object on the heap, then deletes it.

Memory Errors menu : Buffer Overrun

 Memory Errors menu Buffer Overrun submenu ...

Demonstrates buffer overrun and buffer underrun detection on the C Runtime heap and the stack.

 Underruning the stack is usually benign, but overrunning it usually results in a program
crash as the function call return address has usually been damaged.

Memory Validator Help671

Copyright © 2001-2025 Software Verify Limited

 Overrun allocated
memory

OnBufferoverrunOverun()

Allocates 100 bytes using new, and uses memcpy() to copy memory,
deliberately overruning the end.

 Underrun allocated
memory

OnBufferoverrunUnderrun()

As above but underruning the start

 Overrun stack memory OnBufferoverrunOverrunstackmemory()

Declares a 100 byte array on the stack, and uses memcpy() to copy,
deliberately overruning the end of the array

 Underrun stack memory OnBufferoverrunUnderrunstackmemory()

As above but underruning the start of the array

 strcpy and wcscpy test OnMemoryerrorsBufferoverrunStrcpyandwcscpytests()

Allocate some character arrays and use these functions to overwrite
beginning end of the buffers

Memory Errors menu : Special

 Memory Errors menu Special submenu ...

Demonstrates some of Memory Validator's heap watching functions.

Examples 672

Copyright © 2001-2025 Software Verify Limited

 Speculative Leak Test1 OnLeaksSpeculativeleaktest1()

Allocates an array of 10 pointers and a CString object for each one.
Deletes the array, but not the pointers.
If speculative leak detection is enabled, the leaked objects will be
identified.

 Speculative Leak Test2 OnLeaksSpeculativeleaktest2()

Allocates an array of 4 pointers populated with a CWnd, CBrush, CPen
and CWnd objects.
DeleteS the array, but not the pointers.
If speculative leak detection is enabled, the leaked objects will be
identified.

 Allocate 0 bytes OnLeaksAllocate0bytes()

Allocates an array of 0 characters using new

 Allocate -10 bytes OnLeaksAllocate10bytes()

Allocates an array of -10 characters using new

 Allocate and don't use
memory before deleting
memory

OnLeaksAllocateanddontusememorybeforedeletingmemory()

Allocates memory using new, then deletes it without using it.
If the detect unused memory feature is enabled, the unused memory
will be reported.

 Allocate a class that
allocates data and leaks

OnMemoryerrorsSpecialAllocateaclassthatallocatesdataandleaks()

An allocateInsideThis object is allocated.
Functions are called that allocate but don't free data held by the
object, and then it's deleted.
If speculative leak detection is enabled, leaked objects will be
identified.

 Deeply recursive call to
test hotspots

OnMemoryerrorsSpecialDeeplyrecursivecalltotestcallstacks()

Allocates and leaks an array of 50 bytes on the way out of each level
of a 1500 level recursive call.

Memory Errors menu : Deleted this usage

 Deleted this usage OnMemoryerrorsDeletedthisusage()

Allocates a class, deletes it and then calls a method in the deleted
class.
If detection of calling functions for deleted objects is enabled, this will
be identified.

Memory Errors menu : Message Map Error

This test is only enabled in Visual Studio versions prior to 7.0 as the code will not compile in that version
or above.

 Message Map Error OnMemoryerrorsMessagemaperror()

Calls this function with too many parameters despite a signature with
no params.
If detection of Broken Message Map hooks is enabled, this will be
identified in Debug and Release builds.

Memory Validator Help673

Copyright © 2001-2025 Software Verify Limited

12.1.4 Handles and More Handles menus

The Handles menu

The Handles menu is a convenient way to allocate and free Win32 resource handles and track the events
in Memory Validator.

Leaks are created by creating but not freeing each type of resource below.

The thread creation and thread deletion examples can test the detection of cross thread allocation.

· Start a thread and allocate some memory in it to be deallocated
below

· Stop the thread
· The deallocation will happen from a different thread to the one

that allocated.
· Allocate a device context
· Deallocate it

· Get a device context using GetDC()
· Release it using ReleaseDC()

· Open a file. If the file is not closed the file handle will be leaked.
· Close it

· Create a font
· Destroy it

· Create a pen
· Destroy it

· Create a brush
· Destroy it

· Create an icon
· Destroy it

· Create a mouse cursor
· Destroy it

· Create a window
· Destroy it

· Create a bitmap
· Destroy it

· Extract an icon from a bitmap
· Destroy the icon

· Test the lifetime of a temporary CDC object

· Map a view of a file into memory
· Unmap the view

· Create some regions using CreateRectRgn(),one of which

leaks
· See CTeststakView::OnRegionTests()

Examples 674

Copyright © 2001-2025 Software Verify Limited

The More Handles menu

The More Handles menu is...well, more of the same - i.e. convenient ways to create different types of
handles and oberve the events in Memory Validator.

· Create some Timer Queue and Timer handles - see
CTeststakView::OnTimerQueueTests()

· Create and MFC CFile object, write to it and then close it.

12.1.5 Trace menu

The Trace menu

There are three similar options - each of which outputs a message to the debugger (and Memory
Validator) using the TRACE() macro.

To observe these events in Memory Validator, enable collection of TRACE messages.

The messages are of the form "Trace Message 1/2/3";

See also examples of trace message monitoring.

12.1.6 DLL menu

The DLL menu

The DLL menu demonstrates the capability of Memory Validator to detect dynamic loading and unloading
of DLLs via one of the following Win32 calls:

· LoadLibrary()
· LoadLibraryEx()

· FreeLibrary()

http://msdn.microsoft.com/en-us/library/6w95a4ha.aspx

Memory Validator Help675

Copyright © 2001-2025 Software Verify Limited

DLL1, DLL2, DLL4, and MFC DLL

These four DLLs can each be loaded and unloaded and each has a test function in it, for example:

 DLL1 submenu ...

· Load DLL load the DLL

· Unload DLL unload the DLL

· Test DLL call the supplied test function in the DLL

The test function performs some memory allocation functions, which may result in memory
leaks.

See the CTeststakView class methods: OnDllLoaddll1(), OnDllUnloaddll1(),
OnDllTestdll1(), etc

Dependent DLLS

The next three options load and unload DLLs having dependent DLLs which should also be loaded:

· Load Dependent DLLs (using LoadLibrary) loads dllADependentOnB.dll

This is dependent on dllBDependentOnC.dll which, in turn, is dependent on dllC.dll

· Load Dependent DLLs (using LoadLibrary via GetProcAddress) Similar to the above, but
different methods

· Unload Dependent DLLs frees the library if loaded

See the CTeststakView class methods: OnDllLoaddependentdlls(),

OnDllLoaddependentdlls_LLGPA() and OnDllUnloaddependentdlls().

Examples 676

Copyright © 2001-2025 Software Verify Limited

12.1.7 Reporting menu

The Reporting menu

The Reporting menu provides access to various reporting capabilities that are present in the Memory
Validator API:

 These tests require a version of the example application linked to the Memory Validator Stub.

The Debug or Release Non Link configurations will disable these menu options.

 Reporting menu ...

 Dump Leaks to a File... OnMemoryerrorsDumpleakstoafile()

Dumps leaks to a file use the API function mvUserDumpLeaks

 Dump Leaks to a callback
function...

OnMemoryerrorsDumpleakstoacallbackfunction()

Dump leaks to a callback function using mvUserDumpLeaks

 Dump Leaks to a callback
function...

OnMemoryerrorsDumpleakstoacallbackfunction2()

Dump leaks to a callback function using mvLeakDetect

 Dump uninitialised data to a
callback function...

OnMemoryerrorsDumpuninitialiseddatatoacallbackfunction()

Dump uninitialised data to a callback function using
mvDetectUninitialised

12.1.8 Help menu

The Help menu

The Help menu only has one option that displays an 'about' box.

However, this is also a test, as when the about box is displayed, memory is allocated but not freed.

 Help menu About nativeExample... shows the about box below

The about box leaks each time it's displayed and when the program is closed, Memory Validator
detects the leaks.

Memory Validator Help677

Copyright © 2001-2025 Software Verify Limited

See CTeststakApp::OnAppAbout() in nativeExample.cpp

12.2 Finding memory leaks

Detecting memory leaks

This test (and most of those that follow) uses the example application nativeExample.exe.

The example program is run once and we use the Memory view to observe and investigate the memory
leak.

 launch nativeExample.exe wait until attaching is complete

 File menu Exit

The example program automatically generates some memory leaks when it starts.

 wait for data transfer to complete

The data collection indicators will be disabled when collection has stopped and all data for the
session has been processed.

· Memory tab Refresh shows all leaked memory in the colour defined for leaks - yellow by
default

One of the entries is an allocation of 123456 bytes:

Examples 678

Copyright © 2001-2025 Software Verify Limited

· expand the entry shows the allocation callstack

· expand the topmost entry on the callstack the source code fragment shows where the memory
was allocated

If there is no source code, or it can't be found, you'll be prompted for the location.

To edit the source code, double click on the source code.

12.3 Finding handle leaks

Detecting handle leaks

The example program is run once and we use the Memory view to observe and investigate the handle
leak.

launch nativeExample.exe wait until attaching is complete

Memory Validator Help679

Copyright © 2001-2025 Software Verify Limited

 Handles menu Start Thread File menu Exit

wait for data transfer to complete

· Memory tab Refresh shows all leaked memory and any handles that have not been
deallocated

Common handle leaks might come from forgetting to release a device context (DC), forgetting to
reset brushes, pens, and other graphical items, file, DLL or thread handles.

One of the leaks is a thread handle:

· expand the entry expand the OnHandlesStartthread entry on the callstack the source
shows where the handle was allocated in the example application

The top entry in the callstack shows the _beginthreadex() call in threadex.c
(MSVCR90D.DLL) where CreateThread() would be called.

Examples 680

Copyright © 2001-2025 Software Verify Limited

Hey, some leaks aren't leaks!

Handles are sometimes shown that aren't really leaked, but where deallocation hasn't been 'seen' by
Memory Validator.

This is typically because the deallocations are done by kernel internals and don't pass via Memory
Validator's hooking mechanism.

Other handles might be leaked by errors in 3rd party code.

As a result, handles such as bitmaps and icons sometimes show up in the display.

For your program, you'll need to decide which handle leaks are important by examining callstacks and
using filters to remove unwanted handles from the display.

12.4 Finding uninitialised memory

Detecting uninitialised memory

The example program is run once and we use the Memory and Analysis view to observe and investigate
any uninitialised memory.

 Settings menu Edit Settings... Data Collection Collect page check Uninitialised
Data enables the use of Uninitialized Data hooks

 launch nativeExample.exe wait until attaching is complete

 Memory Errors menu Uninitialized Data Objects on Heap Allocates and frees an
object with uninitialized data members

 File menu Exit

wait for data transfer to complete

· Memory tab Refresh shows the usual leaks and also uninitialised data use in the colour
defined.

Memory Validator Help681

Copyright © 2001-2025 Software Verify Limited

· expand the most recent uninitialised item expand the
OnUninitialiseddataObjectsonheap entry on the callstack shows the source for the

allocation

The information shows that in the allocation of a TestClass object, the data member data2
was not initialised:

The callstack may not always be present for all uninitialized data.

The display should show another uninitialised data item earlier in the event history.

This doesn't show a full callstack or data member names, but does show the size, address and
relative offsets of the uninitialised data

No callstack? Which object?

If your program has uninitialised data but the callstack isn't available:

Examples 682

Copyright © 2001-2025 Software Verify Limited

· Make a note of the object address - for example in our first example above 0x02171458

· Analysis tab Memory... shows the Find Memory in Analysis dialog

· Disable All enable Find objects in address range enter address range (e.g. 0x02171458 to
0x02171458) Find... shows matching objects

You can also set the range to search for object containing that address or the allocation address
plus the offset size.

The results of the search (if any) are highlighted on the display, showing a TestClass object of size 8
bytes at that address:

· select the later of the two results Relations Relations to 'this' Allocator of this
shows the allocation event for this object in the Relations pane

Expanding these traces shows the callstacks for the deallocation and the allocation of the object
that has the uninitialized data.

Memory Validator Help683

Copyright © 2001-2025 Software Verify Limited

12.5 Finding double deallocations

Detecting double deallocations

The example program is run once and we use the Memory view to observe and investigate any double
deallocations.

For each double deallocation, Memory Validator displays the allocation and deallocation locations.

 launch nativeExample.exe wait until attaching is complete

 Memory Errors menu Incorrect Usage Double Delete forces a double deallocation in
the example application

If a heap warning dialog appears, choose Ignore to continue.

 File menu Exit

Examples 684

Copyright © 2001-2025 Software Verify Limited

wait for data transfer to complete

· Memory tab Refresh shows the usual leaks and also multiple deallocations using the colour
defined.

· expand the most recent double deallocation shows the locations for allocation, free and double
free

· expand the topmost entries in each callstack shows the successive lines of the test in
CTeststakView::OnTestDoubledeleteofmemory()

Memory Validator Help685

Copyright © 2001-2025 Software Verify Limited

Examples 686

Copyright © 2001-2025 Software Verify Limited

12.6 Finding memory corruptions

Detecting double deallocations

The example program is run once and we use the Memory view to observe and investigate any double
deallocations.

For each double deallocation, Memory Validator displays the allocation and deallocation locations.

· Memory tab Display... check Memory Errors if not already checked.

 Settings menu Edit Settings... Data Collection Collect page check Memory Buffer
detect enables the use of Uninitialized Data hooks

 The target program will run slower than usual with this option as all functions related to strings
and memory copying are monitored.

 launch nativeExample.exe wait until attaching is complete

 Memory Errors menu Buffer overrun submenu Overrun allocated memory allocates
an array and the end of the array is deliberately overrun

In the Memory tab, the overrun corruption is detected and displayed

 Memory Errors menu Buffer overrun submenu Underrun allocated memory allocates
an array and the end of the array is deliberately underrun

In the Memory tab, the underrun corruption is detected and displayed

 File menu Exit

Memory Validator Help687

Copyright © 2001-2025 Software Verify Limited

wait for data transfer to complete

· Memory tab Refresh shows the usual leaks and also the two corrupted blocks using the
colour defined.

· expand the most recent corruption shows the callstack at the point of corruption

· expand the topmost entry in the callstack shows the source at the corruption point in
CTeststakView::OnBufferoverrunOverun()

Searching for Memory Allocations

In the simple code of the example above we can see where the allocation is - on the line above the
corruption point.

If we didn't know where the memory was being allocated, we can use the query address dialog.

· Make a note of the object address - e.g. in our example above 0x02137EC8

 Query menu Query Address... enter the address in Address to search for Query
shows all allocations including that address.

Examples 688

Copyright © 2001-2025 Software Verify Limited

This should show a result that can be expanded to show the allocation location as the line above
the corruption point we saw above.

12.7 Finding crashes due to deleted objects

Access violations

Often crashes are caused by an Access Violation Exception.

This occurs when the program tries to access memory that is no longer valid, as in the following
examples:

For each case we need to know the address that we are interested in querying.

· accessing memory that has been freed and released by the virtual memory manager

This memory address is the one we are interested in.

· accessing memory through a bad pointer held by an object that's since been deleted

The address of the object or data structure that held that pointer is the one we are interested in.

· calling a function on an object that has been deleted

The address of the object is the one we are interested in.

Memory Validator Help689

Copyright © 2001-2025 Software Verify Limited

Note, this case won't crash if all the following are true:

o the function is not virtual

o the function accessed no data members of the object

o the function calls no functions on the object that are virtual

Analysis Window

Knowing the address, we can use the analysis view and the Find Memory dialog to search for the
allocation, reallocation and deallocation locations of the memory.

In the case of that memory then being re-used in an allocation for another object we can find that the
analysis window and spot cases of code accessing one object when in reality it is accessing a
completely different object in a re-used memory space.

The process is identical to the way we found objects using an address in the example of finding
uninitialised memory.

Searching for Memory Allocations

Knowing the address, we can also use the query address dialog to find memory allocations with the
specified address.

A description of this is in the example of finding memory corruptions.

The query address dialog can find all memory locations that contain pointers to the memory allocations
and all memory locations that are pointed to by pointers in the memory allocations.

12.8 Finding allocations and reallocations

Finding allocations and reallocations

You may wish to trace the history of a reallocated memory block.

The example program is used to examining where memory was allocated and reallocated.

This example is for the CRT, but the same techniques work for

· Win32 heaps
· GlobalAlloc() heaps
· LocalAlloc() heaps
· CoTaskMemAlloc()
· IMallocSpy
· user defined (custom allocators) heaps.

Examples 690

Copyright © 2001-2025 Software Verify Limited

· Memory tab Display... ensure All Memory (leaks, errors, unleaked) is selected in the first
combo box

 launch nativeExample.exe wait until attaching is complete

 Allocations menu C Runtime (C/C++) Heap Reallocate memory... shows the Test
Memory dialog

Set the following to allocate a 10 bytes block and reallocate it twice, growing in size by 5 bytes each
time.

· Number of bytes to allocate set to 10

· Number of times to allocate set to 2

· Reallocate check this

· Reallocation increment set to 5 OK

· Memory tab Refresh the display should refresh to include an item like the one below

· expand the item shows the reallocation history - an allocation and two reallocations

Memory Validator Help691

Copyright © 2001-2025 Software Verify Limited

· expand the topmost entry in the callstack show the source code for the reallocation in
CTeststakView::OnTestReallocatememory()

Note that the two reallocation locations are the same (because they are in a loop).

 File menu Exit

Examples 692

Copyright © 2001-2025 Software Verify Limited

12.9 Finding incorrect deallocations

Finding incorrect deallocations

This example demonstrates detection of incorrect deallocation of allocated memory.

Examples where this can happen include the following, all of which Memory Validator can detect

· an allocate with malloc() or calloc(), but then deallocated with delete or delete []
· a reallocate with realloc() or _expand(), but then deallocated with delete or delete []
· an allocate with new, but then deallocated with free()
· an allocate with new, but then reallocated with realloc() or _expand()

· Memory tab Display... ensure Memory Errors is checked

 launch nativeExample.exe wait until attaching is complete

 Memory Errors menu Incorrect Usage Incorrect delete of memory incurs a selection
of deliberately incorrect deletion calls

 File menu Exit

wait for data transfer to complete

· Memory tab Refresh shows the usual leaks and also the memory errors using the colour
defined.

· expand any of the items shows the allocation and deallocation callstack locations

· expand the topmost entry in any of those callstacks shows the source code in
CTeststakView::OnTestIncorrectdeleteofmemory()

Memory Validator Help693

Copyright © 2001-2025 Software Verify Limited

Using delete and delete []

Note the difference between delete and delete [] in the example above.

For simple types (char, int, etc) the difference is technical, rather than a memory leak.

For class objects, it's important and misuse can result in leaks. Undefined behaviour, including crashes,
can result from using delete [] instead of delete.

There is an archive available (at the time of writing) of an interesting discussion on delete and delete []
in C++

Mistakes that can happen

Sometimes Memory Validator will appear to get a type wrong or get the array classification wrong
leading to an incorrect warning about an incorrect deallocation. Why does this happen?

There are two reasons this can happen.

1. You have specified that you are building with a particular version of Visual Studio, but you are actually
building with a different version of Visual Studio. This will mean that for all CRT and MFC source file
parsing Memory Validator will be looking at the wrong source files and wrong header files.

To fix this, change the version of Visual Studio in the Symbol Lookup settings to match the Visual
Studio you are using.

2. The binary you are testing doesn't match the source code that is indicated by the debug information
(or that is found by the source code locations on the File Locations settings).

To fix this, check the File Locations settings to ensure no incorrect paths are listed. Also check that
the source code indicated by the debug information is the correct source code for the build you are
testing.

http://web.archive.org/web/20080703153358/http://taossa.com/index.php/2007/01/03/attacking-delete-and-delete-in-c
http://web.archive.org/web/20080703153358/http://taossa.com/index.php/2007/01/03/attacking-delete-and-delete-in-c

Examples 694

Copyright © 2001-2025 Software Verify Limited

12.10 Reducing data in the display

Finding the signal in the noise

When you have a lot of data, it can be difficult to see the data that really matters - the signal within the
noise.

This is especially the case when looking for a specific leak, rather than looking for all leaks.

There are a number of ways to reduce the amount of data:

· reduce the data collected

· reduce the data that is displayed

· filtering the data that is displayed

· use watermarks to display data between two points

Reducing collected data

Collected data can be controlled at different levels of granularity via the settings dialog.

Some settings pages can be used for fine tuning of how the data is collected and which hooks are
enabled.

The collect tab allows quite coarse control over which types of hook are installed in the target program.

 Settings menu Edit Settings... Data Collection Collect page

Reducing displayed data

Data that ends up being collected can be removed from the display.

Most of the main tabs have a Display button to control what's shown:

· Memory
· Types
· Sizes
· Locations
· Generations
· Ages
· Hotspots
· Analysis

Filtered Data

Memory Validator Help695

Copyright © 2001-2025 Software Verify Limited

Filters operate by matching source file and line number, callstack and datatype to keep or remove data.

A combination of permanent and temporary filters can be used, as well as global, session and local
filters.

Watermarks

Watermarks let you not only add markers where certain events happened, but also let you display only
the data for allocation events that happened between those watermarks.

The example usage of watermarks demonstrates this at the end

Example of reducing data in the display

Here's a simple example of reducing displayed data via the display settings dialog:

 launch nativeExample.exe wait until attaching is complete

 File menu Exit

wait for data transfer to complete

· Memory tab Refresh shows the usual leaks and also memory errors

Roughly half the data is shown here:

Examples 696

Copyright © 2001-2025 Software Verify Limited

· Memory tab Display... select Leaks and errors in the first combo box uncheck CRT
Memory OK

· Memory tab Refresh shows a much reduced set of data

All the data displayed is shown here - a much reduced set of information!

 Note the header helpfully shows the number of items hidden by the display settings, 62
compared with 2 before

The same approach could be done with other data, for example if you have allocations on other heaps:

· Memory tab Display... uncheck Heap Memory uncheck Global Alloc Memory
uncheck Local Alloc Memory OK Refresh

Or to remove handle allocations from the display:

· Memory tab Display... uncheck Handles OK Refresh

Memory Validator Help697

Copyright © 2001-2025 Software Verify Limited

 When you enable or disable the Memory Errors check box in the Memory tag display settings
dialog, you may also need to make a change to the first combo box to make the display change. This is
because memory error traces are not considered memory leaks.

12.11 Session comparison

Session comparison

Session comparison can be used as part of manual regression testing to detect any differences between
sessions including leaks, errors, or anything else.

A good practice might be to also use session comparison with automated regression tests to provide
similar data on a daily basis.

This helps developers or quality assurance departments track issues on a continual basis rather than
when just things get so bad that something needs to be done.

Example session comparison

To demonstrate a simple session comparison we'll run the example application twice.

In the second run we'll allocate more objects that are not deallocated than in the first run.

We'll use Memory Validator to compare the two sessions to show which leaks are common to both runs
and which leaks were present only in the second run.

 Managers menu Session Manager set Maximum number of sessions to at least 2
allows several sessions to be kept at the same time

 launch nativeExample.exe wait until attaching is complete

 File menu Exit

wait for data transfer to complete

This first run is the baseline session.

 launch nativeExample.exe wait until attaching is complete

Examples 698

Copyright © 2001-2025 Software Verify Limited

 Allocations menu C Runtime (C/C++) Heap Allocate memory... shows the Test
Memory dialog OK to accept the default values

 File menu Exit

wait for data transfer to complete

This second run is the comparison session.

Now that we have two sessions, we can compare them to look for common leaks, improvements and
regressions.

 Managers menu Session Manager select the two recent sessions

· Compare shows the compare sessions dialog check the baseline session is the one with the
earlier timestamp

Memory Validator Help699

Copyright © 2001-2025 Software Verify Limited

· Compare shows the Session Memory Comparison dialog

The Session Memory Comparison dialog displays all the regression, improvements and leaks
common to both sessions.

You can filter, search and export the results, search the results and export the results as HTML
or XML.

In this example you should see one item marked as a regression, and all the rest of the leaks
being common to both sessions.

Examples 700

Copyright © 2001-2025 Software Verify Limited

· expand the regression item shows the regression leak allocation in
CTeststakView::OnTestAllocatememory()

12.12 Using bookmarks

Example use of bookmarks

To demonstrate the use of bookmarks we'll run the example application once, add some bookmarks, do
more work and then easily return to the bookmarked items.

Memory Validator Help701

Copyright © 2001-2025 Software Verify Limited

· Memory tab Display... ensure All Memory (leaks, errors, unleaked) is selected in the first
combo box

 launch nativeExample.exe wait until attaching is complete

· Memory tab Refresh the display updates to include the usual selection of allocations

Pick three allocations of interest, perhaps the most recent allocations of different datatypes, such as
CString, int [] or DWORD []

For each one, do the following:

Add Bookmark... shows the Bookmark Name dialog pre-filled with an automatic name

· Enter a name of your choice, for example relating to the data type you selected OK adds a
bookmark to the system

There are now three bookmarks for three different traces in the bookmark manager.

We'll come back to these later, but first we'll make some more allocations.

 Allocations menu Test Many Hooks at Once makes a selection of allocations

Feel free to make any more allocations you wish, using the test options in the example program.

· Memory tab Refresh the display should refresh to include the new items.

The items you bookmarked are a little further down the display, but in a real world scenario, they might
be lost in a sea of data!

Examples 702

Copyright © 2001-2025 Software Verify Limited

 Managers menu Bookmark Manager... displays the Bookmarks dialog

You should see the three bookmarks you added earlier

Select one of the bookmarks. In this case we'll choose int [].

· Goto scrolls the display to the original item bookmarked for this name.

Bookmarks can only be used on the Memory tab and the Analysis tab.

 If the memory has been deallocated the trace will no longer be displayed on the memory view.
The bookmark manager won't be able to find it. Use the Analysis view instead.

 File menu Exit

12.13 Using watermarks

Watermarks are your superpower

Watermarks are a really powerful way to partition and associate allocation events to actions or time
periods that matter to you and your program.

Memory Validator Help703

Copyright © 2001-2025 Software Verify Limited

If you link Memory Validator into your application to use the API, you can also add watermarks (and
bookmarks) from within your code.

Using the API to do this is especially useful if your actions or time periods don't map well to user
interaction triggers and events.

Example use of watermarks

To demonstrate the use of watermarks we'll run the example application once and add watermarks before
and after doing some work.

We'll see a simple case of how to use watermarks to:

· partition allocation events

· reduce data in the display

· help detect memory leaks for specific events

· Memory tab Display... ensure All Memory (leaks, errors, unleaked) is selected in the first
combo box

 launch nativeExample.exe wait until attaching is complete

· Memory tab Refresh the display updates to show the usual leaks and memory errors

 Managers menu Add watermark at most recent trace shows the Watermark Name
dialog

· Enter a name of your choice, for example 'Low tide' OK adds a named watermark to the
system

· Memory tab Refresh the display should refresh to include the new watermark

Examples 704

Copyright © 2001-2025 Software Verify Limited

 Allocations menu C Runtime (C/C++) Heap Allocate memory... shows the Test
Memory dialog OK to accept the default values

· Memory tab Refresh the display should refresh to include the new allocation.

 Managers menu Add watermark at most recent trace shows the Watermark Name dialog
again

· Enter a name of your choice, for example 'High tide' OK adds another named watermark to the
system

· Memory tab Refresh the display includes the new watermark

 Help menu About nativeExample.exe... shows the About box, and deliberately leaks
some memory at the same time

· Memory tab Refresh the display includes the new items.

By now the display looks something like this:

Note the following:

o traces between the watermarks represent objects allocated after the first watermark and

before the second

o memory allocated after the second watermark - i.e. when the About Box was displayed.

Without using watermarks, it would not have been obvious which items in the display related to the
test allocation, or the about box.

 Managers menu Watermark Manager... displays the Watermarks dialog

Memory Validator Help705

Copyright © 2001-2025 Software Verify Limited

You should see the watermarks you added earlier, as well as the permanent first and last
watermarks in the list.

Using watermarks to reduce data in the display

We'll now use the two watermarks we added, to reduce the data in the display

· First choose Low tide

· Second choose High tide OK changes the watermark settings in the Memory tab to the
selected values

· Memory tab Refresh the display changes to including only the data between the selected
watermarks

Using watermarks to help detect memory leaks

 File menu Exit

Examples 706

Copyright © 2001-2025 Software Verify Limited

wait for data transfer to complete

· Memory tab Refresh the display updates to show leaked items

We can see that the allocations that happened between the watermarks are real leaks at the
time the program closes.

· Memory tab Last watermark select the Last watermark option

· Memory tab Refresh the display updates to show leaked items

We can now see that the allocations that happened after the High tide watermark are also real
leaks.

Memory Validator Help707

Copyright © 2001-2025 Software Verify Limited

12.14 Example NT Service

The example NT Service

As well as the example application, an example service is provided along with details about building it.

There's also an example client

The example service demonstrates how to use the NT Service API to call the two functions required to
use Memory Validator with NT Services.

The following tasks are performed when the service is started:

· Loads the Memory Validator stub DLL into the service

· Deliberately leaks some memory so that you can see this in the Memory Validator user interface

· Performs the normal work of the service until it's stopped

· Unloads the Memory Validator stub DLL from the service

· Informs the service control manager that a stop is pending

Read more about working with NT Services.

12.14.1 Building the sample service

Example service project files

The example project can be found in the examples\service subdirectory in the directory where Memory
Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

· service.dsp for Microsoft® Developer Studio® 6.0

· service.vcproj for Microsoft® Visual Studio / .net

Configurations

There are a small number of configurations in each project:

· Debug / Release dynamically links to the svlMVStubService(_x64).lib demonstrating use
with the NT Service API

Examples 708

Copyright © 2001-2025 Software Verify Limited

· DebugStatic / ReleaseStatic statically linked versions of the same

Using the service

The service is named MV Simple Service in the control panel services dialog, and provides the following
command line options:

· -install Install the service

· -remove Uninstall the service

· -start Start the service

· -stop Stop the service

· -debug Run as a console application for debugging

· -? Display the help message

· -help Display the help message

Open a cmd prompt in administrator mode, navigate to the location of the service executable, and use
one of these commands to install, remove, start, stop the service.

Examples:
serviceMV.exe -install

serviceMV.exe -start

serviceMV.exe -stop

serviceMV.exe -remove

12.14.2 Building the sample client

If you've already built the sample service, the process is very similar

Project files

The example project can be found in the examples\serviceClient subdirectory in the directory where
Memory Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

· serviceClient.dsp for Microsoft® Developer Studio® 6.0

Memory Validator Help709

Copyright © 2001-2025 Software Verify Limited

· serviceClient.vcproj for Microsoft® Visual Studio / .net

Configurations

There are a small number of configurations in each project:

· Debug / Release dynamically links to the svlMVStubService(_x64).lib demonstrating use
with the NT Service API

Using serviceClient

The service is named MV Simple Service in the control panel services dialog, and provides the following
command line options:

· -string Sends the following (optionally quoted) text to the service. If the service is running the
service will return the string in reverse order

For example: serviceClient.exe -string "The quick brown fox" returns "xof nworb
kciuq ehT"

· -help Display the help message

12.14.3 Building the sample service utility

The serviceMutex project demonstrates a way of controlling whether Memory Validator is used without
having to rebuild your service.

Project files

The example project can be found in the examples\serviceMutex subdirectory in the directory where
Memory Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

· serviceMutex.dsp for Microsoft® Developer Studio® 6.0

· serviceMutex.vcproj for Microsoft® Visual Studio / .net

Configurations

There are a small number of configurations in each project:

· Debug / Release dynamically links to the svlMVStubService(_x64).lib demonstrating use
with the NT Service API

Examples 710

Copyright © 2001-2025 Software Verify Limited

Using the service utility

The utility provides a dialog box interface to allow the control over the creation of a mutex object with the
name specified in the service.h header file.

Only if the service is started with the mutex created, does the service load Memory Validator.

If you don't like using mutexes in this way, you could change the code in the service and the utility to
communicate through shared memory, a registry setting or another method of your choice.

12.14.4 Monitoring the service

Once the example service and example client has been built, the next step is to test them using
Memory Validator.

Installing the service

If you haven't installed the service, do the following:

· open an administrator mode cmd prompt

· navigate to the directory containing the serviceMV.exe to install

· serviceMV.exe -install

Monitoring the service

Prerequisites

· example service has been installed, but not started (if service has been started, stop the service)

· example service and example client have been built

The following process is used to monitor the application launched by the service:

· From the Launch menu choose Services > Monitor a Service...

Memory Validator Help711

Copyright © 2001-2025 Software Verify Limited

· The Monitor a service dialog is displayed

· Use Browse... to open the file chooser dialog and choose the service that will be monitored by
Memory Validator.

· Click OK

· Memory Validator sets up a variety of parameters then displays a dialog box asking you to start you
service. Click OK to dismiss the dialog

Examples 712

Copyright © 2001-2025 Software Verify Limited

· Start your service. For the example serviceMV.exe do the following
o open an administrator mode cmd prompt

o navigate to the directory containing the serviceMV.exe to start

o serviceMV.exe -start

o serviceMV.exe starts will be monitored by Memory Validator

· The target application contacts Memory Validator

· Data is collected until the service finishes executing

· Memory Validator displays the results

12.15 Example Application Launched from a Service

The example Application launched from a Service

This pair of projects create an application that is launched from a service.

The purpose of this example is to show how to monitor the application that is launched from the service.
This is also the same process for monitoring an application launched by an application launched from a
service.

This process is subtly different to the method for working with services (see the example service for that).

Service

The service project is serviceWithAChildProcess.vcxproj

The following tasks are performed when the service is started:

· the test application is launched from the service

Application

The application project is serviceChildProcess.vcxproj

Memory Validator Help713

Copyright © 2001-2025 Software Verify Limited

The application's first task is to load Memory Validator into the application.

· Loads the Memory Validator stub DLL into the application

· Configures the NT Service API to communicate to Memory Validator

· Does some work that can be monitored by Memory Validator

· Exits

Implementation Details

For implementation details see attachToMemoryValidator(); in serviceChildProcess.cpp.

The application will need to link to the NT Service API, for example ..\..\..
\svlMVStubService\release_2010_x64\svlMVStubService_x64.lib (for a release x64 EXE/DLL).

Important. Call attachToMemoryValidator() as close to the start of your application as
possible, before any threads have been created.

Read more about working with NT Services.

12.15.1 Building the service and application

Example solution files

The example solution can be found in the examples\serviceWithAChildProcess subdirectory in the
directory where Memory Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

Example project files

The example projects can be found in the subdirectories in the directory where Memory Validator was
installed.

examples\serviceWithAChildProcess\serviceWithAChildProcess

· serviceWithAChildProcess.vcproj for Microsoft® Visual Studio / .net

examples\serviceWithAChildProcess\serviceChildProcess

· serviceChildProcess.vcproj for Microsoft® Visual Studio / .net

Configurations

There are a small number of configurations in each project:

Examples 714

Copyright © 2001-2025 Software Verify Limited

· Debug / Release dynamically links to the svlMVStubService(_x64).lib demonstrating use
with the NT Service API

Using the service

The service is named SVL *** MV Child Process in the control panel services dialog (*** changes
depending on the build configuration), and provides the following command line options:

· -install Install the service

· -remove Uninstall the service

· -start Start the service

· -stop Stop the service

· -debug Run as a console application for debugging

· -? Display the help message

· -help Display the help message

Open a cmd prompt in administrator mode, navigate to the location of the service executable, and use
one of these commands to install, remove, start, stop the service.

Examples:
serviceWithAChildProcess.exe -install

serviceWithAChildProcess.exe -start

serviceWithAChildProcess.exe -stop

serviceWithAChildProcess.exe -remove

12.15.2 Monitoring the application launched from the service

Once the example service and example application are built, the next step is to test them using Memory
Validator.

Installing the service

If you haven't installed the service, do the following:

· open an administrator mode cmd prompt

· navigate to the directory containing the serviceWithAProcess.exe to install

· serviceWithAProcess.exe -install

Memory Validator Help715

Copyright © 2001-2025 Software Verify Limited

Monitoring the application launched by the service

Prerequisites

· example service has been installed, but not started (if service has been started, stop the service)

· example service and example application have been built (application must use the NT Service API
as demonstrated in attachToMemoryValidator())

· example application executable is in the same directory as the example service (this is only a
requirement for the example)

The following process is used to monitor the application launched by the service:

· From the Launch menu choose Services > Monitor a Service...

· The Monitor a service dialog is displayed

· Use Browse... to open the file chooser dialog and choose the application that will be monitored by
Memory Validator. This is the application that is launched by the service. Do not choose the service

Examples 716

Copyright © 2001-2025 Software Verify Limited

· Click OK

· Memory Validator sets up a variety of parameters then displays a dialog box asking you to start you
service. Click OK to dismiss the dialog

· Start your service. For the example serviceWithAChildProcess.exe do the following
o open an administrator mode cmd prompt

o navigate to the directory containing the serviceWithAProcess.exe to start

o serviceWithAProcess.exe -start

o serviceWithAProcess.exe starts and launches the child process serviceChildProcess.exe

that will be monitored

· The target application contacts Memory Validator

· Data is collected until the target process finishes executing

· Memory Validator displays the results

Part

XIII

Hook Reference 718

Copyright © 2001-2025 Software Verify Limited

13 Hook Reference

The tables on the following pages list the hooks used by Memory Validator and are for reference only.

New hooks may be added in later versions of the software.

Enabling and disabling the hooks

You can individually enable and disable in the hook settings:

· Memory allocation hooks

Includes C/C++, Win32, COM, LocalAlloc & GlobalAlloc, BSTR etc

· Handle allocation hooks

All handle related hooks - Kernel, Advapi, GDI, Shell, Sockets, Printer etc

· Buffer manipulation hooks

Kernel buffer
Memory or string copying, moving and comparisons
Internet path and registry functions

You can also specify custom hooks for functions that Memory Validator does not initially know about.

Hooking DLLS

Enabling or disabling hooks on a per-DLL basis using the Hooked DLLs settings.

13.1 C/C++ Memory Hooks

C and C++ Runtime memory hooks

For each of the compilers and linkers, the following C/C++ runtime functions are hooked.

Relevant runtime DLLs are listed for each system

Microsoft / Intel

Function C Runtime DLLs

Release

Memory Validator Help719

Copyright © 2001-2025 Software Verify Limited

· malloc
· calloc
· realloc
· free
· _expand
· new
· delete

· aligned_malloc
· aligned_realloc
· aligned_offset_malloc
· aligned_offset_realloc
· aligned_free

The following are hooked for debug DLLs only

· malloc_dbg
· calloc_dbg
· realloc_dbg
· free_dbg
· _expand_dbg

· aligned_malloc_dbg
· aligned_realloc_dbg
· aligned_offset_malloc_dbg
· aligned_offset_realloc_dbg
· aligned_free_dbg

MSVCRT40.DLL
MSVCRT.DLL
MSVCR70.DLL
MSVCR71.DLL
MSVCR80.DLL
MSVCR90.DLL
MSVCR100.DLL
MSVCR110.DLL
MSVCR120.DLL
APPCRT140.DLL

Debug
MSVCRT40D.DLL
MSVCRTD.DLL
MSVCR70D.DLL
MSVCR71D.DLL
MSVCR80D.DLL
MSVCR90D.DLL
MSVCR100D.DLL
MSVCR110D.DLL
MSVCR120D.DLL
APPCRT140D.DLL

Visual Studio 4.0
Visual Studio 6.0 (1996)
Visual Studio 7.0 (2002)
Visual Studio 7.1 (2003)
Visual Studio 8.0 (2005)
Visual Studio 9.0 (2008)
Visual Studio 10.0 (2010)
Visual Studio 11.0 (2012)
Visual Studio 12.0 (2013)
Visual Studio 14.0 (2014)

Visual Studio 4.0
Visual Studio 6.0 (1996)
Visual Studio 7.0 (2002)
Visual Studio 7.1 (2003)
Visual Studio 8.0 (2005)
Visual Studio 9.0 (2008)
Visual Studio 10.0 (2010)
Visual Studio 11.0 (2012)
Visual Studio 12.0 (2013)
Visual Studio 14.0 (2014)

Metrowerks CodeWarrior for Windows V8 & V9

Function C Runtume DLLs

· malloc
· calloc
· realloc
· free
· _expand
· new
· delete

Release
MSL_All-DLL80_x86.DLL
MSL_All-DLL90_x86.DLL

Debug
MSL_All-DLL80_x86_D.DLL
MSL_All-DLL90_x86_D.DLL

Salford Software FORTRAN95

Function C Runtume DLLs

· __ALLOCATE1
· __DEALLOCATE
· __PALLOCATE1
· __PALLOCATE2
· __PFREE
· __PFREE1

SALFLIBC.DLL

Hook Reference 720

Copyright © 2001-2025 Software Verify Limited

Borland C++ Builder

Function C Runtume DLLs

· malloc
· calloc
· realloc
· free
· _expand
· new
· delete

CC3250.DLL
CC3250MT.DLL

Borland Delphi

Function C Runtume DLLs

· GetMem
· AllocMem
· ReallocMem
· FreeMem

· SysGetMem
· SysAllocMem
· SysReallocMem
· SysFreeMem

BORLNDMM.DLL

13.2 Win32 Memory Hooks

Win32 memory and virtual memory hooks

Kernel32.dll (Memory allocations)

· GlobalAlloc
· GlobalReAlloc
· GlobalFree

· HeapAlloc
· HeapReAlloc
· HeapFree

· LocalAlloc
· LocalReAlloc
· LocalFree

· AllocateUserPhysical
Pages

· MapViewOfFile
· MapViewOfFile2
· MapViewOfFile3
· MapViewOfFileFromApp
· MapViewOfFileNumaW
· MapViewOfFileEx
· UnmapViewOfFile
· UnmapViewOfFile2
· UnmapViewOfFileEx

· VirtualAlloc
· VirtualAlloc2
· VirtualAlloc2FromApp
· VirtualAllocFromApp

Memory Validator Help721

Copyright © 2001-2025 Software Verify Limited

· AllocateUserPhysical
Pages2

· AllocateUserPhysical
PagesNuma

· FreeUserPhysicalPag
es

· VirtualFree
· VirtualAllocEx
· VirtualAllocExNuma
· VirtualFreeEx
· VirtualAllocVlm
· VirtualFreeVlm

Ole32.dll (COM/OLE memory allocations)

· CoTaskMemAlloc
· CoTaskMemRealloc
· CoTaskMemFree

· IMallocSpy

OleAut32.dll (BSTR memory allocations)

· SysAllocString
· SysAllocStringByteLen
· SysAllocStringLen
· SysReAllocString
· SysReAllocStringLen
· SysFreeString

· VariantClear
· VariantCopy
· VariantCopyInd
· VariantChangeType
· VariantChangeTypeEx

· SafeArrayCreate
· SafeArrayCreateEx
· SafeArrayCreateVector
· SafeArrayCreateVectorEx
· SafeArrayDestroy
· SafeArrayAllocData
· SafeArrayDestroyData
· SafeArrayGetElement
· SafeArrayPutElement
· SafeArrayAllocDescriptor
· SafeArrayAllocDescriptorEx
· SafeArrayDestroyDescriptor

· SafeArrayLock
· SafeArrayUnlock
· SafeArrayAccessData
· SafeArrayUnaccessData

13.3 Handle Hooks

Kernel32.dll

· CloseHandle

· CreateFileW
· CreateFileA
· OpenFile
· DeleteFileW
· DeleteFileA

· LockFile
· LockFileEx
· UnlockFile
· UnlockFileEx

· CreateEventW

· CreateMutexW
· CreateMutexA
· OpenMutexW
· OpenMutexA
· ReleaseMutex

· CreateNamedPipeW
· CreateNamedPipeA
· CreatePipe
· DisconnectNamedPipe

· CreateProcessW
· CreateProcessA
· OpenProcess

· CreateJobObjectW
· CreateJobObjectA
· OpenJobObjectW
· OpenJobObjectA
· TerminateJobObject

· BeginUpdateResourceW
· BeginUpdateResourceA
· EndUpdateResourceW
· EndUpdateResourceA

· CreateConsoleScreenBuffer
· GetConsoleWindow

Hook Reference 722

Copyright © 2001-2025 Software Verify Limited

· CreateEventA
· OpenEventW
· OpenEventA

· CreateFileMappingW
· CreateFileMappingA
· CreateFileMapping2
· CreateFileMappingFromA

pp
· CreateFileMappingNuma

W
· OpenFileMappingW
· OpenFileMappingA
· OpenFileMappingFromAp

p

· FindFirstFileW
· FindFirstFileA
· FindFirstFileEx
· FindClose

· HeapCreate
· HeapDestroy

· LoadLibraryW
· LoadLibraryA
· LoadLibraryExW
· LoadLibraryExA
· FreeLibrary

· CreateFiber
· DeleteFiber

· CreateMailslotW
· CreateMailslotA

· TerminateProcess

· CreateSemaphoreW
· CreateSemaphoreA
· OpenSemaphoreW
· OpenSemaphoreA
· ReleaseSemaphore

· CreateThread
· CreateRemoteThread
· OpenThread
· TerminateThread

· CreateWaitableTimerW
· CreateWaitableTimerA
· OpenWaitableTimerW
· OpenWaitableTimerA
· CancelWaitableTimer

· CreateTimerQueue
· DeleteTimerQueue
· DeleteTimerQueueEx
· CreateTimerQueueTimer
· DeleteTimerQueueTimer

· CreateIoCompletionPort

· AddAtomW
· AddAtomA
· DeleteAtom
· GlobalAddAtomW
· GlobalAddAtomA
· GlobalDeleteAtom

· FindFirstVolume
· FindFirstVolumeMountPoint
· FindVolumeClose
· FindFirstVolumeMountPointClose

· FindFirstChangeNotificationW
· FindFirstChangeNotificationA
· FindCloseChangeNotification

· InitializeCriticalSection
· InitializeCriticalSectionAndSpinCount
· DeleteCriticalSection

· _lopen
· _lclose

Advapi32.dll

· RegCreateKeyW
· RegCreateKeyA
· RegCreateKeyExW
· RegCreateKeyExA
· RegOpenKeyW
· RegOpenKeyA
· RegOpenKeyExW
· RegOpenKeyExA
· RegCloseKey

· OpenBackupEventLogW
· OpenBackupEventLogA

· OpenEventLogW
· OpenEventLogA
· CloseEventLog

· RegConnectRegistryW
· RegConnectRegistryA

· RegisterEventSourceW
· RegisterEventSourceA
· DeregisterEventSource

· RegOpenCurrentUser
· RegOpenUserClassesRoot

· OpenProcessToken
· OpenThreadToken
· CreateRestrictedToken
· DuplicateToken
· DuplicateTokenEx

Memory Validator Help723

Copyright © 2001-2025 Software Verify Limited

GDI32.dll

· CreateBitmap
· CreateBitmapIndirect
· CreateCompatibleBitmap
· CreateDIBitmap
· CreateDIBSection
· CreateDiscardableBitmap

· CreateBrushIndirect
· CreateDIBPatternBrush
· CreateDIBPatternBrushPt
· CreateHatchBrush
· CreatePatternBrush
· CreateSolidBrush

· CreateDCW
· CreateDCA
· DeleteDC
· CreateCompatibleDC

· CreateEnhMetaFileW
· CreateEnhMetaFileA
· DeleteEnhMetaFile
· CloseEnhMetaFile

· CreateFontW
· CreateFontA
· CreateFontIndirectW
· CreateFontIndirectA

· CreateMetaFileW
· CreateMetaFileA
· DeleteMetaFile
· CloseMetaFile

· CreatePalette

· CreatePen
· CreatePenIndirect
· ExtCreatePen

· CombineRgn
· CreateEllipticRgn
· CreateEllipticRgnIndirect
· CreatePolygonRgn
· CreatePolyPolygonRgn
· CreateRectRgn
· CreateRectRgnIndirect
· CreateRoundRectRgn
· ExtCreateRegion
· PathToRegion

· DeleteObject

User32.dll

· CreateAcceleratorTableW
· CreateAcceleratorTableA
· DestroyAcceleratorTable

· LoadBitmapW
· LoadBitmapA

· CreateCaret
· DestroyCaret

· CreateCursor
· CopyCursor
· DestroyCursor

· ReleaseDC
· GetDC
· GetDCEx
· GetWindowDC

· DdeConnect
· DdeDisconnect
· DdeConnectList
· DdeDisconnectList

· GetThreadDesktop

· SetWindowsHookExW
· SetWindowsHookExA
· UnhookWindowsHookEx

· CreateIcon
· CreateIconFromResource
· CreateIconFromResourceE

x
· CreateIconIndirect
· CopyIcon
· DestroyIcon

· LoadImageW
· LoadImageA
· CopyImage

· CreateMenu
· DestroyMenu
· CreatePopupMenu
· LoadMenuW
· LoadMenuA
· LoadMenuIndirectW
· LoadMenuIndirectA

· CreateWindowW
· CreateWindowA
· DestroyWindow
· CreateWindowExW
· CreateWindowExA

· CreateDialogParamW
· CreateDialogParamA
· CreateDialogIndirectParamW
· CreateDialogIndirectParamA

· CreateMDIWindowW
· CreateMDIWindowA

· BeginDeferWindowPos
· EndDeferWindowPos

· GetProcessWindowStation

· SetWindowRgn

Hook Reference 724

Copyright © 2001-2025 Software Verify Limited

Shell32.dll

· ExtractAssociatedIcon
· ExtractIcon
· ExtractIconEx
· DuplicateIcon

Comctl.dll

· ImageList_Create
· ImageList_Destroy
· ImageList_Duplicate
· ImageList_GetIcon
· ImageList_LoadImage
· ImageList_Merge

· CreateMappedBitmap

· CreateToolbarEx

· CreateUpDownControl

Sockets

· socket
· accept
· closesocket

WinHttp

· WinHttpOpen
· WinHttpOpenConnect
· WinHttpOpenRequest
· WinHttpCloseHandle

Printer

· OpenPrinterW
· OpenPrinterA
· ClosePrinter

· FindFirstPrinterChangeNotification
· FindClosePrinterChangeNotification
· FindNextPrinterChangeNotification

· FreePrinterNotifyInfo

Memory Validator Help725

Copyright © 2001-2025 Software Verify Limited

13.4 COM Related Hooks

COM memory allocation

These four are also listed in the OleAut32.dll memory allocation functions

· SysAllocString
· SysReAllocString
· SysFreeString

· VariantClear

COM object creation

· CoCreateInstance
· CoCreateInstanceEx
· CoGetInstanceFromFile

· CoGetClassObject
· CoRegisterClassObject

· BindMoniker
· CreateAntiMoniker
· CreateClassMoniker
· CreateFileMoniker
· CreateItemMoniker
· CreatePointerMoniker
· MonikerCommonPrefixWith
· MonikerRelativePathTo
· CreateBindCtx
· CreateGenericComposite
· MkParseDisplayName

· OleCreate
· OleCreateDefaultHandler
· OleCreateEx
· OleCreateFontIndirect
· OleCreateFromData
· OleCreateFromFile
· OleCreateLink
· OleCreateStaticFromData
·

· OleGetClipboard
·

· OleLoad
· OleLoadFromStream
· OleLoadPicture
· OleLoadPictureFile
·

· OleRegEnumFormatEtc
· OleRegEnumVerbs

· StgCreateDocFile
· StgCreateDocFileOn
· StgGetIFillLockBytesOn
· StgOpenAsyncDocfileOn
· StgOpenStorage
· StgOpenStorageOn

· CreateDataAdviseHolder
· CreateOleAdviseHolder

· GetRunningObjectTable

COM Reference Counting

To track creation and lifetime of COM objects they are all hooked for the following methods:

· QueryInterface
· AddRef
· Release

.

13.5 Buffer Manipulation Hooks

Kernel32.dll buffer function hooks

· CopyMemory
· FillMemory

Hook Reference 726

Copyright © 2001-2025 Software Verify Limited

· MoveMemory
· ZeroMemory

CRT memory and string copying and moving

· memcpy
· memmove
· memset
· _memccpy

· strcat
· strcpy
· strdup
· strncat
· strncpy

· _strset
· _strnset

· wcscat
· wcscpy
· wcsncat
· wcsncpy

· _wcsdup
· _wcsset
· _wcsnset

· _mbscat
· _mbscpy
· _mbsdup
· _mbsset
· _mbsnbcat
· _mbsncpy
· _mbsnset
· _mbsnbset

CRT memory and string comparisons

· memchr
· memcmp

· _memicmp

· strchr
· strcmp
· strcoll
· strcspn
· strftime
· stricmp
· strlen
· strncmp
· strpbrk
· strrchr
· strspn
· strstr
· strtod
· strtok
· strtol
· strtoul
· strxfrm

· _stricoll
· _strlwr
· _strncoll
· _strnicmp
· _strnicoll
· _strupr

· wcschr
· wcscmp
· wcscoll
· wcscspn
· wcsftime
· wcsicmp
· wcslwr
· wcsncmp
· wcspbrk
· wcsrchr
· wcsspn
· wcstod
· wcstok
· wcstol
· wcstombs
· wcstoul
· wcsupr
· wcsxfrm

· _wcsicoll
· _wcslen
· _wcsncoll
· _wcsnicmp
· _wcsnicoll
· _wcsstr

· mbsspn
· mbstok
· mbstowcs

· _mbschr
· _mbscmp
· _mbscoll
· _mbscspn
· _mbsdec
· _mbsicmp
· _mbsicoll
· _mbsinc
· _mbslen
· _mbslwr
· _mbsnbcmp
· _mbsnbcnt
· _mbsnbcpy
· _mbsnbicmp
· _mbsnccnt
· _mbsncmp
· _mbsncoll
· _mbsnextc
· _mbsnicmp
· _mbsnicoll
· _mbsninc
· _mbspbrk
· _mbsrchr
· _mbsspnp
· _mbsstr
· _mbstrlen
· _mbsupr

Memory Validator Help727

Copyright © 2001-2025 Software Verify Limited

Locale functions

· get_current_locale
· create_locale
· free_locale
· _get_current_locale
· _create_locale
· _free_locale

Internet functions

· StrChr
· StrChrI
· StrCmpN
· StrCmpNI
· StrCpyN
· StrCSpn
· StrCSpnI
· StrDup

· StrFormatByteSize
· StrFromTimeInterval
· StrIsIntlEqual
· StrNCat
· StrPBrk
· StrRChr
· StrRStrI

· StrSpn
· StrStr
· StrStrI
· StrToInt
· StrToIntEx
· StrTrim

Path functions

· PathAddBackslash
· PathAddExtension

· PathAppend

· PathBuildRoot

· PathCanonicalize

· PathCombine

· PathCompactPath
· PathCompactPathEx

· PathCommonPrefix

· PathFileExists

· PathFindExtension
· PathFindFileName
· PathFindNextComponent
· PathFindOnPath

· PathGetArgs
· PathGetDriveNumber

· PathIsContentType
· PathIsDirectory
· PathIsFileSpec
· PathIsPrefix
· PathIsRelative
· PathIsRoot
· PathIsSameRoot
· PathIsSystemFolder
· PathIsUNC
· PathIsUNCServer
· PathIsUNCServerShare
· PathIsURL

· PathMakePretty

· PathMatchSpec

· PathParseIconLocation

· PathQuoteSpaces
· PathUnquoteSpaces

· PathRelativePathTo

· PathRemoveArgs
· PathRemoveBackslash
· PathRemoveBlanks
· PathRemoveExtension
· PathRemoveFileSpec
· PathRenameExtension

· PathSearchAndQualify

· PathSkipRoot

· PathSetDlgItemPath

· PathStripPath
· PathStripToRoot

· PathMakeSystemFolder
· PathUnmakeSystemFolder

Registry functions

· SHDeleteEmptyKey
· SHDeleteKey
· SHEnumKeyEx

· SHDeleteValue

· SHQueryInfoKey
· SHQueryValueEx

· SHRegCreateUSKey
· SHRegDeleteEmptyUSKey

· SHRegDeleteUSValue
· SHRegGetUSValue
· SHRegEnumUSValue
· SHRegQueryUSValue
· SHRegSetUSValue

Hook Reference 728

Copyright © 2001-2025 Software Verify Limited

· SHEnumValue
· SHGetValue
· SHSetValue

· SHRegEnumUSKey
· SHRegOpenUSKey
· SHRegQueryInfoUSKey

· SHRegWriteUSValue

· SHOpenRegStream

13.6 Uninitialised Data Hooks

Memory Validator hooks all C++ constructors and destructors for which symbols are available in all DLLs
that are loaded.

Each DLL that is loaded must be enabled for hooks.

13.7 Miscellaneous Memory Allocations

These functions allocate and free memory to manage miscellaneous functions in the WIN32 API.

Miscellaneous functions allocating memory

Ole32.dll

· CreateStreamOnHGlobal

Oleacc.dll

· AccessibleObjectFromPoint
· AccessibleObjectFromEvent

Kernel32.dll

· GetEnvironmentStringsA
· GetEnvironmentStringsW
· FreeEnvironmentStringsA
· FreeEnvironmentStringsW

· AllocateUserPhysicalPages
· FreeUserPhysicalPages

· AllocConsole
· FreeConsole

Advapi32.dll

· AllocateAndInitializeSid
· FreeSid

· FreeEncryptionCertificateHashList

Memory Validator Help729

Copyright © 2001-2025 Software Verify Limited

· QueryUsersOnEncryptedFile
· QueryRecoveryAgentsOnEncryptedFile

13.8 LocalAlloc and GlobalAlloc Functions

Here are some hooked functions you may use that will indirectly allocate memory using LocalAlloc or
GlobalAlloc

Functions using LocalAlloc

These functions use LocalAlloc() to allocate memory which must be freed with LocalFree():

Advapi32.dll (LocalAlloc allocations)

· GetExplicitEntriesFromAclA
· GetExplicitEntriesFromAclW
· SetEntriesInAclA
· SetEntriesInAclW

· BuildSecurityDescriptorA
· BuildSecurityDescriptorW
· LookupSecurityDescriptorPartsA
· LookupSecurityDescriptorPartsW

· GetSecurityInfo
· GetNamedSecurityInfo

· ConvertStringSidToSidA
· ConvertStringSidToSidW
· ConvertSidToStringSidA
· ConvertSidToStringSidW

· ConvertStringSecurityDescriptorToSecurityDescriptorA
· ConvertStringSecurityDescriptorToSecurityDescriptorW
· ConvertSecurityDescriptorToStringSecurityDescriptorA
· ConvertSecurityDescriptorToStringSecurityDescriptorW

Kernel32.dll (LocalAlloc allocations)

· FormatMessageA
· FormatMessageW

· GetQueuedCompletionStatus

Crypt32.dll (LocalAlloc allocations)

· CryptDecodeObjectEx
· CryptEncodeObjectEx

· CryptGetKeyIdentifierProperty

· CryptUnprotectData

Setupapi.dll (LocalAlloc allocations)

· SetupGetFileCompressionInfoA
· SetupGetFileCompressionInfoW

Hook Reference 730

Copyright © 2001-2025 Software Verify Limited

Mprapi.dll (LocalAlloc allocations)

· MprAdminGetErrorString

Resutils.dll (LocalAlloc allocations)

· ResUtilDupString

· ResUtilExpandEnvironmentStrings

· ResUtilFindBinaryProperty
· ResUtilFindMultiSzProperty
· ResUtilFindSzProperty
· ResUtilFindExpandSzProperty
· ResUtilFindExpandedSzProperty

· ResUtilGetBinaryValue
· ResUtilGetMultiSzValue
· ResUtilGetSzValue
· ResUtilGetExpandSzValue

· ResUtilSetBinaryValue
· ResUtilSetMultiSzValue
· ResUtilSetSzValue
· ResUtilSetExpandSzValue

Functions using GlobalAlloc

These functions use GlobalAlloc() to allocate memory which must be freed with GlobalFree().

Gdi32.dll (GlobalAlloc allocations)

· CMCreateDeviceLinkProfile

· CMCreateProfileA
· CMCreateProfileW

Mscms.dll (GlobalAlloc allocations)

· CreateDeviceLinkProfile

· CreateProfileFromLogColorSpace

Shell32.dll (GlobalAlloc allocations)

· CommandLineToArgvW

Ole32.dll (GlobalAlloc allocations)

· CreateStreamOnHGlobal

13.9 Functions using CoTaskMemAlloc

These functions use CoTaskMemAlloc() to allocate memory which must be freed with
CoTaskMemFree():

Ole32.dll functions using CoTaskMemAlloc

Memory Validator Help731

Copyright © 2001-2025 Software Verify Limited

· StringFromCLSID
· StringFromIID

· ReadFmtUserTypeStg

· CoQueryProxyBlanket
· CoQueryClientBlanket

· CoQueryAuthenticationServices

Shlwapi.dll functions using CoTaskMemAlloc

· SHStrDupA
· SHStrDupW

· StrRetToStrA
· StrRetToStrW

13.10 Net API Hooks

Netwapi.dll functions

· NetApiBufferAllocate
· NetApiBufferReallocate
· NetApiBufferFree

· NetStatisticsGet

· NetUseEnum
· NetUseGetInfo

· NetUserGetGroups
· NetUserGetInfo
· NetUserGetLocalGroups
· NetUserModalsGet

· NetWkstaGetInfo
· NetWkstaUserEnum
· NetWkstaUserGetInfo
· NetWkstaTransportEnum

· NetDfsGetInfo
· NetDfsEnum
· NetDfsGetClientInfo

· NetRemoteTOD

· NetGroupEnum
· NetGroupGetInfo
· NetGroupGetUsers

· NetQueryDisplayInformation

· NetShareGetInfo
· NetShareEnum
· NetShareEnumSticky

· NetServerDiskEnum
· NetServerEnum
· NetServerEnumEx
· NetServerGetInfo
· NetServerTransportEnum

· NetConnectionEnum

· NetSessionGetInfo
· NetSessionEnum

· NetGetDCName
· NetGetAnyDCName

· NetReplImportDirEnum
· NetReplImportDirGetInfo
· NetReplGetInfo
· NetReplExportDirEnum
· NetReplExportDirGetInfo

· NetMessageNameEnum
· NetMessageNameGetInfo

· NetLocalGroupGetMembers
· NetLocalGroupGetInfo
· NetLocalGroupEnum

· NetFileEnum
· NetFileGetInfo

· NetGetJoinInformation
· NetGetJoinableOUs

· NetScheduleJobEnum
· NetScheduleJobGetInfo

Part

XIV

Memory Validator Help733

Copyright © 2001-2025 Software Verify Limited

14 Debug Information, Symbols, Filenames, Line Numbers

Depending on which IDE or compiler/linker combination the process to create debug information to
ensure that you have symbols, filenames and line numbers is different.

This section shows you what to do to ensure you have symbols for your compiler and linker.

14.1 Visual Studio

Enabling debug information in Visual Studio has changed over the years depending on the version of
Visual Studio you are using.

It's generally the same, but there have been some changes in recent versions that can cause confusion.

By default debug configurations create debug information, but for some versions of Visual Studio, release
configurations do not create debug information.

You need to set both compiler and linker settings to get debug information. Setting just one or the
other will not give you debug information you can use.

Configurations

In the help below we show you how to modify one configuration, for example Release | Win32.

You need to modify all configurations appropriately. Release, Debug, Win32, Win64 and any other
configurations you are using.

Visual Studio 2017 - 2021

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 734

Copyright © 2001-2025 Software Verify Limited

Linker Settings

If you're building on a different machine to the machine you're working on (for example a build server), you
should choose /DEBUG:FULL, not /DEBUG or /DEBUG:FASTLINK.

Memory Validator Help735

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Visual Studio 2010 - 2015

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 736

Copyright © 2001-2025 Software Verify Limited

Linker Settings

Memory Validator Help737

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Visual Studio 2002 - 2008

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 738

Copyright © 2001-2025 Software Verify Limited

Linker Settings

Memory Validator Help739

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Visual Studio 6.0

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 740

Copyright © 2001-2025 Software Verify Limited

Linker Settings

Memory Validator Help741

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

14.2 C++ Builder

Debug information can be provided using two methods.

· Debugging information (TDS or DWARF format)

· MAP files

Debugging Information

Debug configurations of C++ Builder projects automatically generate debug information that provides
symbols, filenames and line numbers.

However the release configurations of C++ Builder projects do not automatically generate debug
information. You need to configure that yourself.

Here's how you do that. It's slightly different if you're building 32 bit applications rather 64 bit applications.

You need to set both compiler and linker settings to get debug information. Setting just one or the other
will not give you debug information you can use.

32 bit C++ Builder

Project Configuration

Change your project settings to target 32 bit builds.

Debug Information, Symbols, Filenames, Line Numbers 742

Copyright © 2001-2025 Software Verify Limited

Compiler Settings

Linker Settings

Memory Validator Help743

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

64 bit C++ Builder

Project Configuration

Change your project settings to target 64 bit builds.

Debug Information, Symbols, Filenames, Line Numbers 744

Copyright © 2001-2025 Software Verify Limited

Compiler Settings

Linker Settings

Memory Validator Help745

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

MAP files

MAP files are not generated by default. You need to enable the option to generate a detailed map file.

The method is the same for 32 bit and 64 bit C++ Builder.

Select the project configuration as shown in the Debugging Information section above, then modify the
C++ Linker, Output settings.

Linker Settings

Debug Information, Symbols, Filenames, Line Numbers 746

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Debugging Information or MAP files?

If you can create both debugging information and MAP files which should I use?

Memory Validator uses this information to provide symbols, filenames and line numbers in stack traces.

For this purpose it doesn't matter whether you use Debugging Information or MAP files.

14.3 Delphi

Debug information can be provided using two methods.

· Debugging information (TDS format)

· MAP files

Debugging Information

Memory Validator Help747

Copyright © 2001-2025 Software Verify Limited

Debug configurations of Delphi projects automatically generate debug information that provides symbols,
filenames and line numbers.

However the release configurations of Delphi projects do not automatically generate debug information.
You need to configure that yourself.

Here's how you do that.

You need to set both compiler and linker settings to get debug information. Setting just one or the other
will not give you debug information you can use.

32 bit Delphi

Project Configuration

Change your project settings to target 32 bit builds.

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 748

Copyright © 2001-2025 Software Verify Limited

Linker Settings

Memory Validator Help749

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

64 bit Delphi

Project Configuration

Change your project settings to target 64 bit builds.

Debug Information, Symbols, Filenames, Line Numbers 750

Copyright © 2001-2025 Software Verify Limited

Compiler Settings

Linker Settings

Memory Validator Help751

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

MAP files

MAP files are not generated by default. You need to enable the option to generate a detailed map file.

The method is the same for 32 bit and 64 bit Delphi.

Select the project configuration as shown in the Debugging Information section above, then modify the
Delphi Compiler, Linking settings.

Linker Settings

Debug Information, Symbols, Filenames, Line Numbers 752

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Debugging Information or MAP files?

If you can create both debugging information and MAP files which should I use?

Memory Validator uses this information to provide symbols, filenames and line numbers in stack traces.

For this purpose it doesn't matter whether you use Debugging Information or MAP files.

14.4 MingW, gcc, g++

The following compiler options are available if you are using MingW, gcc or g++.

-g
This is the default debug format. This will normally choose the DWARF symbol format.

-gdwarf
The DWARF symbol format.

-gstabs
The STABS symbol format.

-gCoff
The COFF symbol format. This does create a lot of unnecessary symbols, making symbol parsing
slower.

Memory Validator Help753

Copyright © 2001-2025 Software Verify Limited

14.5 Dev C++

Dev C++ uses the gcc and g++ compilers.

The following compiler options are available if you are using gcc or g++.

-g
This is the default debug format. This will normally choose the DWARF symbol format.

-gdwarf
The DWARF symbol format.

-gstabs
The STABS symbol format.

-gCoff
The COFF symbol format. This does create a lot of unnecessary symbols, making symbol parsing
slower.

You can edit the compiler and linker options by choosing Project Options... from the Project menu.

Compiler and Linker options

Debug Information, Symbols, Filenames, Line Numbers 754

Copyright © 2001-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

14.6 Salford Software FORTRAN 95

Salford FORTRAN95 symbolic information is embedded in the .exe/.dll as COFF (Common Object File
Format) information, with some proprietary extensions to Salford Software (which they have kindly shared
with us).

Please consult the documentation for Salford FORTRAN95 to include debug information (including
filenames and line numbers) in the COFF information.

If you still have problems, please contact us giving as much detail as possible, including what you've
tried.

14.7 Metrowerks

Metrowerks symbolic information is embedded in the .exe/.dll as CodeView information.

Please consult the documentation for CodeWarrior in order to include debug information (including
filenames and line numbers) in the CodeView information.

Memory Validator Help755

Copyright © 2001-2025 Software Verify Limited

If you still have problems, please contact us giving as much detail as possible, including what you've
tried.

14.8 Visual Basic 6

To get debug symbols for Visual Basic you need to open the Properties dialog box from the Project
menu (you'll find it at the bottom of the menu).

When you have changed your project properties you need to build the application.

Go to the File menu and choose Make <projectname.exe>.

Part

XV

Memory Validator Help757

Copyright © 2001-2025 Software Verify Limited

15 Frequently Asked Questions

Here's a brief description about the type of question included in each of the following sections:

· General questions

How Memory Validator works and how to do a few of the more common tasks.

· Not getting results

Missing or unhooked data and not finding the data you expected.

· Seeing unexpected data

The data you are finding looks wrong or is unexpected.

· Crashes and error reports

Your program crashes with Memory Validator or Memory Validator itself has a problem.

· Performance

Your program runs slowly and features that affect performance.

· DbgHelp

Troubleshooting search paths for DbgHelp.dll, and finding or installing different versions.

· Extensions and tools

Using the stublib extension facilities.

· System and environment

Your environment on the machine you are using Memory Validator with.

· Does memory validator do...

Common questions about the capabilities of Memory Validator.

15.1 General Questions

Do I need to use the CRT to detect memory leaks?

No, Memory Validator inspects all of

· C runtime heap (CRT)
· Win32 heaps (HeapCreate etc)
· GlobalAlloc() heap

Frequently Asked Questions 758

Copyright © 2001-2025 Software Verify Limited

· LocalAlloc() heap

Any of these heaps can be monitored for memory allocations and deallocations.

If using a custom heap manager of your own design (or a 3rd party design) you can provide
information via the API so its memory can be tracked.

Why might Inject or Launch fail?

Not using CreateProcess

If you are launching your application with any option other than CreateProcess you are effectively
using CreateRemoteThread to inject into the application you have just started running using
CreateProcess.

The Inject and Wait for Application to Start functionality also use CreateRemoteThread to inject into
an application.

As below, injection using CreateRemoteThread does not always work.

Common reasons for injection failure

· A missing DLL in your application

Check your application is complete.

· The target application is a .NET application or .NET service

Check your application or service is not written using .NET technology.

· A missing DLL in Memory Validator

Check Memory Validator is installed correctly.

· The application may have started and finished before the DLL could be injected

This only applies if you are launching the application.

· The application security settings do not allow process handles to be opened

· The application is a service and is running with different privileges than Memory Validator

If the application being injected into is a service it is recommended that the service and
Memory Validator are both run on the same user account. See help for Memory Validator for
working with NT services.

Application Specific Reasons for Failure

A small percentage of applications/services will not allow any DLL to be injected into them.

Memory Validator Help759

Copyright © 2001-2025 Software Verify Limited

The reasons for this are unknown, but our testing shows that the reason for failure to inject is a
combination of application, operating system and hardware that causes an inconsistency during
injection (we think it is a timing issue) that causes a failure.

Our tests show that on NT 4 about 1% of all applications fail to inject, 2% on Windows 2000 rising to
5% with Windows XP.

We expect that subsequent operating systems (Windows 2003 and Windows Vista) will have higher
failure rates.

How do I name a thread?

Some features such as the Thread Filter can use thread names to make things a bit more readable.

Fom within your application you can provide a name for use by a debugger or debugging tool by
using the Win32 RaiseException() API.

Add the function below to your application. This is based on an example from Microsoft. There are
other examples
available on the web; some specify a buffer size of 8 characters and one terminator, others specify
no strict buffer
size limit.

Show code

// This function is documented as being callable from outside of the thread

which is being

// named, however it appears that it works more reliably if called from within

the code of

// the thread being name, passing a threadId of -1 to indicate "current thread"

void nameThread(const DWORD threadId,

 const char *name)

{

// You can name your threads by using the following code.

// Memory Validator will intercept the exception and pass it along (so if

you are also running

// under a debugger the debugger will also see the exception and read the

thread name

// NOTE: this is for 'unmanaged' C++ ONLY!

#define MS_VC_EXCEPTION 0x406D1388

#define BUFFER_LEN 16

typedef struct tagTHREADNAME_INFO

{

DWORD dwType; // must be 0x1000

LPCSTR szName; // pointer to name (in user address space)

// buffer must include terminator character

DWORD dwThreadID; // thread ID (-1 == caller thread)

DWORD dwFlags; // reserved for future use, must be zero

} THREADNAME_INFO;

Frequently Asked Questions 760

Copyright © 2001-2025 Software Verify Limited

THREADNAME_INFO ThreadInfo;

char szSafeThreadName[BUFFER_LEN]; // buffer can be any

size,

// just make sure it

is large enough!

memset(szSafeThreadName, 0, sizeof(szSafeThreadName)); // ensure all

characters are NULL before

strncpy(szSafeThreadName, name, BUFFER_LEN - 1); // copying name

//szSafeThreadName[BUFFER_LEN - 1] = '\0';

ThreadInfo.dwType = 0x1000;

ThreadInfo.szName = szSafeThreadName;

ThreadInfo.dwThreadID = threadId;

ThreadInfo.dwFlags = 0;

__try

{

RaiseException(MS_VC_EXCEPTION, 0, sizeof(ThreadInfo) /

sizeof(DWORD), (DWORD*)&ThreadInfo);

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

// do nothing, just catch the exception so that you don't terminate

the application

}

}

After adding this function declaration you can call it from inside the thread procedure of any
executing thread to name.

 nameThread(-1, "example");

To name a thread from outside of the thread procedure pass the thread id instead of -1.

The example application shipped with Memory Validator demonstrates how to use nameThread.

How do I clear the symbol cache?

To clear Memory Validator's in-memory symbol cache, delete all sessions first:

· Managers Menu Session Manager Delete All Close

Then flush the cache:

· Settings Menu Edit Settings Data Display File Cache / Subst Drives click Flush
Cache button OK

Flush Cache disabled? Delete all the sessions first.

You may also want to disable the on-disk cache of PDB file symbols:

Memory Validator Help761

Copyright © 2001-2025 Software Verify Limited

· Settings Menu Edit Settings Advanced Symbol Lookup deselect Enable
caching of symbol data OK

How is uninitialized memory tracked?

Memory Validator detects uninitialized memory debug C runtime heap allocations.

The debug C runtime heap initialises memory as follows

· all allocated memory with a signature byte of 0xCD
· any uninitialised stack variables with a signature byte of 0xCC.

Memory Validator hooks all constructors of C++ objects and at the end of the constructor examines
the object.

Any uninitialized data bytes are reported to the user.

Note that 0xCD and 0xCC are valid data bytes but is unusual to be found them as a WORD (eg
0xCDCD) or as a DWORD (eg 0xCCCCCCCC).

Because of the chance of false detection, it is up to the user to determine if uninitialized data
reports are correct.

The method for hooking the object's constructors is the same as is used to hook COM objects.

How are COM objects tracked?

COM objects are tracked by hooking the Win32 functions that return COM objects.

These objects are then queried for their QueryInterface, AddRef and Release function pointers.

Those functions are then hooked by rewriting the instruction stream using some proprietary code.

The hooks then examine the return values to detect the reference count or returned object.

Caveats:

Rewriting the instruction stream is not a generally recommended practice and the above method can
sometimes fail, typically when the compiler optimises two functions to share some common code.

Memory Validator tries to detect when hooking will fail and refuses to hook any functions that it
knows it cannot hook safely.

Some COM objects simply cannot be hooked safely - we have found that you can debug some COM
objects using Memory Validator, and not others because of the internal structure of the COM
objects.

About instruction stream rewriting:

The instruction stream rewriting concept has been around for years (early video games in the 1980s
for the Commodore VIC 20 and Commodore 64 often rewrote their instructions on the fly to gain a

Frequently Asked Questions 762

Copyright © 2001-2025 Software Verify Limited

speed advantage) and is used, in varying forms, by some of the competing products and
complimentary products to Memory Validator, and by Microsoft®.

I have an idea for a feature, can it be added to Memory Validator?

We have tried to add as many features to Memory Validator that we thought would be useful to our
users.

In fact, every feature in Memory Validator has been used to solve problems and bugs for clients who
consult us, and in our own business, so we know the features we have are useful.

However, maybe we overlooked a feature that you would find very useful, and which you cannot work
out how to add to Memory Validator via an extension DLL.

We'll happily consider most ideas for new features to Memory Validator. But no Quake, FlightSim or
Flappy Bird easter eggs though, sorry!

Please contact us to let us know your thoughts.

15.2 Not getting results

Memory Validator isn't collecting any data, why?

Memory Validator has many settings that control the collection and display of the data.

It is possible either the default settings or settings from a previous session are set to ignore the data
you want collected.

For example, let's say you ran a session and turned off all the handle collecting functions in the
Handle Allocation Hooks tab on the global settings dialog. Even with the hooks inserted into your
target program the hooks would be disabled, and no information on handles would get displayed.

Here's some possible reasons for your data not being collected:

· Program starting too quickly

Starting your program in Normal or Idle modes may mean part of the code in which you
want to track allocations may get executed before Memory Validator has attached to the
program.

If this is happening use the Paused or Suspend modes to start the program.

· Data collection is switched off

Check that the green data collect icon is not displayed on the session toolbar (it will be
disabled if data is being collected).

Memory Validator Help763

Copyright © 2001-2025 Software Verify Limited

Read further information on data collection.

· Data collection hook groups not installed

The appropriate hook group for the data you wish to view may not have been installed in the
target program when the target program was attached to.

The hook groups installed are configured from the Collect tab on the global settings dialog.

Enable the hook group and re-run your session.

· The individual hooks for the function you are interested in may have been disabled

Check the hooks using the Memory Allocation Hooks, Handle Allocation Hooks, Buffer
Manipulation Hooks tab on the global settings dialog.

If the data hooks were installed, then the hooks will start collecting data once you enable
the data hooks.

· Data is being collected but not displayed

Check that the controls for the view you are using are set so that the appropriate data will be
displayed.

Some of the views have the data display controls as part of the view. The Memory tab has
its control on the memory display settings dialog.

Other checks

Check that there are no filters (in Global, Session and Local filter groups) that could be suppressing
the display of the data.

Check that the thread filter is not suppressing the display of the data.

Statically linked to C runtime libraries?

If your program is linked statically to the C runtime libraries, please read the before you start
information.

Memory Validator isn't showing the data I expect to see, why?

A common reason for not seeing expected data is that the required hooks have been disabled.

Here's a few things to check for:

· the correct hooks to monitor the memory, handle and/or COM allocations are installed

See the Collect tab of the global settings dialog.

· the relevant hooks are enabled

Frequently Asked Questions 764

Copyright © 2001-2025 Software Verify Limited

See the Hooks tab of the global settings dialog.

· the collected data is displayed - it might be being collected, but not displayed

See the memory tab display settings dialog.

· global and session filters are not filtering the data from being displayed

· local filters (for the view being used) are not filtering the data from display

· the target program really is executing the code you think it is executing

I'm not seeing CRT allocations, but am seeing allocations for everything else. Why?

If you are not seeing allocations for the C runtime heap, but you are seeing allocations for all other
heaps and for handles, check to see if you are linked to the statically linked C runtime libraries.

If your program is linked statically to the C runtime libraries, please read the before you start
information.

See also: Memory Validator isn't collecting any data, why? (above)

I can't see handles from LoadIcon(), LoadCursor() and LoadCursorFromFile(), why?

The functions LoadIcon(), LoadCursor() and LoadCursorFromFile() create shared Icons and
cursors.

These objects are shared between multiple applications.

Since they can't be leaked, Memory Validator doesn't track them.

This also means that when your application has finished with them, they don't need to be destroyed.

The function I want is not hooked, why not?

We provide hooks for all the functions that we think are required to be hooked in order to give you the
best tool we can to aid you in your software development tasks.

Inevitably, new APIs with new functions get released, and we continually update Memory Validator to
reflect this.

However, if we missed an API or method which is important for a bug you're working on, please drop
us a line!

If we think the API should be added to Memory Validator list of hooks, we'll make it happen and let
you know either way.

I can't get stack traces in my release mode programs, what can I do?

Memory Validator Help765

Copyright © 2001-2025 Software Verify Limited

Sometimes in release mode programs, callstacks of a useable length cannot be collected.

One reason for this is that high levels of compiler optimization have removed the stack frame
instructions (push EBP prologue and POP EBP epilogue) and have not included adequate frame
pointer omission data (FPO_DATA) in the PE file for the functions that have been optimized.

It can also happen in debug mode programs, that if extra data is placed on the stack during custom
assembly calls or hooks, the DbgHelp StackWalk() function may fail to find the next EBP stack
frame, halting the stack walk.

Memory Validator has advanced stack walking options that can walk callstacks even when DbgHelp
StackWalk() can't.

Why can I see datatypes that give no search results?

When using the find memory dialog or the find object type dialogs you might occasionally see
datatypes listed that don't produce any search results.

This is usually because the datatypes have been loaded from the file type cache.

To remove the cached datatypes you need to flush the datatype cache.

Why do some double delete callstacks show no allocation location?

Some double delete callstacks do not show the allocation location.

A few possible causes for this might be as follows:

· Memory Validator was not collecting data when the memory was allocated

 This could be because the memory was allocated before Memory Validator was attached to
the process, or because data collection was turned off when the memory was allocated.

· Information about the memory allocation has been discarded

This can happen if the Discard stack traces for freed memory check box is selected on
the Allocation History page of the global settings dialog box.

· The double delete is being recognized as an invalid memory location

Consider the following:

Frequently Asked Questions 766

Copyright © 2001-2025 Software Verify Limited

 char *ptr;

 ptr = new char [3000];

 // .. do some work

 ptr = ptr + 10; // pointer no longer points at the start of the memory block

 delete [] ptr; // incorrect

 // .. do some work

 delete [] ptr; // incorrect double delete

Not only is the first delete incorrect because of the altered pointer value, but there is a
second delete with the same (incorrect) pointer value.

When Memory Validator looks for the associated allocation location, it will never find it
because there are no allocations at the address "ptr + 10".

In this way, the double delete can be detected, but the allocation location can't be detected.

Why are my ordinal to symbol conversions not working?

If you have used the Ordinal Handling utility, you may still find the ordinal names have not been
converted in symbol names,

Here's a couple of reasons:

· You may not have enabled ordinal handling

 Use the Source Parsing page on the global settings dialog to set the Map Ordinals to
function names option

· You haven't defined the ordinal to symbol conversion for the correct DLL in which the
ordinals are defined

 Double check the DLL for which you defined the conversions really include those ordinals.

See the topic on Ordinal Handling

Why are some callstacks shorter than the depth I defined?

There are a couple of resons why the collected callstack may be shorter than you specified:

· The complete callstack may simply have less entries than the specified depth

· Some of the items in the callstack may have been omitted to provide a more useful
stack trace

The second option sounds counter-intuitive, but here's an example - tracking a call to operator new.

Memory Validator Help767

Copyright © 2001-2025 Software Verify Limited

For Debug builds operator new calls to malloc_dbg(), so the callstack will be something like
(various functions omitted for clarity):

 malloc_dbg()
 operator new()

 myFunctionThatCallsNew()
 functionBlues()
 functionJazz()

The callstack seen in this case would be:

 myFunctionThatCallsNew()
 functionBlues()
 functionJazz()

Examining the source code to myFunctionThatCallsNew() would show the call to operator
new().

This is done so that program calls to operator new() are not confused with program calls to
malloc() or malloc_dbg().

In this example 2 items are removed from the callstack, but since only the specified depth of
callstack was actually collected, it ends up shorter.

Memory Validator does try to correct for this by estimating the number of items that might be
excluded before collecting the trace, but occasionally you'll still get a shorter trace than expected.

If you need longer callstacks collected for a particular bug you are investigating change the data
collection callstack monitoring settings to collect more of the callstack, or even the complete
callstack.

15.3 Not getting symbols, filenames, line numbers

Why does Memory Validator fail to load my symbols?

In a few cases Memory Validator will fail to load symbols for a DLL that you believe you have provided
symbols for. This topic describes the possible causes. Please read the suggested course of action for
each compiler.

Microsoft Visual Studio or Developer Studio

Symbols are defined in PDB files with the same name as the exe or dll to which it refers.

Memory Validator uses the Microsoft supplied DbgHelp.dll to perform all symbol handling
activities.

Correct PDB name and location?

To ensure that the correct PDB is found to match a DLL the following must be true:

Frequently Asked Questions 768

Copyright © 2001-2025 Software Verify Limited

· The DLL and PDB file have the same name, except for the extension

For example test.pdb matches for test.dll or test.exe.

· The first matching PDB file in the PDB search path has the correct checksum

If DbgHelp finds a PDB file with a different checksum, loading symbols will fail but the
search will still stop.

Verify that there are no PDB files with the same file name that are on the PDB search path,
except for the PDB file you expect to be used.

You can check the DbgHelp symbol search path to troubleshoot symbol loading failures relating
to the symbol search path.

Are compiler and linker producing symbols?

If DbgHelp is still failing to load your symbols, check the following:

· Your program is compiled to include symbol information

· Your program is linked to include symbol information

Linker options are different to the compiler options

Running correct version of DLL?

Check that you are using:

· The most recent version of your DLL

· The correct build version of your DLL

For example release DLL with release builds, debug DLL with debug builds

Checking for correctly loaded modules

When your application is running, check the modules being loaded by the application.

In Memory Validator, you can check the modules by using the Loaded Modules dialog, or by
inspecting the Diagnostics tab.

You need to be sure that your application is not loading a different DLL with the same name from
a different directory that is on the search path.

Correct version of DbgHelp.dll?

Try checking the version of DbgHelp.dll used by your Visual Studio installation and the version of
DbgHelp.dll distributed with Memory Validator.

If the version used by Visual Studio is higher, it's possible Microsoft changed the PDB file
format, making the symbols unreadable by Memory Validator.

To fix this:

Memory Validator Help769

Copyright © 2001-2025 Software Verify Limited

· Copy the DbgHelp.dll from Visual Studio to the Memory Validator installation directory

· Remove any DbgHelp.dll from your application directory

When Memory Validator launches an application it copies Memory Validator's
DbgHelp.dll to the directory of the executable.

This ensure that the DbgHelp.dll used is more recent than the default
system32\dbghelp.dll which may not get updated.

You need to find and remove these dlls - eg c:\myapplication\debug\DbgHelp.dll
etc.

If all else fails...

Sometimes symbolic information will not load for unknown reasons.

In this circumstance, after trying the above suggestions, try changing the location in which
symbols are sourced.

You could also try flushing and disabling the caching of symbols.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

Visual Studio 2005 (8.0) and later versions

You may find that symbols for the msvcr80.dll, msvcr80d.dll, mf80.dll, mfc80u.dll,
mfc80d.dll and mfc80ud.dll DLLs are not loaded.

The reason for this is that these symbols are stored in c:\windows\symbols\dll rather than with
the DLLs themselves.

This is due to the Windows.NET Side-by-Side (WinSxS) DLL/assembly loading.

To resolve this, add the path c:\windows\symbols\dll to the list of paths for Program Database
Files on the File Locations tab:

You may need to restart Memory Validator to get valid symbols for MFC80(u)(d).dll if you have
already recorded a session for which you did not get symbols.

Frequently Asked Questions 770

Copyright © 2001-2025 Software Verify Limited

Alternatively follow the instructions in the question on how to clear the symbol cache:

Metrowerks CodeWarrior for Windows V8 / V9

Metrowerks symbolic information is embedded in the .exe/.dll as CodeView information.

Please consult the documentation for CodeWarrior in order to include debug information
(including filenames and line numbers) in the CodeView information.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

Salford Software FORTRAN95

Salford FORTRAN95 symbolic information is embedded in the .exe/.dll as COFF (Common
Object File Format) information, with some proprietary extensions to Salford Software (which
they have kindly shared with us).

Please consult the documentation for Salford FORTRAN95 to include debug information
(including filenames and line numbers) in the COFF information.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

MingW compiler

We recommend compiling your software with -gdwarf to create DWARF debugging information.

The -gstabs option is also supported, as is the -gCoff option, but -gCoff does create a lot of
unnecessary symbols, making symbol parsing slower.

15.4 Seeing unexpected data

Why do I get <UNKNOWN> symbols?

Some callstacks may not have a symbol name and can display the value <UNKNOWN>.

There are several reasons this may happen:

· The program you are monitoring has no debugging information

You'll need to enable debugging information in your program.

Debugging information is controlled from the Linker Tab on your VIsual C++ project settings,
and is available for Debug and Release builds.

Memory Validator Help771

Copyright © 2001-2025 Software Verify Limited

· The PDB files with the debug information can't be found

The program you are monitoring may have the debug information but Memory Validator can't
find the debug information if it's stored in PDB files that are not in the current directory.

Use the File Paths dialog to set where the PDB files can be found.

If you don't have PDB files for a particular DLL, but do have MAP files, you can also set the
location of these too.

· A stack traces contain location is not present inside a DLL

This sometimes happens when hooks cause the program to jump to dynamically allocated
memory holding the hook.

These hooks will not have any debugging information referencing them.

· The DLL has no filename and line-number data in the debugging information

This is the case for some release mode DLLs from Microsoft such as mfc42(u).dll and
mfc80(u).dll.

These only have symbol name information available, with filename and line-number
removed.

If you have this problem, you could try and get more up to date symbol information from
Microsoft using the symbol server support page in the global settings dialog.

 Note that this will only work if the symbol server symbols do actually contain filename
and line-number information - they might not!

If none of the above solves your problem and all symbols are still displayed as <UNKNOWN> please
drop us a line. We have found that newer versions of Visual Studio sometimes change the debug
information format and need a newer version of DbgHelp.dll. The version of DbgHelp.dll that is
shipped with Memory Validator is compatible with Visual Studio.net and all previous versions of
Visual Studio.

I get false reports of memory leaks from VariantCopy(), why?

The documentation for VariantCopy() states that the operating system does not know the
reference count for any object in a Variant that has the VT_BYREF flag. As such VariantCopy()
cannot modify the reference count in the destination and source arguments.

Since the reference count for these objects with the VT_BYREF flag is unknown, Memory Validator
assumes a new object is deallocated prior to the copy (destination variant is cleared) and that a new
object is allocated in the destination.

For the cases where the operating system does not do this, but simply adjusts reference counts,
leaks will get reported where there are none.

The MSDN documentation indicates this can only happen for COM objects and not for BSTRs.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms221697(v=vs.85).aspx

Frequently Asked Questions 772

Copyright © 2001-2025 Software Verify Limited

Memory Validator only tracks BSTRs in VariantCopy(). We've not seen false reports of memory
leaks for VariantCopy() but this question is here in case you do!

Some symbols are displayed as Ordinalxxx, why?

If Memory Validator can't find debug information for DLLs that have their functions exported as ordinal
values, the functions are named OrdinalXXX, using decimal number of the function.

These ordinal values can be displayed as function names, but only if the linker definition (.def) file
that refers to each relevant DLL is known.

You can define the Ordinal Handling, but don't forget to also select the Map Ordinals to function
names check box on the Source Parser page of the global settings dialog.

Here's an example of Ordinal function names without debug information: Ordinal711 and
Ordinal187

And here's the same thing without debug information but after ordinal to symbol conversion, showing
__cdecl operator new() and int AfxWinMain()

Memory Validator Help773

Copyright © 2001-2025 Software Verify Limited

I'm seeing unusual trace data

The following information applies to older operating systems.

Some machines have been found to exhibit unusual behaviour during the startup phase of the target
program.

The result is a few memory allocations from the CRT that appear to come from an exception
handler.

We have seen this behaviour on a Windows 2000® machine that, for unknown reasons meant
neither Memory Validator nor Visual Studio could not find debug information for msvcrtd.dll and
mfc42ud.dll despite it being available.

We suspect that the debug information, although present, was in some way not the correct debug
information for the respective DLLs. Probably this was a configuration issue for the machines,
caused by incorrect installation of a service pack, platform SDK, or other SDK.

Here's an example of one of these unusual data traces:.

Frequently Asked Questions 774

Copyright © 2001-2025 Software Verify Limited

All of these data traces happen at program startup.

This behaviour has been observed on one Windows 2000® machine, configured as a laptop
computer.

This information is provided now only so that users do not get confused by this extra data that is
collected by Memory Validator in this circumstance.

 Even if you see unusual traces like this, Memory Validator will otherwise still continue to
perform correctly.

What is address 0x006d0065?

This is relevant to one version of the VisualStudio.net DbgHelp library that sometimes does not
correctly identify the end of a stack walk.

When this happens, a stack trace can have numerous addresses of value 0x006d0065 tacked onto
the end of it, even if the stack walking callback informs DbgHelp that the address is not valid.

 This bug will not affect Memory Validator. All stack traces shown will be valid. A few stack
traces may have extra data, but no data will be missing.

We don't filter these addresses out, in case a valid DLL does get loaded and uses this address
space, producing symbols for this address.

Callstacks that contain this error look like this:

As you can see from the image, the program started at the UNICODE entry point
wWinMainCRTStartup, so there should be no symbols (other than GetPriorityBoost or other
kernel32.dll symbols) after this entry.

Subsequent versions of the DbgHelp.dll from Microsoft fix this bug.

Memory Validator Help775

Copyright © 2001-2025 Software Verify Limited

15.5 Crashes and error reports

The program I'm trying to validate keeps crashing, why?

The following assumes your crash is one that only happens when using Memory Validator.

Here's a number of scenarios in which your program might crash:

· COM Reference Counting hooks are installed

These hooks rewrite the instruction stream, which sometimes doesn't work because some
object code produced by the optimising compiler, or hand written assembly code shares
common routines.

Try turning off the COM Reference Counting hooks and trying again.

· Uninitialised Data hooks are installed

These also rewrite the instruction stream (see above).

Try turning off Uninitialised Data hooks and trying again.

· Stub or User Interface extensions are being used

Remove all Stub extensions and User Interface extensions and try again.

· Third party DLLs are using system wide hooks

Some DLLs from third party vendors use system wide hooks and do not interact with
Memory Validator and the target program very well.

If you can identify such DLLs, prevent them being hooked by adding the DLL name to the
Hooked DLLs page of the global settings dialog as in the example below.

· Third party DLLs are using global hooks

Frequently Asked Questions 776

Copyright © 2001-2025 Software Verify Limited

A global hook DLL from a third party vendor could be adversely affecting Memory Validator
when hooking your program.

Read about handling global hooks on the Global Hooks page of the settings dialog.

Judging by multiple independent error reports, we believe there may be an incompatibility
between Memory Validator and the global hooks that come with the Matrox G400 and the
Matrox Millenium II PCI video cards released in the late 1990's.

· There may be a bug in Memory Validator

It happens. We've tried to make Memory Validator as robust as possible, but bugs and new
scenarios do occur.

First, ensure that the crash never happens if you are not using Memory Validator.

Second, check all the suggestions above.

Then drop us a line sending details of the error and we'll try to reproduce the crash with a
view to fixing any bugs found in as timely a manner as possible.

My program crashes in Release mode, but not in Debug, why?

Possible causes of release only crashes include:

· Uninitialised data

In debug mode, uninitialized data on the heap is filled with the value 0xCD.

This means that any code testing for TRUE or FALSE, always chooses TRUE when it reads
uninitialized data in debug mode.

In release mode, the potential for uninitialised data to contain 0x00 means there's a 1 in 256
chance the value is FALSE, leading to hard-to-reproduce bugs.

Read more on how to detect uninitialized data using Memory Validator.

· An MFC Message Map bug

In debug mode, errors made when typing function prototypes for functions called by the MFC
message maps cause no problems.

The same code, when run in release mode can corrupt stacks and crash.

Read about how to detect MFC message map errors using Memory Validator.

· Data Corruption

The debug and release CRT heaps are very different in structure.

The debug CRT heap has a lot of extra data in it, whereas the release CRT heap is
compact.

Memory Validator Help777

Copyright © 2001-2025 Software Verify Limited

A data corruption bug in debug mode may go unnoticed and only show up in release mode,
or vice versa.

Data corruption bugs are unpredictable, alter data values; damaging data structures used to
hold your data; or damaging the integrity of the CRT heap.

Read more about finding data corruption using Memory Validator.

Memory Validator gives an Unrecoverable Error

The Memory Validator Unrecoverable Error dialog is displayed when an unexpected internal error
means Memory Validator cannot continue to execute.

A stack trace and register dump is shown and you can Copy to Clipboard so that the data can be
sent to us with a description of the activities that caused the error.

We'll aim to fix any problems in as timely manner as possible.

The data shown in the dialog is also written to c:\users\<username>\AppData\Roaming\Software
Verify\Memory Validator\mvExceptionLogUI.txt .

The picture below shows an artificial exception report for a stack overflow error.

Frequently Asked Questions 778

Copyright © 2001-2025 Software Verify Limited

mvExceptionLog.txt?

In the event of a crash in the Memory Validator user interface, the file c:
\users\<username>\AppData\Roaming\Software Verify\Memory

Validator\mvExceptionLogUI.txt contains information that identifies where Memory Validator
was executing when Memory Validator crashed.

In the event of a crash in the target program, the file c:
\users\<username>\AppData\Roaming\Software Verify\Memory

Validator\mvExceptionLog.txt contains information that identifies where Memory Validator was
executing when the target program crashed. This crash may have been caused by Memory
Validator's instrumentation or by an error in the target application.

The file contains a stack trace and register dump and is the same information that is displayed in the
Unrecoverable Error dialog when a crash occurred.

The file contains only the data for the most recent exception.

15.6 Performance

My program is running slowly with Memory Validator, why?

There are many reasons why your program may run slowly when used with Memory Validator, but
they largely boil down to two types of problem:

Collecting too much unwanted data

There are many options to enable you to turn off data collection for data that is not important. some
of which are turned off by default.

Turning off unwanted options prevents Memory Validator from spending time examining data you
don't want collected:

· If not trying to isolate memory corruptions, turn off buffer checking

· If not trying to isolate uninitialized data, turn off uninitialized data detection

· If not trying to detect handle leaks, turn off collection of all handle related hooks

· If not trying to detect leaks in GlobalAlloc, LocalAlloc and HeapAlloc, turn off the matching
memory hooks

· If not trying to detect CRT leaks, turn off CRT leaks

· If you don't need complete callstacks, collect only the part of the callstack that is interesting
to you

Depending how deep your programs callstacks get, this can have quite a dramatic impact
on performance

Memory Validator Help779

Copyright © 2001-2025 Software Verify Limited

Collecting data in a tight loop

If your program is still running slowly, it may well be because it's allocating many blocks of memory
in a tight loop.

When this happens, Memory Validator gets swamped with the sheer volume and rate of data it
needs to track, and symbols (for the callstack) to resolve.

When the program exits the tight loop, the program performance will return to more normal speeds.

Often this is a sign that the target program could be improved by redesigning its memory allocation
strategy.

Examining the statistics on the objects view will give you an insight into the number and frequency of
allocations being made.

Which data items have the greatest performance impact?

This depends largely on the target program, but some generalisations below are based on a variety
of programs between 10,000, and 2,000,000 lines of code.

In order of greatest performance impact first:

· Buffer overrun detection

If used, then this can have quite a big hit, but only If your program uses the C (and Win32
shell) string functions.

For example a lot of string processing during startup can slow things down until the program
is ready.

However, buffer overrun detection is probably not used that much.

· Uninitialized data detection

By its very nature this can have a high overhead, but is dependent upon the data it is
examining.

· Memory Allocation tracking (CRT, Win32 heap etc)

The memory allocation tracking has a low overhead unless there are large numbers of
allocations in very tight loops.

· COM object tracking

· Handle tracking

The handle tracking functions produce very little performance overhead even on very large
programs.

We don't give a suite of % impact figures for each feature as they can be misleading, but in some
typical examples, we found

Frequently Asked Questions 780

Copyright © 2001-2025 Software Verify Limited

· with all options enabled, a program launched and ran in 90 seconds

· with the uninitialized data and buffer tracking disabled it took 30 seconds

meanwhile:

· a competitor application to Memory Validator took 40 minutes and then usually failed!

At the end of the day, the performance change will be always in relation to the data generated by the
target program, and no two programs are alike.

Even the size of the program is not a great indicator: for example we tested a 2,000,000 line CAD
program and a 300,000 line web authoring program.

The larger program started up with Memory Validator in much less time simply due the nature of the
work each of the programs was doing during startup.

Our suggestion:

If in doubt about the performance impact of Memory Validator we suggest you simply try it on your
product and see.

We hope you'll be favourably impressed compared to our competitors!

15.7 DbgHelp

Why does Memory Validator fail to load my symbols?

In a few cases Memory Validator will fail to load symbols for a DLL that you believe you have
provided symbols for.

This topic describes the possible causes. Please read the suggested course of action for each
compiler.

Microsoft Visual Studio or Developer Studio

Symbols are defined in PDB files with the same name as the .exe or .dll to which it refers.

Memory Validator uses the Microsoft supplied DbgHelp.dll to perform all symbol handling
activities.

Correct PDB name and location?

To ensure that the correct PDB is found to match a DLL the following must be true:

· The DLL and PDB file have the same name, except for the extension

For example test.pdb matches for test.dll or test.exe.

Memory Validator Help781

Copyright © 2001-2025 Software Verify Limited

· The first matching PDB file in the PDB search path has the correct checksum

If DbgHelp finds a PDB file with a different checksum, loading symbols will fail but the
search will still stop.

Verify that there are no PDB files with the same file name that are on the PDB search path,
except for the PDB file you expect to be used.

You can check the DbgHelp symbol search path to troubleshoot symbol loading failures relating
to the symbol search path.

Are compiler and linker producing symbols?

If DbgHelp is still failing to load your symbols, check the following:

· Your program is compiled to include symbol information

· Your program is linked to include symbol information

Linker options are different to the compiler options

Running correct version of DLL?

Check that you are using:

· The most recent version of your DLL

· The correct build version of your DLL

For example release DLL with release builds, debug DLL with debug builds

Checking for correctly loaded modules

When your application is running, check the modules being loaded by the application.

In Memory Validator, you can check the modules by using the Loaded Modules dialog, or by
inspecting the Diagnostics tab.

You need to be sure that your application is not loading a different DLL with the same name from
a different directory that is on the search path.

Correct version of DbgHelp.dll?

Try checking the version of DbgHelp.dll used by your Visual Studio installation and the version of
DbgHelp.dll distributed with Memory Validator.

If the version used by Visual Studio is higher, it's possible Microsoft changed the PDB file
format, making the symbols unreadable by Memory Validator.

To fix this:

· Copy the DbgHelp.dll from Visual Studio to the Memory Validator installation directory

· Remove any DbgHelp.dll from your application directory

Frequently Asked Questions 782

Copyright © 2001-2025 Software Verify Limited

When Memory Validator launches an application it copies Memory Validator's
DbgHelp.dll to the directory of the executable.

This ensure that the DbgHelp.dll used is more recent than the default
system32\dbghelp.dll which may not get updated.

You need to find and remove these dlls - e.g. c:\myapplication\debug\DbgHelp.dll
etc.

If all else fails...

Sometimes symbolic information will not load for unknown reasons.

In this circumstance, after trying the above suggestions, try changing the location in which
symbols are sourced.

You could also try flushing and disabling the caching of symbols.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

Visual Studio 2005 (8.0) and later versions

You may find that symbols for the msvcr80.dll, msvcr80d.dll, mf80.dll, mfc80u.dll,
mfc80d.dll and mfc80ud.dll DLLs are not loaded.

The reason for this is that these symbols are stored in c:\windows\symbols\dll rather than with
the DLLs themselves.

This is due to the Windows.NET Side-by-Side (WinSxS) DLL/assembly loading.

To resolve this, add the path c:\windows\symbols\dll to the list of paths for Program Database
(PDB) Files on the File Locations tab:

You may need to restart Memory Validator to get valid symbols for MFC80(u)(d).dll if you have
already recorded a session for which you did not get symbols.

Alternatively follow the instructions in the question on how to clear the symbol cache:

Memory Validator Help783

Copyright © 2001-2025 Software Verify Limited

Metrowerks CodeWarrior for Windows V8 / V9

Metrowerks symbolic information is embedded in the .exe/.dll as CodeView information.

Please consult the documentation for CodeWarrior in order to include debug information
(including filenames and line numbers) in the CodeView information.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

Salford Software Fortran 95

Salford Fortran 95 symbolic information is embedded in the .exe/.dll as COFF (Common Object
File Format) information, with some proprietary extensions to Salford Software (which they have
kindly shared with us).

Please consult the documentation for Salford FORTRAN95 to include debug information
(including filenames and line numbers) in the COFF information.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

MingW compiler

We recommend compiling your software with -gstabs to create stabs debugging information.

The -gCoff option is also supported, but this does create a lot of unnecessary symbols,
making symbol parsing slower.

Troubleshooting DbgHelp.dll #1

Memory Validator uses the Microsoft Debugging DLL, DbgHelp.dll , copying the correct private
version to your application's directory as your program is started.

However, there are cases where your application can be started independently, and you must ensure
that your application uses the correct DbgHelp.dll.

Diagnostic error messages appear on the Diagnostics tab as in the example below detailing which
version of DbgHelp.dll was expected and what was actually loaded.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679267(v=vs.85).aspx

Frequently Asked Questions 784

Copyright © 2001-2025 Software Verify Limited

If you see any DbgHelp warning dialogs, or get diagnostic errors, ensure the correct DbgHelp.dll is
used by:

· Copy (don't move) DbgHelp.dll

from: the Memory Validator install directory

to: the location of the application being tested (the same directory as the .exe).

Rerun your test.

· Try updating the versions of DbgHelp.dll in:

c:\windows\system32

and

c:\windows\system32\dllcache

Accept any Windows permission warnings if you try to do this.

Rerun your test.

If you still continue to have problems, please drop us a line via our support email.

Troubleshooting DbgHelp.dll #2

For versions of Memory Validator older than 3.48, see the next question. (Also, consider upgrading if
you can!)

Memory Validator uses the Microsoft Debugging DLL, DbgHelp.dll , copying the correct private
version to your application's directory as your program is started.

However, there are cases where your application can be started independently. For example, if you
are linked to the Memory Validator API, you can attach to a running or newly started instance of
Memory Validator.

In these situations you must ensure that your application uses the correct DbgHelp.dll.

Installing the correct DbgHelp yourself

To help you detect when the wrong DbgHelp.dll is loaded, Memory Validator has some error
messages and a warning dialog.

Diagnostic error messages appear on the Diagnostics tab as in the example shown below indicating
which function could not be found in DbgHelp.dll and which feature was trying to use this function.

An optional warning dialog also gives the same information.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679267(v=vs.85).aspx

Memory Validator Help785

Copyright © 2001-2025 Software Verify Limited

· Help Displays this help topic

· Don't show this warning dialog again stops further dialogs. Re-enable it from the
Symbols Misc page of the global settings dialog.

If you see this warning dialog, or get diagnostic errors, ensure the correct DbgHelp.dll is used by:

· Copy (don't move) DbgHelp.dll

from: the Memory Validator install directory

to: the location of the application being tested (the same directory as the .exe).

Rerun your test.

· Try updating the versions of DbgHelp.dll in:

c:\windows\system32

and

c:\windows\system32\dllcache

Accept any Windows permission warnings if you try to do this.

Rerun your test.

If you still continue to have problems, please drop us a line via our support email.

How do I examine (and fix) the DbgHelp symbol search path?

It can be confusing to see why symbols fail to load for modules built with compilers that generate
PDB files, eg: Microsoft, Intel.

There are typically three reasons for failure: the PDB file is...

Frequently Asked Questions 786

Copyright © 2001-2025 Software Verify Limited

· missing, for example it was not provided with the executable
· in the wrong place, so the the debugging library can't find it
· the wrong version, for example from a different build

The diagnostic tab

The Diagnostic tab of Memory Validator displays lots of messages that can help diagnose many
problems.

To show only DbgHelp debug information, use the message filter drop down at the top of the
diagnostic tab. This lets you examine where DbgHelp.dll looks for symbols.

Examine the output to see if it's finding the PDB file you think it should, and if it rejects the contents
of any PDB file it finds.

Output for alternate modules is shown in alternating coloursets, and the messages are the exact
same output from the DbgHelp.dll debugging stream.

Examples of examining the diagnostics

Below we show three examples using nativeExample.exe and nativeExample.pdb from our example
application.

· Correct symbol file found

DbgHelp first searches in various places looking for nativeExample.pdb

Depending on your machine, there may be other search paths included.

Finally nativeExample.pdb is found in the same directory as the .exe file of the target
program

DbgHelp loads private symbols and lines, (the alternative being that DbgHelp loads public
symbols).

Outcome:
Success. Symbols are loaded.

· Missing symbol file

As before, DbgHelp first searches in various places looking for nativeExample.pdb

Memory Validator Help787

Copyright © 2001-2025 Software Verify Limited

But, nativeExample.pdb doesn't get found in the same directory as the .exe file of the target
program.

nativeExample.pdb never gets found on the search path.

SymSrv might then look for additional locations for nativeExample.pdb, but has no luck.

DbgHelp might find some COFF symbols in the executable, however these don't contain
filename or line number information.

Finally all options are exhausted.

Outcome:
Failure. The PDB file could not be found. Some default symbols are loaded but are not of
much use.

Resolution:
Check the File Locations PDB paths to ensure that all the possible paths for PDB files are
listed.

· Incorrect symbol file

As before, DbgHelp first searches in various places looking for nativeExample.pdb

This time, nativeExample.pdb does get found in the same directory as the .exe file of the
target program.

DbgHelp tries to load the symbols but fails - the checksum inside the PDB file does not
match the module.

This might be because the symbols are for a different build of the software, or it's an
incorrectly named PDB file belonging to another program.

Finally all options are exhausted.

Frequently Asked Questions 788

Copyright © 2001-2025 Software Verify Limited

Outcome:
Failure. A PDB file was found, but it was not the right one.

Resolutions:
Double check the PDB is the correct one for the build you are running.
When copying builds from another machine (or from a build server), make sure to copy the
correct PDB as well.
Check the File Locations PDB paths to ensure that all the possible paths for PDB files are
listed.
Check the order of those PDB paths in case there are multiple paths resulting in the wrong
PDB being found first.

15.8 Extensions, services and tools

Including stublib.h in my project doesn't compile. Why?

You may encounter problems when including stublib.h in order to link directly with Memory
Validator.

Include path problems

Ensure that your project C preprocessor include paths reference both of the stub and stublib
subdirectories in the installation directory of Memory Validator.

For example, if Memory Validator is installed in:

C:\Program Files (x86)\Software Verify\C++ Memory Validator

Then add the following paths for all configurations; Debug, Release, etc:

C:\Program Files (x86)\Software Verify\C++ Memory Validator\stub

C:\Program Files (x86)\Software Verify\C++ Memory Validator\stublib

Compiler errors

If you include stublib.h, your project must have included windows.h first, (or see below for an
alternative).

If you fail to include windows.h then stublib.h will refer to some none-existent datatypes, causing
compiler errors similar to the ones shown below.

Here's an example program that will not compile:

Memory Validator Help789

Copyright © 2001-2025 Software Verify Limited

#include "stdafx.h"
#include "stublib.h"

int main(int argc, char* argv[])

{
 return 0;

}

See the compiler errors from the above code

--------------------Configuration: testMV_allEnum - Win32

Debug--------------------

Compiling...

testMV_allEnum.cpp

c:\program files\software verification\memory validator\stub\allenum.h(70) :

error C2146: syntax error : missing ';' before identifier 'lRequest'

c:\program files\software verification\memory validator\stub\allenum.h(70) :

error C2501: 'LONG' : missing storage-class or type specifiers

c:\program files\software verification\memory validator\stub\allenum.h(70) :

error C2501: 'lRequest' : missing storage-class or type specifiers

c:\program files\software verification\memory validator\stub\allenum.h(71) :

error C2146: syntax error : missing ';' before identifier 'reserved3'

c:\program files\software verification\memory validator\stub\allenum.h(71) :

error C2501: 'DWORD' : missing storage-class or type specifiers

c:\program files\software verification\memory validator\stub\allenum.h(71) :

error C2501: 'reserved3' : missing storage-class or type specifiers

c:\program files\software verification\memory validator\stub\allenum.h(73) :

error C2143: syntax error : missing ';' before '*'

c:\program files\software verification\memory validator\stub\allenum.h(73) :

error C2501: 'BYTE' : missing storage-class or type specifiers

c:\program files\software verification\memory validator\stub\allenum.h(74) :

error C2501: 'dde_pbData' : missing storage-class or type specifiers

To fix this problem simply include windows.h before stublib.h

#include "stdafx.h"
#include <windows.h> // new line to fix compile errors

#include "stublib.h"

int main(int argc, char* argv[])

{
 return 0;

}

Can't include windows.h?

If including windows.h is not an option, you can just define the following types:

#define LONG long
#define DWORD unsigned long
#define BYTE unsigned char
#define HANDLE void *

What do I do if I cannot use svlMVStubService.lib?

You may find that you can't use svlMVStubService.lib / svlMVStubService_x64.lib because your
linker doesn't understand the format of the lib file.

Frequently Asked Questions 790

Copyright © 2001-2025 Software Verify Limited

If that happens you can use the code below to compile the two functions that would be provided by
those libraries.

See the header file

#ifndef _SVL_MVSTUB_SERVICE_H
#define _SVL_MVSTUB_SERVICE_H

#include "svlServiceError.h"

// IMPORTANT.

// If you use svlMVStub_LoadMemoryValidator() to load svlMemoryValidatorStub.dll into your

// application, you must also use svlMVStub_UnloadMemoryValidator() to unload the DLL prior to

// your application being closed down. Failure to do so will almost certainly result in a crash.

// It does not matter how the application is closed down, you must ensure that you use

// svlMVStub_UnloadMemoryValidator() to unload the DLL if you have loaded it.

//

// The DLL prepares itself in different ways and shuts itself down differently depending on if

// it is:-

// a) Directly linked to the application for use with the API or injected with Memory Validator.

// When the DLL is used in this manner to DLL expects to oversee and manage the application

// shutdown.

// b) Loaded by using svlMVStub_LoadMemoryValidator().

// When the DLL is used in this manner to DLL expects to be removed prior to application shutdown

// and the behaviour of the DLL is undefined once you enter the program shutdown sequence.

//

// This difference in behaviour is intentional and is done to allow the use of the stub DLL in

// services.

#ifdef __cplusplus
extern "C" {

#endif

SVL_SERVICE_ERROR svlMVStub_LoadMemoryValidator(serviceCallback_FUNC callback,
 void *userParam);

SVL_SERVICE_ERROR svlMVStub_UnloadMemoryValidator();

#ifdef __cplusplus
}
#endif

#endif

See the implementation file

Memory Validator Help791

Copyright © 2001-2025 Software Verify Limited

#include "svlMVStubService.h"

#include <windows.h>
#include <tchar.h>

//-NAME---------------------------------

//.DESCRIPTION..........................

//.PARAMETERS...........................

//.RETURN.CODES.........................

//--------------------------------------

static HMODULE hModule = NULL;

//-NAME---------------------------------

//.DESCRIPTION..........................

//.PARAMETERS...........................

//.RETURN.CODES.........................

//--------------------------------------

typedef void (*ENABLE_STUB_SYMBOL_FUNC)();

SVL_SERVICE_ERROR svlMVStub_LoadMemoryValidator(serviceCallback_FUNC callback,
 void *userParam)

{
 SVL_SERVICE_ERROR errCode = SVL_OK;

 if (hModule == NULL)

 {
 hModule = LoadLibraryW(L"svlMemoryValidatorStub.dll"); // change this to svlMemoryValidatorStub6432.dll or svlMemoryValidatorStub_x64.dll as appropriate
 if (hModule != NULL)

 {
 // DLL loaded, set the service callback function

 SETCALLBACK_FUNC setCallbackFunc;

 setCallbackFunc = (SETCALLBACK_FUNC)GetProcAddress(hModule, "apiSetServiceCallback");
 if (setCallbackFunc != NULL)

 {
 (*setCallbackFunc)(callback, userParam);
 }

 // now start the profiler

 PROC *p;

 p = GetProcAddress(hModule, "startProfiler");
 if (p != NULL)
 (*p)();

Frequently Asked Questions 792

Copyright © 2001-2025 Software Verify Limited

 // now turn on provision of symbols by the stub

 ENABLE_STUB_SYMBOL_FUNC enableSymbolFunc;

 enableSymbolFunc = (ENABLE_STUB_SYMBOL_FUNC)GetProcAddress(hModule, "apiEnableStubSymbols");
 if (enableSymbolFunc != NULL)

 {
 (*enableSymbolFunc)();
 }
 else

 {
 errCode = SVL_FAILED_TO_ENABLE_STUB_SYMBOLS;
 }
 }
 else

 {
 errCode = SVL_LOAD_FAILED;
 }
 }
 else

 {
 errCode = SVL_ALREADY_LOADED;
 }

 return errCode;

}

//-NAME---------------------------------

//.DESCRIPTION..........................

//.PARAMETERS...........................

//.RETURN.CODES.........................

//--------------------------------------

typedef void (*UNLOAD_FUNC)();

typedef HANDLE (*GET_STUB_HEAP_FUNC)();

SVL_SERVICE_ERROR svlMVStub_UnloadMemoryValidator()
{
 SVL_SERVICE_ERROR errCode = SVL_OK;

 if (hModule != NULL)

 {
 // get the stub heap before we shut down the DLL

 HANDLE hStubHeap = NULL;
 GET_STUB_HEAP_FUNC getHeapFunc;

 getHeapFunc = (GET_STUB_HEAP_FUNC)GetProcAddress(hModule, "apiGetInternalMVstubHeap");
 if (getHeapFunc != NULL)

 {
 hStubHeap = (*getHeapFunc)();
 }

 // get the unload stub function

Memory Validator Help793

Copyright © 2001-2025 Software Verify Limited

 UNLOAD_FUNC unloadFunc;

 unloadFunc = (UNLOAD_FUNC)GetProcAddress(hModule, "apiShutdownMemoryValidator");
 if (unloadFunc != NULL)

 {
 (*unloadFunc)();

 // get the function

 HMODULE hModule;

 hModule = GetModuleHandleW(L"svlMemoryValidatorStub.dll");
 if (hModule != NULL)

 {
 // unload the stub

 FreeLibrary(hModule);

 // destroy the stub's heap (which was still in use whilst FreeLibrary() was in progress

 if (hStubHeap != NULL)

 HeapDestroy(hStubHeap);
 else

 {
 if (errCode == SVL_OK)

 errCode = SVL_FAIL_TO_CLEANUP_INTERNAL_HEAP;
 }
 }
 else

 {
 errCode = SVL_FAIL_MODULE_HANDLE;
 }
 }
 else

 {
 errCode = SVL_FAIL_UNLOAD;
 }

 hModule = NULL;
 }
 else

 errCode = SVL_NOT_LOADED;

 return errCode;

}

Frequently Asked Questions 794

Copyright © 2001-2025 Software Verify Limited

15.9 System and environment

How do I create a Power User on Windows XP?

Windows 2000 and Windows XP Pro allow Power User accounts that stop short of full Administrator
permissions.

To make an existing user (say Test User) a Power User do the following:

· Start Menu Right click on My Computer Manage

The Computer Management window appears

· On the left, expand System Tools Local Users and Groups Users

· On the right, select and Right click on 'Test User' Properties

The User Properties dialog appears

· Select the Member Of tab Add...

The Select Groups dialog appears

· In the bottom box, type Power Users OK

· In the user properties dialog select Users Remove OK

· Close Computer Management

Your Test User is now a member of the Power Users group - and probably not really a 'Test' User
any more!

What file extensions does Memory Validator use?

Most configuration data is stored in the registry, but some information is file-based such as settings,
coverage, and filter data.

Memory Validator uses the following extensions:

Memory Validator Help795

Copyright © 2001-2025 Software Verify Limited

Session Export and Session Save

· html HTML export files
· xml XML export files
· mvm
· mvm_x64

Session files for 32 or 64 bit Memory Validator

Settings, Filters, Coverage

· mvs
· mvs_x64

Settings for 32 or 64 bit

· mvx Hooked DLLs
· mvf Filter files
· mvc Coverage files
· mvd Coverage files

Ordinal To Symbol Conversion

· def Linker definition files
· ord Ordinal data files

Program Launch, Extensions

· dll Extension DLLs
· exe Program files

Source Code

· cpp C++
· c C
· h C and C++
· cxx C++
· hxx C++
· hpp C++

15.10 Does Memory Validator do...

Does Memory Validator track everything at the same time?

It can, but not everything is tracked by default.

Memory Validator can be configured to track as little or as much as you wish,

For example, if you are only interested in the handles returned from GetDC() and passed into
ReleaseDC() you can configure that.

Frequently Asked Questions 796

Copyright © 2001-2025 Software Verify Limited

Or if you want to know about every handle allocated and deallocated, every memory allocation and
deallocation, all COM objects, all memory errors etc, you can do that too.

However, bear in mind that the more data items being tracked, the more the performance will be
affected.

See also the questions on Performance.

Does Memory Validator hook delay loaded functions?

Yes, delay loaded functions can be hooked and are done so by default.

· Set whether delay loaded DLLs are hooked via the Hooked DLLs page of the global settings
dialog

· Set whether delay loaded functions are hooked on the Collect settings page.

Does Memory Validator work with NT Services?

Absolutely. There is a help section on working with NT Services.

Does Memory Validator use Thread Local Storage?

Yes, thread local storage is used in the stub part of the program that is injected into the target
program.

Memory Validator needs to use thread local storage so that it can keep track of per-thread related
data whilst instrumenting your application.

Windows NT provides each application with at least 64 thread local storage slots.

How many TLS slots are used?

Memory Validator uses 1 of these slots, leaving at least 63 available for your program to use at the
same time as Memory Validator.

Does Memory Validator support the boot.ini /3GB switch?

Memory Validator supports applications linked with the /LARGEADDRESSAWARE switch
(Microsoft linkers and compatible).

When run on a computer with the /3GB switch added to the boot.ini command line, these
applications can access 3GB of application addressable memory rather than 2GB.

Only certain Operating Systems support this boot.ini feature:

· Windows Server 2003 family
· Windows XP Professional Edition
· Windows 2000 Datacenter Server

http://msdn.microsoft.com/en-us/library/windows/desktop/ms686749(v=vs.85).aspx

Memory Validator Help797

Copyright © 2001-2025 Software Verify Limited

· Windows 2000 Advanced Server
· Windows NT 4.0 Enterprise Edition

Read more about the /3GB switch and Large Address Aware applications.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb613473(v=vs.85).aspx

Part

XVI

Memory Validator Help799

Copyright © 2001-2025 Software Verify Limited

16 Installing Floating Licensing

How to install floating licences

Floating licences float globally. Your team members in an office on the other side of the world can share
a floating licence with you.

If you have floating licences install the software on all machines in your business unit that wish to use
the software.

For an overview of how floating licences work, please read this.

Floating licence server

The floating licence server is managed by Software Verify.

No server to setup, no licences to misconfigure. All the things that are bad about floating licences, we've
removed all that.

If you need to acquire a licences or release a licence, see the Floating Licences tab.

Floating licence help

If you have problems with the floating licences please contact support@softwareverify.com

If you need to purchase additional floating licences for a new floating licence please visit
https://www.softwareverify.com/purchasing/.

If you need to purchase additional floating licences to add to an existing floating licence please contact
sales@softwareverify.com.

https://www.softwareverify.com/floating-licences/
mailto:support@softwareverify.com
https://www.softwareverify.com/purchasing/
mailto:sales@softwareverify.com

Part

XVII

Memory Validator Help801

Copyright © 2001-2025 Software Verify Limited

17 Copyright notices

17.1 Udis86

This software uses the library svlUdis86.dll and svlUdis86_x64.dll. These libraries are modified binary
versions of the open source disassembler udis86.

udis86 was hosted at http://udis86.sourceforge.net/
udis86 is currently hosted at https://github.com/vmt/udis86 although the current distribution (at the time
of writing) appears to be missing some files required to compile.

The 1.7.0 version of the udis source code contains this copyright notice: Copyright (c) 2005, 2006, Vivek
Mohan
The 1.7.2 version of the udis source code contains this copyright notice: Copyright (c) 2002-2009 Vivek
Thampi

These copyright notices appear to conflict and the latter copyright notice completely ignores the claims
set forth in the 1.7.0 copyright notice.

In accordance with the license terms in the 1.7.2 software we include this binary license.

 * 1.7.2 Copyright (c) 2002-2009 Vivek Thampi
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://udis86.sourceforge.net/
https://github.com/vmt/udis86

Index 802

Copyright © 2001-2025 Software Verify Limited

Index
- . -
.bsc files

locations 342

source lookup 337

.def files

ordinal handling 377

source lookup 337

.map files

automated testing 578

locations 342

source lookup 337

.net services

monitoring 517

.net warnings 289

.pdb files

automated testing 578

locations 342

- A -
Abandon application 531

About box 536

Add bookmark 67, 180

Add watermark 67, 180

Addref

pairing with releases 67

Address

finding 425

finding allocations 420

threshold searching 458

Administrator

running as 489, 497

Administrator privileges 489, 497

Advapi handle hooks 225, 357

Aliasing allocators 284

Allocation

activity graph 98

address 67, 168

history 237

hooks 356

hotspots 168

order 98

ranging (by size) 229

request ID 67, 168

searching 419

Allocator aliasing 284

Analysis tab 180

display settings 191

finding memory 688

overview 4

API 527

NT Service 618

overview 591

tag tracking 550

API functions

bookmarks 600

custom heap tracking 596

data collection 606

dumping leaks 606

garbage collection 606

integrity check 606

leak detection 601

naming heaps 599

shutdown 606

tag tracking 603

uninitialised data 601

watermarks 600

Applications to monitor

settings 259

arg (command line) 564

args (command line) 564

Attaching to a process 504

Auto merging sessions 253

Automated testing 554, 555, 560

dislay refresh 581

file locations 578

filters 577

help 581

return codes 581

session exports 574

session management 572

start modes 564

user interface 571

- B -
Bookmarks 67, 180

adding 418

API 600

dialog 418

Memory Validator Help803

Copyright © 2001-2025 Software Verify Limited

Bookmarks 67, 180

using 418

Bookmarks (editor) 442

Borland

supported compilers 11

Borland Delphi memory hooks 225

Breakpoints 231, 265

Browsing source code 335

BSTR hooks 356

Buffer hooks 359

Buffer manipulation hook reference 725

Buffer overrun 225

Built in editor 442

- C -
C/C++ memory hooks 225

C/C++ runtime hook reference 718

Cache 349

Caching symbols 306

Callstack 67, 168

advanced settings 245

depth 245

event sequence id 245

FAQ 762

filters 317

group by 191

instruction address 245

monitoring 245

timestamps 245

walking 245

Cherrystone

supported compilers 11

Child application monitoring 259

Class filters 401

Clipboard 67, 180

Code editing 442

CodeWarrior

supported compilers 11

Coff debug format 306

Collect 225

Collect settings 225

Collected data 67

Colours 176, 193, 200

Colours (display) 329

COM

FAQ 757

hooks 356

in Memory Validator 9

reference count filtering 401

reference counting 225

reference counts 237

related objects 67

zero refcount objects 67

COM hook reference 725

COM object tracking

capabilities 9

ComCTL handle hooks 357

Command description 50

Command files in automated testing 580

Command line

reference 584

Command line arguments

automated regression testing 560

automated test file locations 578

automated test filters 577

automated test help 581

automated test sessions 574

automated testing 564, 571, 572, 580

editor 339

Common control handle hooks 225

Common leaks in regression testing 555

Compaq

supported compilers 11

Comparing sessions 384, 555, 560

Compiler options 20

Compilers

supported 7, 11

symbol lookup 306

Configure menu 43

Contact us 8

Converting ordinals to functions 377

Converting ordinals to symbols 304

Copy and paste 42

Copy special 67, 180

Corrupted memory detection 279

CoTaskMemAlloc

functions using 730

hooks 356

installed hooks 225

Coverage

settings 253

Coverage tab 176

overview 4

Crashes (faq) 775

Crashes due to deleted objects 688

Index 804

Copyright © 2001-2025 Software Verify Limited

Cross thread allocations 439

CRT

custom DLL 287

hooks 356

memory update dialog 468

Warning Dialog 20

Cummulative memory 455

Cumulative allocations 104, 116

Custom

CRT DLL 287

filters 386

heap naming 599

heap tracking 596

hook settings 360

memory hooks 225

- D -
Damaged memory 180, 468

Damaged memory detection 231, 269

Data

types to display 89

uninitialisation 272

Data collection 225, 489, 497, 504, 507, 517

Applications to monitor 259

defaults 26

statistics on the status bar 50

stopping and starting 535

Data collection (API) 606

Data collection (faq) 762

Data tracking 550

Data transfer settings 300

Data types

source parsing 337

Data views menu 46

Datatypes

defining 350

enumeration 350

finding allocations 420

scanning 350

DbgHelp 304

DbgHelp (faq) 780

DbgHelp messages 206

DCOM memory hooks 225

Deallocation order 98

Debugger prompts 265

Debugging information 26

Debugging tools for windows 309

Deferred symbol loading 304

Define data structure 67, 350

Define Enumeration 67

Delay loaded DLLs 319

Delay loaded function hooking 225

Delay loaded functions (faq) 795

Delay loaded import address table 9

Delete and delete [] 692

Deleted this pointers 274

Delphi hooks 356

Detecting leaks 458

Diagnostic filters 206

Diagnostic tab 206

overview 4

Diagnostics 304

Dialog mode 213

Dialog size 330

Dialogs

.NET warning 289

about 536

address query 425

address query (example) 686

advanced stack walk 245

allocations, reallocations and deallocations in
page 193, 200

analysis display settings 191

Applications to Monitor 259

attach to running process wizard 504

auto merge (coverage) 253

bookmark name (example) 700

bookmarks 418

bookmarks (example) 700

check for software updates 542

color 329

compare sessions 555

compare sessions (example) 697

compiler debug information 306

cross thread allocations, reallocations,
deallocations 439

CRT memory update 468

custom hook 360

data transfer helper 300

datatypes 350

define data 350

define enumeration 350

DLLs needing ordinal to function resolutions
377

downloading 542

Memory Validator Help805

Copyright © 2001-2025 Software Verify Limited

Dialogs

dynamic CRT not linked 289

editor 442

enumeration name 350

enumerations 350

environment variables 528

examine data 67

export session 478

file locations settings 67

file paths 342

file scan 342, 377

filter 401

filter manager 390

filter memory by thread id 387

find filter 399

find function 435

find memory 420, 555

find memory in analysis (example) 680

find source file 67

find source file (multiple results) 67

First run configuration 32

GDI handle 67

inject validator into running process 504

launch different application 319

loaded modules 447

memory - local filters 395

memory corruption filters 279

memory coverage filter 253

memory coverage filters 253

memory hotspot settings 174

memory in use in pages display 193

memory leak and handle leak detect 458

memory leak data statistics 458

memory re-use 180

memory tab display settings 89

memory view 67

message map error 295

monitor a service 517

move filter 395

move filter group 390

named heaps 414

nativeExample application 657

object query 431

options (editor) 442

options colour (editor) 442

ordinal to function converter 377

referenced pointer 431

referenced pointers 425

referencing pointers 431

running totals 455

save session 475

scan for datatypes 350

scanning for files 377

searching for source file 67

send command to stub extension DLLs 470

session chooser 384, 555

session chooser (example) 697

session compare export 555

session memory comparison 555

session memory comparison (example) 697

settings 222

show data at 67

software update download confirmation 542

software update maintenance has expired 542

software update maintenance renewal 542

software update schedule 542

start an application and inject validator into
process 489, 497

start application wizard 489, 497

symbol server 309

test memory (example application) 689

tips 536

Unable to show GDI object 330

user interface chooser 213

user permissions warning 377

virtual memory data export 484

wait for application wizard 507

wait for process to start then inject validator into
process 507

watermark name (example) 702

watermarks 415

watermarks (example) 702

Different threads 439

Directory filters 401

Display

filtering 401

refresh after automated testing 581

refreshing 446

tab views 46

update 67

Display settings

analysis 191

hotspots 174

memory 89

DLL

.def association 377

Index 806

Copyright © 2001-2025 Software Verify Limited

DLL

delay loaded 319

exports 304

filters 401

hooking 319

import address table 9

object sizes in 116

objects in 104

DLLHost (IIS) 629

Downloading updates 542

Dynamic linking 20

Dynamically linked CRT warnings 289

- E -
Edit menu 42

Editing source code 67, 168, 176, 180, 193, 200,
339

Editor 339, 442

Enumeration

datatypes 350

defining 350

Environment variables 528

Error detection

capabilities 9

Error messages

types to display 89

Error notifications 13

Errors (faq) 775

Event sequence ID 67, 104, 116, 168, 180, 245

Examining source code 67

Example application

allocation menu 660

building 659

dll menu 674

handles menu 673

help menu 676

memory errors menu 667

more handles menu 673

overview 657

reporting menu 676

trace menu 674

Example NT service

building 707

building sample client 708

building sample service utility 709

overview 707

Example program 26

Examples

allocator aliasing 284

custom hook dialog 360

deleted this pointers 274

example application 657

finding allocations and reallocations (example
application) 689

finding allocations in functions 435

finding crashes due to deleted objects (example
application) 688

finding cross thread allocations 439

finding double deallocations (example application)

 683

finding handle leaks (example application) 678

finding incorrect deallocations (example
application) 692

finding memory corruption (example application)

 686

finding memory leaks (example application) 677

finding referenced objects 431

finding uninitialised memory(example application)

 680

how to use 657

null this pointers 274

overview 657

reducing data in the display 694

searching for address 425

service source code 630

session comparison 697

stub extension 654

user interface extension 651

using bookmarks 700

using IIS 629

using watermarks 702

Exception handling 265

Exclusive searches 420

Exit without warning 265

Expired maintenance 542

Export

automated test sessions 574

file locations 342

hooked DLLs 319

HTML or XML 478

regression test results 555

session comparison 555

sessions 478

virtual memory 484

Extending Memory Validator 650

Extension

Memory Validator Help807

Copyright © 2001-2025 Software Verify Limited

Extension

stub DLLs 375

user interface DLLs 376

Extension DLLs 527

Extensions 650

sending a command 470

Extensions (faq) 794

- F -
Failed symbol load (faq) 767

File

finding allocations 420

File cache 349

File locations 342

automated testing 578

File locations settings 67

File menu 41

File scan 342

Filename filters 401

Filter manager dialog 390

Filter types 386

Filters 67, 180

automated testing 577

between sessions 395

by location 401

by type 401

callstack 317

custom 386

defining 401

definition 401

diagnostic 206

finding 399

global 386, 390

group hierarchy 390

groups 386

in regression testing 555

instant 386

inverting 401

local 386, 395

memory corruption 279

memory coverage 253

object sizes 116

objects 104

overview 386

resetting 349

session 386, 390

thread 386

tmporary 386

Find

filter dialog 399

in analysis tab 67

memory (pages) 193

memory (virtual) 200

Find function dialog 435

Find memory dialog 420

Find memory example 686

finishConstructor (extensions) 654

finishDestructor (extensions) 654

First run configuration 32

First watermark 415

Flushing the cache 349

Format

file locations 342

virtual memory export 484

XML session export 481

Formatting (editor) 442

Fortran 95

cellected hooks 225

hooks 356

supported compilers 11

Fragment size (source) 335

Free space 193, 200

Frequently asked questions

capabilities 795

crashes and error reports 775

DbgHelp 780

environment 794

extensions 788

general 757

not getting results 762

overview 757

performance 778

services 788

system 794

tools 788

unexpected results 770

Functions

extension 651, 654

finding allocations 420, 435

using null this pointer 274

- G -
Garbage collection (API) 606

GDI

Index 808

Copyright © 2001-2025 Software Verify Limited

GDI

handle hooks 225

object stub viewer 330

objects 67

GDI32 handle hooks 357

getDescription (extensions) 651

getDllD (extensions) 651

Getting started 20

Global filters 67, 390

Global hook DLLs 370, 372

Global memory hooks 225

Global settings 221

during automated testing 578

resetting 222

Global settings dialog 222

GlobalAlloc hooks 356

Goto bookmark 418

Graphs 98

Group filters 386

- H -
Handles

data collection 225

duplicate 235

filtering 401

hook reference 721

hooks (individual) 357

hotspots 168

invalid 235

leak detection 458

null 235

Heap

memory hooks 225

names 414

names (API) 599

scan 269

Heap ID

filtering 401

finding allocations 420

Help

automated testing 581

Help menu 48, 536

Historical allocation data 237

Hook reference

buffer manipulation 725

C/C++ runtime 718

COM 725

functions using CoTaskMemAlloc 730

Handles 721

internet functions 725

LocalAlloc and GlobalAlloc 729

locale functions 725

miscellaneous 728

NetApi 731

overview 718

path functions 725

registry functions 725

string functions 725

uninitialised data 728

Win32 720

Hooked DLLs 319

Hooks 356

diagnostics 206

Hotspot tab 168

display settings 174

Hotspot threshold 168

Hotspots tab

overview 4

HTML help 536

HTML session export 478

- I -
Icons

data type reference 53

size 330

toolbar 48

tooltips 53

IIS

menu disabled (faq) 788

using with Memory Validator 629

IMalloc memory hooks 225

Import

file locations 342

hooked DLLs 319

Improvements during regression testing 555

Inclusive searches 420

InetInfo (IIS) 629

Injecting

automated testing 564

into IIS 629

into running process 504

Injection 504

Injection (faq) 757

In-place leak detection 458

Memory Validator Help809

Copyright © 2001-2025 Software Verify Limited

Installed hooks 225

Instant filters 386

Instruction address 245

Integrity check 468

Integrity check (API) 606

Intel

supported compilers 11

Intel symbols 306

Internet functions hook reference 725

Internet hooks 359

Introduction 4

Invalid handles 180

- J -
Just in time debugging 265

- K -
Kerenel buffer hooks 359

Kernel handle hooks 225

Kernel32 handle hooks 357

Keyboard shortcuts 52

- L -
LargeAddressAware (faq) 795

Last watermark 415

Launch

dialog 26

environment variables 528

FAQ 757

methods 489, 497

wizard 26

Launching

automated testing 564

hooks during 319

Launching a program 489, 497

quick start 26

Leak detection

API 601

dialog 458

why leaks may not be found 458

Leak dump (API) 606

Leaked memory 180

Licensing 8

Lifetime 104, 116

Line number cache 349

Linkers 11

Linking

to API libraries 591

to your program 527

Live allocations 104, 116

Loaded modules 447

Loading sessions 475

LoadLibrary warnings 289

Local filters 67, 176, 180, 193, 200, 386

between sessions 395

dialog 395

management 395

Local memory hooks 225

Local settings 221

LocalAlloc and GlobalAlloc hook reference 729

LocalAlloc hooks 356

Locale functions hook reference 725

- M -
Macros 284

Maintenance of software 542

Managers

bookmarks 418

filters 390

sessions 384

software maintenance 542

software updates 542

thread filters 387

watermarks 415

Managers menu 44

Manual testing 554, 555

Mapping ordinals 377

marmalade 225, 639

Maximum memory 455

Memory 180

analysis 180

buffer overrun detect 225

corruption detection 279

coverage 176

coverage settings 253

damage detection 269

data collection 225

error detection capabilities 9

errors 231

graphical view 200

hooks (individual) 356

Index 810

Copyright © 2001-2025 Software Verify Limited

Memory 180

hotspots 168

initialisation check 467

inspection 67

installed hooks 225

leak detection 458

mismatched allocation methods 231

page usage 193, 200

paragraph usage 200

relations 180

reuse 180

searching 420

settings 67

types to display 89

use during startup 468

Memory buffer overrun detect 225

Memory leaks

capabilities 9

Memory tab

display settings 89

overview 4

user interface 67

Memory Validator

contact 8

design principles 5

features 4

getting started 20

impact on program 5

licensing 8

purchasing 8

quick start 26

section overview 4

stub and ui 9

support 8

what is it 4

workflow 5

Memory view 67

Menus

configure 43

data views 46

edit 42

file 41

help 48

managers 44

overview 40

query 45

software updates 47

tools 45

Merging coverage data 253

Message area 50

Message map checking 295

Metrowerks

supported compilers 11

MFC message map checks 295

Microsoft

supported compilers 11

symbols 306

MinGW 11

Miscellaneous hook reference 728

Miscellaneous memory hooks 225

Miscellaneous symbol settings 304

Mismatched allocation methods 231

Modules

discarding 245

finding allocations in 420

hooking 319

loaded list 447

loading and unloading 304

manual addition 319

Monitor a service 517

Monitoring child applications 259

Monitorng NT services 617

mvDetectUninitialised (API) 601

mvLeakDetectXXX functions (API) 601

mvSetBookmark (API) 600

mvSetHeapName (API) 599

mvSetWatermark (API) 600

mvUserCustomXXX functions (API) 596

mvXXX utility functions (API) 606

mvXXXTracker functions (API) 603

- N -
Naming

heaps 414

heaps (API) 599

threads 387

nativeExample (application) 659

Negative size allocation 231

NetApi

hook collection 225

hook reference 731

hooks 356

installed memory hooks 225

Notation used in help 3

NT Services

Memory Validator Help811

Copyright © 2001-2025 Software Verify Limited

NT Services

API 618

FAQ 795

working with 617

Null this pointer 274

- O -
Object query dialog 431

Object sizes

count 116

cumulative totals 116

filtering 401

live allocations 116

running totals 116

Object tab

overview 4

Object type

finding allocations 420

Objects

by type 399

filtering 401

finding 431

in file 399

in function 399

in size range 399

OLE hooks 356

OpenGL memory hooks 225

Operating system

requirements 7, 11

Options (editor) 442

Ordinal handling 377

Ordinal mapping (faq) 762

Ordinal maps 377

Ordinal to symbol converiosn 304

OrdinalXXX symbols (faq) 770

Overview 2

- P -
Pages 193, 200

Pages tab 193

overview 4

Paragraphs 200

Parsing

source code 337

Path functions hook reference 725

Path hooks 359

Paused start mode 489, 497

PDF help 536

Performance (faq) 778

Permissions 13

Power user accounts 377

Power users (faq) 794

Prefetching symbols 309

Printer handle hooks 357

Privileges 7, 13, 489, 497

Process modules 319

Program information 50

Purchasing memory validator 8

Purging data 191

Purging sessions 384

- Q -
Qt

supported compilers 11

Queries 180, 193, 200

Query

address example 688

in the memory tab 67

Query address 425

Query and search 420, 425, 431, 435

Query and search overview 419

Query menu 45

Query objects 431, 435

Questions 757

Quick start 26, 489, 497

- R -
Range of allocations 229

Readme 536

Reallocation locations 245

Referenced address 425

Referenced objects 431

Referenced pointers 67

Referencing address 425

Referencing objects 431

Referencing pointers 67

Refresh 446

Refresh All 446

Regions 193, 200

Registry access 7, 13

Index 812

Copyright © 2001-2025 Software Verify Limited

Registry functions hook reference 725

Registry hooks 359

Regression testing 384

automatic 560

dislay refresh 581

file locations 578

filters 577

help 581

manual 555

overview 554, 560

return codes 581

session export 574

session management 572

start modes 564

user interface 571

Relations 180, 193, 200

Relations example 686

Relaunching a program 503

Release

pairing with Addrefs 67

Renewing maintenance 542

Resetting default settings 222

Resetting filters 349

Resolving symbols 304

Resource leaks

capabilities 9

Restart required 489, 497

Restoring settings 222

Running totals 104, 116, 455

- S -
s3eBaseFree 225, 639

s3eBaseMalloc 225, 639

s3eBaseRealloc 225, 639

s3eFree 225, 639

s3eMalloc 225, 639

s3eRealloc 225, 639

Sales 8

Salford

supported compilers 11

saveSession (command line) 560

Saving sessions 475

Scanning

for datatypes 350

for files 342

Scheduling software updates 542

Search

filters 399

Searching 420, 425, 431, 435

Select all 42

Send command to all extension DLLs 470

Send command to one extension DLL 470

Sequence id 104, 116

finding allocations 420

Servers (symbols) 309

Service account (NT services) 617

Session

export during automated testing 574

Session comparison 555, 697

automated 560

command line 560

Session filters 67, 386, 390

Session manager 384

Sessions

closing 474

comparing 384

during automated testing 572

limit on loading 384

loading and saving 475

managing 384

purging 384

remembering local filters 395

working with 474

Setting up 32

Settings

Applications to monitor 259

display tabs 55

loading and saving 382

overview 221

source parsing 337

Settings (editor) 442

Shell handle hooks 225

Shell32 handle hooks 357

Shortcuts 52

Show data at 67

Shutdown (API) 606

Size of allocations 229

Sizes tab 116

overview 4

Socket handle hooks 357

Software updates 542

credentials 32

download location 32

Software updates menu 47

Source browsing 335

Memory Validator Help813

Copyright © 2001-2025 Software Verify Limited

Source code 168, 176, 180, 193, 200

examination 67

finding files 67

Source code editor 339, 442

Source code files 342

Source files (automated testing) 578

Source lookup 337

Source parsing 337

Stabs debug format 306

Stack depth 245

Stack traces (faq) 762

StackWalk alternatives 245

Start application wizard 489, 497

startConstructor (extensions) 654

startDestructor (extensions) 654

Starting a program

launch methods 489, 497

launching 489, 497

overview 487

Startup memory usage 468

Startup modes

automated testing 564

Static CRT warnings 289

Static linking 20

Statically linked runtime hooks 287

Statistics

coverage 176

hotspots 168

object sizes 116

objects 104

runtime 455

Status bar 50

Status bar (editor) 442

Stop conditions 231

Stopping the target program 531

String functions hook reference 725

String manipulation hooks 359

Stub

as part of Memory Validator 9

extension DLLs 375

extension example 654

extensions 650

gdi object viewer 330

global hook DLLs 370

global hooks 372

sending command to extensions 470

stubExtDLL 654

Stublib 550, 591

Stublib (faq) 788

Substitute drives 349

Support 8

Suspended start mode 489, 497

svlDataTracker class 550

svlMVExceptionReport (faq) 775

svlMVStubService 618

svlMVStubService (faq) 788

Symbol cache (faq) 757

Symbol lookup 32

Symbol search path environment variables 32

Symbols

caching 306

deferred loading 304

diagnostics 206

from ordinals 304

immediate loading 304

lookup 306

mapping 377

name filters 401

prefetching 309

resolving 304

servers 309

SymChk 309

Syntax highlighting (editor) 442

SysAllocString memory hooks 225

System hooks 370

System requirements 7

- T -
Tab size (in source) 335

Tab visibility 46

Tabs

analysis 180

coverage 176

diagnostic 206

display windows 55

hotspots 168

memory and handles 67

objects 104

overview 4

pages 193

sizes 116

timeline 98

virtual 200

Tag trackers

finding allocations 420

Index 814

Copyright © 2001-2025 Software Verify Limited

Tag tracking 67, 104, 116, 168, 180, 550

Tag tracking (API) 603

Temporary filters 386, 401

Third party files 342

in automated testing 578

this (deletion) 274

Thread filters 386

Thread local storage (faq) 795

Threads

allocations between 439

filters 67, 387

id 387

names 387

names (faq) 757

object sizes in 116

objects in 104

Timeline 98

buffer size 235

Timeline tab 98

overview 4

Timestamp display 245

Tips 536

Toolbars

icons 330

reference 48

Tools

editor 442

integrity check 468

leak detection 458

loaded modules 447

memory update 468

running totals 455

send a command 470

uninitialised data check 467

Tools menu 45

Total memory 455

Trace messages 180, 225

filters 401

monitoring 235

Tracking everything (faq) 795

Tutorials 20, 536

Type cache 349

Types

count 104

cumulative totals 104

live allocations 104

running totals 104

Types tab 104

- U -
uiExtDLL 651

Uninitialised data 225

capabilities 9

detection 272, 467

filters 401

Uninitialised data (API) 601

Uninitialised data hook reference 728

uninitialised memory 180

Unknown symbols (faq) 770

Unleaked CRT memory 702

Unused memory reporting 231

Updating software 542

User

account (NT services) 617

extensions 225

handle hooks 225

permissions 13, 377

privileges 13

User defined memory 225

User interface

analysis tab 180

as part of Memory Validator 9

coverage tab 176

diagnostic tab 206

during automated testing 571

extension DLLs 376

extension example 651

extensions 650

hotspot tab 168

icon sizes 330

memory tab 67

mode 213

mode for injection 504

mode when launching 489, 497

mode when waiting for a program 507

objects tab 104

pages tab 193

parts of the interface 32

sizes tab 116

virtual tab 200

workflow 32

User32 handle hooks 357

Memory Validator Help815

Copyright © 2001-2025 Software Verify Limited

- V -
Version history 536

Views 46

Virtual memory 193, 200

export 484

hooks 225

Virtual tab 200

overview 4

Visit counts 253

Visual Studio

DbgHelp.dll version 306

supported compilers 11

- W -
Waiting for a process 507

Waiting for a program

automated testing 564

Walking the callstack 245

Warning dialog

Static CRT 20

Warning dialogs

.NET warning 289

dynamic CRT not linked 289

global hooks 372

LoadLibrary 289

user permissions 377

WinSxS 289

Warnings 289

Watermarks 67, 98, 104, 168, 180

adding 415

API 600

dialog 415

example 702

finding leaks between 458

first and last 415

manager 415

reducing data in the display 702

use in detecting memory leaks 702

using 415

Welcome 2

Win32 hook reference 720

WinHttp handle hooks 225, 357

WinSock handle hooks 225

WinSpool handle hooks 225

WinSxS warnings 289

Wizard mode 213

Wrapping keywords and functions 284

- X -
XML session export 478

XML session export tags 481

- Z -
Zero size allocations 231

816

Copyright © 2001-2025 Software Verify Limited

	Overview
	Notation used in this help
	Introducing Memory Validator
	Why Memory Validator?
	What do you need to run Memory Validator?
	Buying Memory Validator and support
	How does Memory Validator work?
	What does Memory Validator do?
	Supported Compilers
	User Permissions

	Getting Started
	Before you start
	Enabling Debugging
	Quick Start

	The User Interface
	First run configuration
	Menu Reference
	File menu
	Launch Menu
	Edit menu
	Settings menu
	Managers menu
	Query menu
	Tools menu
	.Net Tools menu
	Data Views menu
	Software Updates menu
	Help menu

	Toolbar Reference
	The status bar
	Keyboard Shortcuts
	Icons
	The main display
	Summary
	Memory
	Memory and handle leaks
	Memory Display Settings

	.Net Memory
	.Net Memory Display Settings

	Timeline
	Statistics
	Types
	Sizes
	Locations
	Generations
	Generation Settings Dialog

	Ages
	Ages Settings Dialog

	.Net
	.Net Snapshots
	.Net Snapshot Creation Dialog
	.Net Snapshot Comparison Dialog
	.Net Snapshot Display Settings Dialog
	.Net Snapshot Callstack Display Settings Dialog

	.Net Heap Dumps
	.Net Heap Dump Display Settings Dialog
	.Net Path to Root

	.Net Leak Analysis
	.Net Leak Analysis Display Settings

	Analysis
	Hotspots
	Hotspot Display Settings

	Coverage
	Query
	Analysis Display Settings

	Pages
	Virtual

	Diagnostic
	Floating Licence

	User Interface Mode
	UX Theme
	Summary Display Layout
	Delete Cache Files
	Settings
	Global Settings Dialog
	Native
	Collect
	Allocation Range
	Error Reporting
	Trace Hooks
	Allocation History

	.Net
	.Net Collect
	.Net Stale Object Detection
	.Net Heap Dump
	.Net Snapshots

	Data Collection
	Callstack
	Memory Coverage
	Applications to Monitor

	Advanced
	Failed Allocations
	Breakpoints
	Heap
	Instrumentation
	Uninitialised Data
	Deleted "this" Pointer
	Memory Corruption Detection

	Timeline
	Allocator Alias
	C Runtime Setup
	Warning
	Don't Show Me Again
	.Net Warnings
	MFC Message Map Checks
	CoInitializeEx
	Data Transfer

	Symbol Handling
	Symbols Misc
	Symbol Lookup
	Symbol Servers
	Symbol Load Preferences
	Symbol Caching

	Filters
	Callstack Trim
	Hooked DLLs
	Load Settings Pattern Match

	Data Display
	Display Behaviour
	Colours
	User Interface
	Data Highlighting
	Source Browsing
	Source Parsing
	Editing
	File Locations
	Path Substitutions
	File Cache
	Datatypes and Enumerations

	Hooks
	Memory Allocation Hooks
	Handle Allocation Hooks
	Buffer Manipulation Hooks
	Custom Hooks

	Third Party DLLs
	Stub Global Hook DLLs
	User Interface Global Hook DLLs

	Extensions
	Stub Extensions
	User Interface Extensions

	User Permissions Warnings
	Ordinal Handling
	Loading and saving settings
	Symbol Path Truncated Warning

	Managers
	Session Manager
	Filters
	Thread Filters
	Global Filters and per-Session Filters.
	Local Filters
	Find Filter
	Filter Definition
	Location Filters
	Location Filter Definition
	Generation Filters
	Generation Filter Definition
	Ages Filters
	Age Filter Defintion

	Named Heaps
	Watermarks
	Bookmarks

	Query and Search
	Finding memory
	Finding addresses
	Finding objects
	Finding functions
	Finding memory allocations deallocated in different threads

	Tools
	Colour coded source code editor
	Refresh and Refresh All
	Loaded Modules
	DLL Debug Information
	DLLs Prevented from Loading
	Out Of Date DLLs
	Running totals
	Memory leak and handle leak detection
	Uninitialised memory detector
	Integrity checker
	Update information
	Send command to stub extension DLL

	.Net Tools
	Heap Dump
	Garbage Collect
	Snapshots

	Sessions: Load, Save, Export, Close
	Loading & Saving Sessions
	Exporting Sessions
	XML Export Tags

	Exporting Virtual Memory Data

	Starting your target program
	Launch chooser
	Launching the program (native and .Net)
	Launching the program (.Net Core)
	Re-launching the program
	Injecting into a running program
	Waiting for a program
	Monitor a service
	IIS
	Monitor IIS and ISAPI
	Monitor IIS and ASP.Net
	Reset & Stop IIS

	Web Development Server
	Monitor Web Development Server and ASP.Net
	Stop Web Development Server

	ASP.Net Core Web Application
	Start ASP.Net Core Web Application
	Stop ASP.Net Core Web Application

	Linking to a program
	Environment Variables
	.Net Core Runtime Arguments Editor

	Stopping your target program
	Command Line Builder
	Data Collection
	Help
	Software updates

	Tag Tracking
	Data Tracking with svlDataTracker

	Command Line / Regression Testing
	Manual Regression Testing
	Automated Regression Testing
	Example Command Lines
	Environment variables
	Target Program & Start Modes
	User interface visibility
	Session Management
	Session Export Options
	Filter options
	File Locations
	Command Files
	Help, Errors & Return Codes
	Command Line Reference
	Troubleshooting

	Native API
	Native API Reference
	Loading and Starting the Profiler
	Custom Heap Tracking
	Naming Heaps
	Naming Threads
	Setting Watermarks & Bookmarks
	Callbacks for Leaks & Uninitialized Data
	Tag Tracking
	Data Collection
	Lifetime Allocations
	Playing Sounds
	Utility Functions
	Example code

	C# API
	Snapshots
	Object Inactivity
	Watermarks & Bookmarks
	Tag Tracking
	Data Collection
	Utility Functions

	Calling the API via GetProcAddress
	Convenience functions

	Working with IIS and Services
	NT Service API
	Changes to the NT Service API
	NT Service API Reference
	Troubleshooting

	Working with IIS
	Example Source Code
	Example Service Source Code
	Example ISAPI Source Code

	Working with Marmalade game SDK
	Working with Intel Math Kernel Library
	Working with Visual Basic 6 (VB6)
	Extending Memory Validator
	Example user interface extension DLL
	Example stub extension DLL

	Examples
	The example application
	Building the example application
	Allocation menu
	Memory Errors menu
	Handles and More Handles menus
	Trace menu
	DLL menu
	Reporting menu
	Help menu

	Finding memory leaks
	Finding handle leaks
	Finding uninitialised memory
	Finding double deallocations
	Finding memory corruptions
	Finding crashes due to deleted objects
	Finding allocations and reallocations
	Finding incorrect deallocations
	Reducing data in the display
	Session comparison
	Using bookmarks
	Using watermarks
	Example NT Service
	Building the sample service
	Building the sample client
	Building the sample service utility
	Monitoring the service

	Example Application Launched from a Service
	Building the service and application
	Monitoring the application launched from the service

	Hook Reference
	C/C++ Memory Hooks
	Win32 Memory Hooks
	Handle Hooks
	COM Related Hooks
	Buffer Manipulation Hooks
	Uninitialised Data Hooks
	Miscellaneous Memory Allocations
	LocalAlloc and GlobalAlloc Functions
	Functions using CoTaskMemAlloc
	Net API Hooks

	Debug Information, Symbols, Filenames, Line Numbers
	Visual Studio
	C++ Builder
	Delphi
	MingW, gcc, g++
	Dev C++
	Salford Software FORTRAN 95
	Metrowerks
	Visual Basic 6

	Frequently Asked Questions
	General Questions
	Not getting results
	Not getting symbols, filenames, line numbers
	Seeing unexpected data
	Crashes and error reports
	Performance
	DbgHelp
	Extensions, services and tools
	System and environment
	Does Memory Validator do...

	Installing Floating Licensing
	Copyright notices
	Udis86

