
Copyright © 2015-2025 Software Verify Limited

DbgHelp Browser

Software Verify

by



DbgHelp Browser
Visual Studio PDB contents inspector

by Software Verify Limited

Welcome to the DbgHelp Browser software tool. DbgHelp
Browser is a software tool that allows you to inspect the
contents of PDB files.

We hope you will find this document useful. 



All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: February 2025 in United Kingdom.

DbgHelp Browser Help

Copyright © 2015-2025 Software Verify Limited



DbgHelp Browser HelpI

Copyright © 2015-2025 Software Verify Limited

Table of Contents

Foreword 1

Part I How to get DbgHelpBrowser 2

Part II What does DbgHelpBrowser do? 4

Part III What is a module? 6

Part IV Menu 8

................................................................................................................................... 91 File 

................................................................................................................................... 92 Settings 

................................................................................................................................... 93 Query 

................................................................................................................................... 104 Software Updates 

................................................................................................................................... 135 Help 

Part V The user interface 16

Part VI Settings Dialog 24

................................................................................................................................... 251 Symbols 

.......................................................................................................................................................... 25Symbol Types 

.......................................................................................................................................................... 27Symbol Paths 

.......................................................................................................................................................... 28Symbol Server 

................................................................................................................................... 292 Misc 

.......................................................................................................................................................... 29Source Paths 

.......................................................................................................................................................... 31Path Substitutions 

Part VII How to use DbgHelpBrowser 33

................................................................................................................................... 351 Decoding an absolute crash address 

................................................................................................................................... 382 Decoding a relative crash address 

................................................................................................................................... 413 Decoding a symbol relative crash address 

................................................................................................................................... 444 Decoding an Event Viewer XML crash log 

................................................................................................................................... 485 What is a load address? 

Part VIII Command Line Interface 55

Index 0



1Foreword

Copyright © 2015-2025 Software Verify Limited



Part

I



How to get DbgHelpBrowser 3

Copyright © 2015-2025 Software Verify Limited

1 How to get DbgHelpBrowser

DbgHelpBrowser is free for commercial use. DbgHelpBrowser can be downloaded from Software Verify's

website at  https://www.softwareverify.com/product/dbghelp-browser/

This help manual is available in Compiled HTML Help (Windows Help files), PDF, and online.

Windows Help https://www.softwareverify.com/documentation/chm/dbgHelpBrowser.chm
PDF https://www.softwareverify.com/documentation/pdfs/dbgHelpBrowser.pdf
Online https://www.softwareverify.com/documentation/html/dbgHelpBrowser/index.html

Whilst DbgHelpBrowser is free for commercial use, DbgHelpBrowser is copyrighted software and is not
in the public domain. 

You are free to use the software at your own risk. 

You are not allowed to distribute the software in any form, or to sell the software, or to host the software
on a website.

Contact Software Verify at:

Software Verify Limited
Suffolk Business Park
Eldo House
Kempson Way
Bury Saint Edmunds
IP32 7AR
United Kingdom

email sales@softwareverify.com
web https://www.softwareverify.com
blog https://www.softwareverify.com/blog
twitter http://twitter.com/softwareverify

Visit our blog to read our articles on debugging techniques and tools.
Follow us on twitter to keep track of the latest software tools and updates.



Part

II



What does DbgHelpBrowser do? 5

Copyright © 2015-2025 Software Verify Limited

2 What does DbgHelpBrowser do?

DbgHelpBrowser allows you to inspect the contents of a PDB (Program Database) file.

You can sort the data, filter the data by name or by type of data. 

You can also query the data by address which can be useful for identifying what function is at a given
address if all you have is a crash address and nothing else.

Query by address is supported four ways:
· Query by absolute address. 
· Query by address offset from a DLL load address.
· Query by address offset from a symbol.
· Query using XML data from the Windows Event Log.

32 bit and 64 bit

PDB files created by 32 bit and 64 bit software are supported. On 64 bit Operating systems if a 64 bit
PDB file is opened the 64 bit version DbgHelp Browser is automatically started.

Native, .Net, .Net Core

PDB files created for native executables, for .Net executables, and for .Net Core executables (using the
Portable PDB format) are all supported.

.Net Core

To provide method names and parameter information for .Net Core executables the computer
DbgHelpBrowser is running on needs to have .Net Core installed. 

Without .Net Core installed the .Net Core metadata can't be read. 

Method Token, filename and line number data will be available, but method names won't be available if
.Net Core is not installed.

History

DbgHelpBrowser has been an internal tool at Software Verify for many years. We recently decided to
make it a bit more user friendly and to make it available for public use.



Part

III



What is a module? 7

Copyright © 2015-2025 Software Verify Limited

3 What is a module?

A module is a block of executable code and data. For example, a DLL or EXE. 

Some software vendors name their DLLs with different file extensions, for example .BPL, .ARX. 

When you call LoadLibrary to load a module, you are returned a HMODULE, which is an opaque handle
to a module. The HMODULE is most often the same as the module load address, but not always. 
The lower few bits of the HMODULE can get OR'd with some flags to create a HMODULE value that is
not the same as the module load address.

You can get the load address of a module from it's HMODULE by masking out the lower 16 bits of the
HMODULE value then casting to a DWORD_PTR.

In this documentation when you read EXE or DLL or module, we are effectively referring to the same
thing. It's easier to read and write "DLLs" rather than "DLLs or EXE".



Part

IV



Menu 9

Copyright © 2015-2025 Software Verify Limited

4 Menu

The main menu contains five menus, File, Settings, Query, Software Updates and Help.

4.1 File

The File menu controls loading of DLLs and debug information, clearing the display and exiting the
program.

File menu  Load Dll and debug information...  loads a DLL and the debug information and
displays it.

File menu  Close  clear all results, unloads the DLL and debug information.

File menu  Exit  closes DbgHelpBrowser.

4.2 Settings

The Edit menu controls editing settings.

Settings menu  Edit Settings...  displays the settings dialog.

4.3 Query

The Query menu controls searching for symbols.



DbgHelp Browser Help10

Copyright © 2015-2025 Software Verify Limited

Query menu  Find Symbol with Absolute Address...  use this option to turn an absolute address
in a process into a symbol, filename and line number. 

See Decoding an absolute crash address for more details.

Query menu  Find Symbol with DLL Relative Address...  use this option to turn a relative address
inside a DLL into a symbol, filename and line number. 

See Decoding a relative crash address for more details.

Query menu  Find Symbol with Symbol Relative Address...  use this option to turn an address
that is relative to a symbol inside a DLL into a symbol, filename and line number. 

See Decoding a symbol relative crash address for more details.

Query menu  Find Symbol from Event Viewer XML crash log...  use this option to turn an XML
crash log from the Microsoft Event Viewer to a symbol inside a DLL into a symbol, filename and line
number. 

See Decoding an Event Viewer XML crash log for more details.

.Net, .Net Core

The query options are not available for .Net and .Net executables as there is no direct translation from a
crash address/offset to a .Net symbol. 

Without having access to the compiled .Net method address and the compiled address to ILASM
instruction offset data it is impossible to translate crash addresses/offsets to .Net functions.

The compiled address to ILAMS instruction offset data is only available in the context of a running .Net
application attached to a .Net debugger or a .Net profiler.

4.4 Software Updates

The Software Updates menu controls how often software updates are downloaded.

If you've been notified of a new software release to DbgHelp Browser or just want to see if there's a new
version, this feature makes it easy to update.

  Software Updates menu  Check for software updates   checks for updates and shows the
software update dialog if any exist 

An internet connection is needed to be able to make contact with our servers.



Menu 11

Copyright © 2015-2025 Software Verify Limited

 Before updating the software, close the help manual, and end any active session by closing
target programs.

If no updates are available, you'll just see this message:

Software Update dialog

If a software update is available for DbgHelp Browser you'll see the software update dialog.

· Download and install   downloads the update, showing progress 

Once the update has downloaded, DbgHelp Browser will close, run the installer, and restart.

You can stop the download at any time, if necessary.

· Don't download...  Doesn't download, but you'll be prompted for it again next time you start
DbgHelp Browser 

· Skip this version...  Doesn't download the update and doesn't bother you again until there's an
even newer update 



DbgHelp Browser Help12

Copyright © 2015-2025 Software Verify Limited

· Software update options...  edit the software update schedule 

Problems downloading or installing?

If for whatever reason, automatic download and installation fails to complete:

· Download the latest installer manually from the software verify website.  

Make some checks for possible scenarios where files may be locked by DbgHelp Browser as follows:

· Ensure DbgHelp Browser and its help manual is also closed

· Ensure any error dialogs from the previous installation are closed

You should now be ready to run the new version.

Software update schedule

DbgHelp Browser can automatically check to see if a new version of DbgHelp Browser is available for
downloading.

  Software Updates menu  Configure software updates   shows the software update schedule
dialog

The update options are:

· never check for updates 
· check daily (the default)
· check weekly
· check monthly  

The most recent check for updates is shown at the bottom.

Software update directory



Menu 13

Copyright © 2015-2025 Software Verify Limited

It’s important to be able to specify where software updates are downloaded to because of potential
security risks that may arise from allowing the TMP directory to be executable. For example, to
counteract security threats it's possible that account ownership permissions or antivirus software blocks
program execution directly from the TMP directory.

The TMP directory is the default location but if for whatever reason you're not comfortable with that, you
can specify your preferred download directory. This allows you to set permissions for TMP to deny
execute privileges if you wish.

  Software Updates menu  Set software update directory  shows the Software update
download directory dialog

An invalid directory will show the path in red and will not be accepted until a valid folder is
entered.

Example reasons for invalid directories include:

· the directory doesn't exist 
· the directory doesn't have write privilege (update can't be downloaded)
· the directory doesn't have execute privilege (downloaded update can't be run)

 When modifying the download directory, you should ensure the directory will continue to be valid.
Updates may no longer occur if the download location is later invalidated.

· Reset   reverts the download location to the user's TMP directory 

The default location is c:\users\[username]\AppData\Local\Temp 

4.5 Help

The Help menu controls displaying this help document and displaying information about DbgHelp
Browser.



DbgHelp Browser Help14

Copyright © 2015-2025 Software Verify Limited

Help menu  About DbgHelp Browser...  displays information about DbgHelp Browser.

Help menu  Readme and Version History...  displays the readme and version history.

Help menu  Help Topics...  displays this help file.

Help menu  Help PDF...  displays this help file in PDF format.

Help menu  Help on softwareverify.com...  display the Software Verify documentation web page
where you can view online documentation or download compiled HTML Help and PDF help documents.

Help menu  Blog...  display the Software Verify blog.

Help menu  Library...  display the Software Verify library - our best blog articles grouped by related
topics.

Help menu  Contact customer support...  displays the options for contacting customer support.



Menu 15

Copyright © 2015-2025 Software Verify Limited

Click a link to contact customer support.

Help menu  How do I?...  displays the options for asking us how to do a particular task.



Part

V



The user interface 17

Copyright © 2015-2025 Software Verify Limited

5 The user interface

The DbgHelpBrowser user interface is shown below.

The user interface consists of a main grid showing all main datatypes and functions in the debug help. 

Below is a display for function parameters, function local variables, line numbers and a source code
display for viewing the source code of any function or variable that is selected.

Selecting any item in the grid populates the lower grids and source code display as appropriate.

Querying any value will select the nearest item in the main grid and populate the other displays as
appropriate.

Some basic filtering functionality is also provided.

PDB Information



DbgHelp Browser Help18

Copyright © 2015-2025 Software Verify Limited

The PDB information shows you the symbol name, calling convention, symbol address, symbol size,
symbol type, and associated debugging flags and the filename and line number for the symbol.

You can sort the data by clicking no the column header and clicking again to reverse the direction of the
sort.

If you select any item in the grid the lower grids and source code display are populated with data as
appropriate.

If you right click any item a context is displayed which will allow you to perform a symbol relative query.

Parameters

The parameters section lists all parameters for the selected symbol. For each parameter, the name, tag
type, address, scope, size and flags are displayed.

Local Variables



The user interface 19

Copyright © 2015-2025 Software Verify Limited

The parameters section lists all local variables for the selected symbol. For each parameter, the name,
tag type, address, scope, size and flags are displayed.

Line Numbers

The line numbers section lists each line number, the address of that line and the offset of that line from
the start of the owning function. Note that offsets can be negative as well as positive depending on how
the compiler did it's work.

Source Code



DbgHelp Browser Help20

Copyright © 2015-2025 Software Verify Limited

The source code section displays the source code, highlights the selected line and displays information
relating to filename, line number, function and address.

Filters

The filters section allows you to filter data in two ways:



The user interface 21

Copyright © 2015-2025 Software Verify Limited

Tags

Filtering by tag allows you to reduce the amount of data to just the symbols that have the tag you
choose. Available tags are:

All tags
Executable code
Data
SymTagNull
SymTagExe
SymTagCompiland
SymTagCompilandDetails
SymTagCompilandEnv
SymTagFunction
SymTagBlock
SymTagData
SymTagAnnotation
SymTagLabel
SymTagPublicSymbol
SymTagUDT
SymTagEnum
SymTagFunctionType
SymTagPointerType
SymTagArrayType
SymTagBaseType
SymTagTypedef
SymTagBaseClass
SymTagFriend
SymTagFunctionArgType
SymTagFuncDebugStart
SymTagFuncDebugEnd
SymTagUsingNamespace
SymTagVTableShape
SymTagVTable
SymTagCustom
SymTagThunk
SymTagCustomType
SymTagManagedType
SymTagDimension

Symbol Name



DbgHelp Browser Help22

Copyright © 2015-2025 Software Verify Limited

Filtering by symbol name allows you to easily find a particular symbol. This is very useful when wanting
to decode a crash address that has been provided as relative to a symbol (symbol + offset).

Clipboard

Options on the context menu to allow you to copy the following information to the clipboard: 

· Filename and line number. e:\om\c\svledittool\edittool\undotext.cpp 64 

· Symbol, filename and line number. UndoText::doUndo e:

\om\c\svledittool\edittool\undotext.cpp 64

· All symbol details. 30 UndoText::doUndo CV_CALL_THISCALL 0x6C168230 540

SymTagFunction  e:\om\c\svledittool\edittool\undotext.cpp 64 

Highlighting

Options on the context menu allow you to highlight multiple symbols, and to remove highlights. 



The user interface 23

Copyright © 2015-2025 Software Verify Limited

Highlighting can useful when you want to easily mark a symbol for future reference. Here's an example
image showing some symbols that have been highlighted.



Part

VI



Settings Dialog 25

Copyright © 2015-2025 Software Verify Limited

6 Settings Dialog

The settings dialog allows you to configure how DbgHelpBrowser searches for symbols and source files.

Reset

You can reset the settings to their default state at any time by clicking Reset.

6.1 Symbols

6.1.1 Symbol Types

The settings dialog allows you to configure how DbgHelpBrowser searches for symbols.



DbgHelp Browser Help26

Copyright © 2015-2025 Software Verify Limited

Symbol types to display

Select the types of symbols to be displayed in the main grid. 

If you're interested in classes, methods and functions, choose Functions. 

If you're interested in data, choose Types.

Warnings

Before symbols are loaded the module is loaded. 

LoadLibraryEx() behaviour changes with different operating systems and the flags passed to
LoadLibraryEx(). As a result, on some versions of Windows some modules will fail to load.

When this happens we can display a warning dialog. By default the warning dialog is displayed. You can
turn this on / off using the Display a warning dialog if LoadLibrary fails check box.

The warning dialog looks like this:



Settings Dialog 27

Copyright © 2015-2025 Software Verify Limited

To try to display symbols, choose Yes.

To cancel displaying symbols, choose No.

To never see this dialog again, select Don't show this again. This is the same flag as the previously
mentioned Display a warning dialog if LoadLibrary fails check box.

Reset

You can reset the settings to their default state at any time by clicking Reset.

6.1.2 Symbol Paths

The settings dialog allows you to configure how DbgHelpBrowser searches for symbols.



DbgHelp Browser Help28

Copyright © 2015-2025 Software Verify Limited

Symbol Search Paths

The symbol search paths section allows to specify locations on your computer that hold debug
information for the DLLs you may wish to use with DbgHelpBrowser.

The Add... button allows you to choose a directory and add it to the list of directories that will be
searched for PDB information.

The Remove button will remove any selected directory, the Remove All button, will remove all
directories.

The Set Default button restores the default search path of c:\windows\symbols\dll.

In the image above we can see the user has created their own directory c:\MicrosoftSymbols to store
all the symbols from the Microsoft symbol server.

Reset

You can reset the settings to their default state at any time by clicking Reset.

6.1.3 Symbol Server

The settings dialog allows you to configure how DbgHelpBrowser searches for symbols.



Settings Dialog 29

Copyright © 2015-2025 Software Verify Limited

Symbol Server

You may be using a symbol server to provide symbols for your DLLs. If that is the case you need to use
the Symbol Server settings. 

The defaults are configured for Microsoft's symbol server, but you can point them at any symbol server
you want. If you wish to reset these at any time, the Set Default button will do that for you.

If you want to use the symbol server, you must enable it by selecting Use Symbol Server check box.

Type the full path to the symbol server in the Symbol Server field, and type the full path to where you
wish to store a local copy of the symbols in the Symbol Directory field, or use the Browse... button to
use a directory to identify the directory.

Reset

You can reset the settings to their default state at any time by clicking Reset.

6.2 Misc

6.2.1 Source Paths

The Source Paths settings allow you to specify where DbgHelp Browser looks for source code files.

The source code paths are used when a filename is incomplete - a filename without a path, a filename
with a partial path, or a filename that isn't valid on this machine.



DbgHelp Browser Help30

Copyright © 2015-2025 Software Verify Limited

Manually adding path type directories

The Path list shows all the paths that will be searched for source code files.

You can modify the list of files for each path type in the following ways:

· Add  appends a row to the directory list  enter the directory path 

Edit a directory path by double clicking the entry. The usual controls apply for removing list items:

· Remove  removes selected items from the list 

· Remove All  clears the list 

· Set Default  adds all valid directories found in the PATH environment variable 

Alternatively, press  to delete selected items, and  +  to select all items in the list first.

Reset - Resets all global settings, not just those on the current page. This includes removing any

symbol servers added.



Settings Dialog 31

Copyright © 2015-2025 Software Verify Limited

6.2.2 Path Substitutions

The Path Substitutions tab allows you to specify file path substitutions to handle copying builds from
build machines to development or test machines .

The default settings are shown below:

Path Substitutions

Some software development schemes have multiple rolling builds of their software, often enabled by
using substituted disk drive naming schemes. 

When you download the build to your development machine for development and testing, debugging
information may reference disk drives that don't exist on your machine, for example, drive X: while your
machine only has C:, D:, and E: drives. 

Or you may just be copying a build from a drive on a development machine to a subdirectory on a drive
on your test machine.

These options let you remap the substitution so that the DbgHelp Browser looks in the correct place for
the source code.

· Add  adds a row to the File Paths Substitutions table  enter the new path that will replace the
old path in the New Path column  click in the Old Path column  enter the path that is being
replaced 

For example, you might enter c:\users\stephen\documents for the new path and f:\dev\build
for the old path.

You can double click to edit drives and paths in the table, or remove items:



DbgHelp Browser Help32

Copyright © 2015-2025 Software Verify Limited

· Remove  removes selected substitutions from the list 

· Remove All  removes all substitutions from the list 

Alternatively, press  to delete selected items, and  +  to select all items in the list first.

Example: Changed disk drive
Project originally located at m:\dev\build\testApp
Project copied to e:\dev\build\testApp
New Path e:\
Old Path m:\

Example: Project copied to a new location
Project originally located at f:\dev\build\testApp
Project copied to C:\Users\Stephen\Documents\testApp
New Path C:\Users\Stephen\Documents
Old Path f:\dev\build

 The slashes do not have to match, a forward slash will match a backslash when comparing path
fragments. This is deliberate - to improve ease of use with libraries built by different compilers (LLVM and
compilers that use it use forward slashes, whereas Visual Studio etc use backslashes).

Path Substitution Method

Path substitution can be turned off, use only manually specified paths, perform automatic path
substitution based on best guesses based on information in the executable, or a combination.

Use the combo box to choose the appropriate path substitution method. The default is automatic path
substitution and if that fails to try path substitution using the manually specified paths.

· No path substitution  path substitution does not happen 
· Only substitute specified paths  path substitution uses the manually specified paths 
· Automatic substitution only  path substitution is performed automatically using information in the

executable 
· Automatic substitution, specified paths if substitution fails  an attempt at automatic path

substitution is made, if this fails path substitution is performed using the manually specified paths 

The default is Automatic substitution, specified paths if substitution fails.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.



Part

VII



DbgHelp Browser Help34

Copyright © 2015-2025 Software Verify Limited

7 How to use DbgHelpBrowser

Load PDB information

To load Debug information you need to have the PDB file containing debug information and the DLL that
the PDB file relates to. You need to ensure the PDB files corresponds to the very same build as the DLL.

Use the File > Load Dll and debug information... option to load the appropriate DLL and it's debug
information.

The grid displays various attributes of each debugging item. You can sort the grid by clicking the
appropriate column header. Click the same header to reverse the sort order.

Select a symbol to see information about the parameters, locals, line numbers and source code.

Filtering

If you wish to only view one type of debugging data, select that datatype using the Tags combo.

You can also filter by name by typing the name into the Name Filter box and clicking the Filter button
to perform the filtering.

Viewing function data

As each item in the list is selected the Parameters and Locals grid are populated, the Line Numbers are
updated and the source code display updates to show the source code for the function. All lines in the
function that contain executable code (as indicated by the debugging information) are coloured grey. The
current line for the function is coloured bright green.

Querying data

You can query data by using the two Query fields below the main grid.

Relative query

Type the relative address (also know as address offset) into the Query by Offset field, then click Query.
The symbol information is displayed.

The field accepts decimal or hexadecimcal values. Hex values must be prefixed with 0x.

Absolute query

Type the absolute address into the Query by Address field, type the absolute DLL load address into the
Alternate Load Address field, then click Query. The symbol information is displayed.

The fields accept decimal or hexadecimcal values. Hex values must be prefixed with 0x.



How to use DbgHelpBrowser 35

Copyright © 2015-2025 Software Verify Limited

7.1 Decoding an absolute crash address

Scenario:

A customer has supplied you with a crash report containing a callstack with addresses. The callstack
also indicates which module relates to which address. 
The customer has also supplied you with a list of module load addresses.

Example Data:
Exception code: C0000005 ACCESS_VIOLATION

Fault address:  0x005f5eec (base 0x00400000) C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe

Exception Parameters:

   0: 0x00000000 [Read Error]

   1: 0x035f0034 [Address]

Registers:

   EAX:035F0034

   EBX:00000000

   ECX:FFFDD000

   EDX:00002370

   ESI:006F7D58

   EDI:035F0034

   CS:EIP:0023:005F5EEC

   SS:ESP:002B:0018FE14  EBP:0018FE3C

   DS:002B  ES:002B  FS:0053  GS:002B

   Flags:00010202

StackTrace

C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe : 0x00400000 : 0x005F249C

C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe : 0x00400000 : 0x005F23C3

C:\Windows\syswow64\msvcrt.dll : 0x75D70000 : 0x75D7C3E4

C:\Windows\syswow64\msvcrt.dll : 0x75D70000 : 0x75D836B6

C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe : 0x00400000 : 0x0060AA42

C:\Windows\syswow64\kernel32.dll : 0x754D0000 : 0x754E3365

C:\Windows\SysWOW64\ntdll.dll : 0x77920000 : 0x77959F6D

C:\Windows\SysWOW64\ntdll.dll : 0x77920000 : 0x77959F40

C:\Windows\SysWOW64\ntdll.dll : 0x77920000 : 0x77959F40

This is data from a real crash a few years ago, from C++ Memory Validator 5.80.

Question: 
How do you decode these absolute addresses?

Answer:
In the above data we can see a callstack containing entries for ntdll.dll, msvcrt.dll, and
memoryValidator.exe.

All the modules are Microsoft DLLs except for the EXE, which is part of C++ Memory Validator, one of
our tools.

To decode these values, we load memoryValidator.exe into DbgHelpBrowser.exe, then for each symbol
we take the following actions.



DbgHelp Browser Help36

Copyright © 2015-2025 Software Verify Limited

For our purposes here, we're going to show how to convert one symbol. We're going to use the first
symbol from memoryValidator.exe in the example data above.

   0x005f5eec (base 0x00400000)

The address is 0x005f5eec. The DLL loaded at 0x00400000. You'll notice the load address for all
MemoryValidator.exe entries is 0x00400000.

From the Query menu choose Find Symbol with Absolute Address....

The Query Symbol by Absolute Address dialog is displayed.

Type the DLL load address into the DLL Load Address field. Prefix any hexadecimal addresses with 0x.

Type the symbol address into the Address field. Prefix any hexadecimal addresses with 0x.

Click the Find Symbol button.

The appropriate location in the code is found and displayed.



How to use DbgHelpBrowser 37

Copyright © 2015-2025 Software Verify Limited

Results:
Repeating the process for the data shown above resulted in this information.

0x005f5eec (base 0x00400000) C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe MemorySettingsData::saveCoverageFilters MemorySettinData.cpp 5374

C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe : 0x00400000 : 0x005F249C MemorySettingData::writeRegistrySimple MemorySettingData.cpp 3827

C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe : 0x00400000 : 0x005F23C3 MemorySettingData::writeRegistrySimple MemorySettingData.cpp 3821

C:\Windows\syswow64\msvcrt.dll : 0x75D70000 : 0x75D7C3E4

C:\Windows\syswow64\msvcrt.dll : 0x75D70000 : 0x75D836B6

C:\Program Files (x86)\Software Verification\C++ Memory Validator\memoryValidator.exe : 0x00400000 : 0x0060AA42 std::_Tree<...very big template...>::erase xtree Line 351

C:\Windows\syswow64\kernel32.dll : 0x754D0000 : 0x754E3365

C:\Windows\SysWOW64\ntdll.dll : 0x77920000 : 0x77959F6D

C:\Windows\SysWOW64\ntdll.dll : 0x77920000 : 0x77959F40

C:\Windows\SysWOW64\ntdll.dll : 0x77920000 : 0x77959F40

Help! I have a crash address but I don't know what the load address is? What do I do?

You need to read about load addresses.

.Net, .Net Core

The query options are not available for .Net and .Net executables as there is no direct translation from a
crash address/offset to a .Net symbol. 

Without having access to the compiled .Net method address and the compiled address to ILASM
instruction offset data it is impossible to translate crash addresses/offsets to .Net functions.

The compiled address to ILAMS instruction offset data is only available in the context of a running .Net
application attached to a .Net debugger or a .Net profiler.



DbgHelp Browser Help38

Copyright © 2015-2025 Software Verify Limited

7.2 Decoding a relative crash address

Scenario:

A customer has supplied you with a crash report containing a callstack with relative offsets from DLLs.
The callstack also indicates which module relates to which address. 

Example Data:
Exception code: C0000005 ACCESS_VIOLATION

Fault offset:  00x00036FA3 C:\WINDOWS\system32\MSVCRT.dll

Exception Parameters:

   0: 0x00000000 [Read Error]

   1: 0x5f8f2000 [Address]

Registers:

   EAX:B3BEB6D4

   EBX:5F8CB6C8

   ECX:150BE5B5

   EDX:00000000

   ESI:5F8F2000

   EDI:01B98DEC

   CS:EIP:001B:77C46FA3

   SS:ESP:0023:0012F158  EBP:0012F160

   DS:0023  ES:0023  FS:003B  GS:0000

   Flags:00010212

StackTrace

C:\WINDOWS\system32\MFC42u.DLL : 0x0000270a

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x000db989

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x000db1f8

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00121a83

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00121b7e

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00174ec5

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00175094

C:\WINDOWS\system32\MFC42u.DLL : 0x00013724

C:\WINDOWS\system32\MFC42u.DLL : 0x00014245

C:\WINDOWS\system32\MFC42u.DLL : 0x00001b31

C:\WINDOWS\system32\MFC42u.DLL : 0x0008cba7

This is data from a real crash many years ago.

Question: 
There are no DLL load addresses and the addresses aren't addresses, but offsets from the start of a
DLL. How do you decode these relative offsets? 

Answer:
In the above data we can see a callstack containing entries for mfc42u.dll, and memoryValidator.exe.

All the modules are Microsoft DLLs except for the EXE, which is part of C++ Memory Validator, one of
our tools.

To decode these values, we load memoryValidator.exe into DbgHelpBrowser.exe, then for each symbol
we take the following actions.



How to use DbgHelpBrowser 39

Copyright © 2015-2025 Software Verify Limited

For our purposes here, we're going to show how to convert one symbol. We're going to use the first
symbol from memoryValidator.exe in the example data above.

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x000db989

The relative address (or offset) is 0x000db989. We don't know the DLL load address.

From the Query menu choose Find Symbol with DLL Relative Address....

The Query Symbol by Absolute Address dialog is displayed.

Type the relative address into the Offset field. Prefix any hexadecimal addresses with 0x.

Click the Find Symbol button.

The appropriate location in the code is found and displayed. In this example DbgHelpBrowser could not
locate the source code (as the file location is not valid on this machine)



DbgHelp Browser Help40

Copyright © 2015-2025 Software Verify Limited

Results:
Repeating the process for the data shown above resulted in this information.



How to use DbgHelpBrowser 41

Copyright © 2015-2025 Software Verify Limited

Exception code: C0000005 ACCESS_VIOLATION

Fault offset:  00x00036FA3 C:\WINDOWS\system32\MSVCRT.dll

Exception Parameters:

   0: 0x00000000 [Read Error]

   1: 0x5f8f2000 [Address]

Registers:

   EAX:B3BEB6D4

   EBX:5F8CB6C8

   ECX:150BE5B5

   EDX:00000000

   ESI:5F8F2000

   EDI:01B98DEC

   CS:EIP:001B:77C46FA3

   SS:ESP:0023:0012F158  EBP:0012F160

   DS:0023  ES:0023  FS:003B  GS:0000

   Flags:00010212

StackTrace

C:\WINDOWS\system32\MFC42u.DLL : 0x0000270a

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x000db989 CMap<...big template definition...> afxtempl.h 1270

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x000db1f8 CMap<...big template definition...>::~CMap<...big template definition...> afxtempl.h 1270

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00121a83 CVirtualTreeBase::Draw VirtualTreeBase.cpp 176

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00121b7e CVirtualTreeBase::Draw VirtualTreeBase.cpp 198

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00174ec5 LocalAllocStackTrace::getStringRepresentation LocalAllocTrace.cpp Line 182

C:\Program Files\Software Verification\Memory Validator\memoryValidator.exe : 0x00175094 LocalFreeStackTrace::getStringInfo LocalAllocTrace.cpp 296

C:\WINDOWS\system32\MFC42u.DLL : 0x00013724

C:\WINDOWS\system32\MFC42u.DLL : 0x00014245

C:\WINDOWS\system32\MFC42u.DLL : 0x00001b31

C:\WINDOWS\system32\MFC42u.DLL : 0x0008cba7

.Net, .Net Core

The query options are not available for .Net and .Net executables as there is no direct translation from a
crash address/offset to a .Net symbol. 

Without having access to the compiled .Net method address and the compiled address to ILASM
instruction offset data it is impossible to translate crash addresses/offsets to .Net functions.

The compiled address to ILAMS instruction offset data is only available in the context of a running .Net
application attached to a .Net debugger or a .Net profiler.

7.3 Decoding a symbol relative crash address

Scenario:

A customer has supplied you with a crash report containing a callstack with symbol relative offsets from
DLLs. The callstack also indicates which module relates to which address. 

Example Data:



DbgHelp Browser Help42

Copyright © 2015-2025 Software Verify Limited

ntoskrnl.exe!KeSynchronizeExecution+0x2246

ntoskrnl.exe!KeWaitForMultipleObjects+0x135e

ntoskrnl.exe!KeWaitForMultipleObjects+0xdd9

ntoskrnl.exe!KeWaitForSingleObject+0x373

ntoskrnl.exe!KeStallWhileFrozen+0x1977

ntoskrnl.exe!_misaligned_access+0x13f9

ntoskrnl.exe!KeWaitForMultipleObjects+0x152f

ntoskrnl.exe!KeWaitForMultipleObjects+0xdd9

ntoskrnl.exe!KeWaitForSingleObject+0x373

ntoskrnl.exe!NtWaitForSingleObject+0xb2

ntoskrnl.exe!setjmpex+0x34a3

ntdll.dll!ZwWaitForSingleObject+0xa

KERNELBASE.dll!WaitForSingleObjectEx+0x98

svlcoveragevalidatorstub_x64.dll!sendCommandLineAndStartTimeToGUI+0x2868

svlcoveragevalidatorstub_x64.dll!setValidatorFeedbackHookingComplete+0x1fa6

svlcoveragevalidatorstub_x64.dll!svl_sendMessageRawToUserInterface+0x21837

svlcoveragevalidatorstub_x64.dll!svl_sendMessageRawToUserInterface+0x218cb

KERNEL32.DLL!BaseThreadInitThunk+0x22

ntdll.dll!RtlUserThreadStart+0x34

This is real data from a bug at Software Verify Ltd. This is one thread from many in a dump relating to a
deadlock bug we were investigating.

Question: 
How do you decode these symbol relative offsets?

Answer:
In the above data we can see a callstack containing entries for ntoskrnl.exe, ntdll.dll, kernelbase.dll,
kernel32.dll and svlcoveragevalidatorstub_x64.dll.

All the modules are Microsoft DLLs except for one DLL, which is part of C++ Coverage Validator, one of
our tools.

To decode these values, we load svlCoverageValidatorStub_x64.dll into DbgHelpBrowser.exe (64 bit),
then for each symbol we take the following actions.

For our purposes here, we're going to show how to convert one symbol. We're going to use the first
symbol from svlCoverageValidatorStub_x64.dll in the example data above.

svlcoveragevalidatorstub_x64.dll!sendCommandLineAndStartTimeToGUI+0x2868

Type the symbol name into the Name Filter field, then click Filter. This makes it easy to find the
symbol we want.

Once we have found the symbol, right click on the symbol to display the context menu and choose
Offset from this symbol....



How to use DbgHelpBrowser 43

Copyright © 2015-2025 Software Verify Limited

An alternate method is to click on the symbol to select it, then from the Query menu choose Find
Symbol with Symbol Relative Address....

Or, from the Query menu choose Find Symbol with Symbol Relative Address... then choose the
symbol you want from the combo box.

Type the offset into the dialog (hex values must be prefixed with 0x) and click OK. 

The appropriate location in the code is found and displayed.



DbgHelp Browser Help44

Copyright © 2015-2025 Software Verify Limited

Results:
Repeating the process for the data shown above resulted in this information.

svlcoveragevalidatorstub_x64.dll!sendCommandLineAndStartTimeToGUI+0x2868 sendWorkerEx::sendWorkerProc sendworkerex.cpp 250

svlcoveragevalidatorstub_x64.dll!setValidatorFeedbackHookingComplete+0x1fa6 stubSendComm::stubSendProc stubsendcomm.cpp 611

svlcoveragevalidatorstub_x64.dll!svl_sendMessageRawToUserInterface+0x21837 memcpy

svlcoveragevalidatorstub_x64.dll!svl_sendMessageRawToUserInterface+0x218cb wcscpy

.Net, .Net Core

The query options are not available for .Net and .Net executables as there is no direct translation from a
crash address/offset to a .Net symbol. 

Without having access to the compiled .Net method address and the compiled address to ILASM
instruction offset data it is impossible to translate crash addresses/offsets to .Net functions.

The compiled address to ILASM instruction offset data is only available in the context of a running .Net
application attached to a .Net debugger or a .Net profiler.

7.4 Decoding an Event Viewer XML crash log

Scenario:

A customer has supplied you with data from Windows Event Viewer about a crash. The log contains XML
and you don't know which values are relevant.

The event log data will have a provider name of "Windows Error Reporting" or "Application Error".

The XML data is found on the "Details" tab with the XML View radio box selected.



How to use DbgHelpBrowser 45

Copyright © 2015-2025 Software Verify Limited

Example Data:
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event"> 

  <System> 

    <Provider Name="Windows Error Reporting" /> 

    <EventID Qualifiers="0">1001</EventID> 

    <Level>4</Level> 

    <Task>0</Task> 

    <Keywords>0x80000000000000</Keywords> 

    <TimeCreated SystemTime="2020-02-10T17:39:08.000000000Z" /> 

    <EventRecordID>260219</EventRecordID> 

    <Channel>Application</Channel> 

    <Computer>hydra</Computer> 

    <Security /> 

  </System> 

  <EventData> 

    <Data>2023787729086567941</Data> 

    <Data>1</Data> 

    <Data>APPCRASH</Data> 

    <Data>Not available</Data> 

    <Data>0</Data> 

    <Data>testDeliberateCrash.exe</Data> 

    <Data>1.0.0.1</Data> 

    <Data>5e419525</Data> 

    <Data>testDeliberateCrash.exe</Data> 

    <Data>1.0.0.1</Data> 

    <Data>5e419525</Data> 

    <Data>c0000005</Data> 

    <Data>000017b2</Data> 

    <Data /> 

    <Data /> 

    <Data>C:\Users\stephen\AppData\Local\Temp\WERA14E.tmp.WERInternalMetadata.xml</Data> 

    <Data>C:\Users\stephen\AppData\Local\Microsoft\Windows\WER\ReportArchive\AppCrash_testDeliberateCr_c31b903842d94a84d4621dceaac377462674f7a_eb589596_3a75a48a</Data> 

    <Data /> 

    <Data>0</Data> 

    <Data>3cc45263-4c2c-11ea-83d3-001e4fdb3956</Data> 

    <Data>0</Data> 

    <Data>54756af49aec84f97c15f03794ffd605</Data> 

  </EventData> 

</Event>

This is data from a test program that is designed to crash.

Question: 
There the event log indicates a DLL, but no load address, two different addresses, an exception code and
an offset from the start of the DLL. How do you decode this relative offset? 

Answer:
DbgHelpBrowser has an option specifically for this occasion.

The XML data indicates the crash happened in testDeliberateCrash.exe. Load this into
DbgHelpBrowser being sure to load the correct build version and that the PDB file can be found so that
symbols get loaded.

From the Query menu choose Find Symbol from Event Viewer XML crash log....



DbgHelp Browser Help46

Copyright © 2015-2025 Software Verify Limited

The Query Symbol by Absolute Address dialog is displayed.

Paste the XML data from the Event Viewer into the text field.

Click the Find Symbol button.



How to use DbgHelpBrowser 47

Copyright © 2015-2025 Software Verify Limited

The appropriate location in the code is found and displayed. 

.Net, .Net Core

The query options are not available for .Net and .Net executables as there is no direct translation from a
crash address/offset to a .Net symbol. 



DbgHelp Browser Help48

Copyright © 2015-2025 Software Verify Limited

Without having access to the compiled .Net method address and the compiled address to ILASM
instruction offset data it is impossible to translate crash addresses/offsets to .Net functions.

The compiled address to ILAMS instruction offset data is only available in the context of a running .Net
application attached to a .Net debugger or a .Net profiler.

7.5 What is a load address?

A load address is the address at which a DLL loads.

All versions of Microsoft Windows load modules (.dll, .exe) into address space that is reserved using a
call to VirtualAlloc(). 

The allocation of VirtualAlloc() can be queried by calling Win32 API GetSystemInfo() and examining the
value returned in dwAllocationGranularity. For all versions of Microsoft Windows this has been 64KB.

Why is the load address important?

The load address is important because without it we can't calculate the offset inside the DLL so that we
can obtain a symbol. 

That's why a crash address with no DLL Load Address isn't very useful - we don't know which DLL the
crash is in, nor do we know where the DLL was loaded.

But I don't have a load address. What can I do?

Depending upon how your module (DLL/EXE) was built we may be able to guess the correct load
address.

If the OS you are using is Windows XP or earlier, we can guess the address.

First a brief chat about Address Space Layout Randomisation...

If the OS you are using is Windows Vista or later, we may be able to guess the load address. The
reason this is not precises is because something known as Address Space Layout Randomisation
(ASLR) was introduced with Microsoft Vista to improve security against many malicious computer
attacks. Any program built with ASLR enabled when run on Vista (or later) will have the load address for
all modules (including the .exe) randomised, making guessing the load address a waste of time. 

ASLR is enabled by the /DYNAMICBASE in the linker settings of Visual Studio. 

If you are using Visual Studio 2005 or earlier this setting is not available, your program is not affected by
ASLR. 

If you are using Visual Studio 2008 or later you will need to check to see if this option is present. If it is
not present, your program is not affected by ASLR. 

If you are not using Visual Studio to build your program then you may not be affected by this option,
consult your compiler/linker documentation.



How to use DbgHelpBrowser 49

Copyright © 2015-2025 Software Verify Limited

If your program is not affected by ASLR...

We can try to guess the load address of your DLL/EXE. We can do this regardless of which
compiler/linker you used to build your program. All the programs I mention here are free to download at
the time of writing this help file.

VM Validator 
https://www.softwareverify.com/cpp-virtual-memory.php

This works for 32 bit and 64 bit programs.

Method 1

· Start your program using VM Validator or attach to your running program with VM Validator. 

· On the Summary tab, inspect the DLLs sub tab in the lower half of the display. 

· Find the DLL name in the DLL column. 

· The load address is the value in the Address column. 

Method 2

· Start your program using VM Validator or attach to your running program with VM Validator.

· Go to the Paragraphs tab.

· Find any purple entry, check the DLL name in the Description field.

· The load address is the value in the Address column.

In the examples above, for dbgHelpBrowser.exe, the load address is 0x00400000.

Process Explorer
https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx



DbgHelp Browser Help50

Copyright © 2015-2025 Software Verify Limited

This works for 32 bit and 64 bit programs.

· Start your program 

· Start Process Explorer. If your program is a service or runs as administrator you'll need to start
Process Explorer as administrator.

· In Process Explorer, enable View -> Show Lower Pane. Then for View -> Lower Pane Window,
choose DLLs.

· Select your program in the top window.

· Find your DLL in the bottom window. Right click. Choose Properties from the Context menu.

· In the Properties dialog, read the load address.



How to use DbgHelpBrowser 51

Copyright © 2015-2025 Software Verify Limited

In the example above, for dbgHelpBrowser.exe, the load address is 0x00400000.

Visual Studio (any version)
https://www.visualstudio.com/

· Start Visual Studio. 

· From the Project menu, choose File -> Open -> Solution. Choose your executable.

· From the Debug menu, choose Start Debugging.

· From the Debug menu, choose Windows -> Modules.



DbgHelp Browser Help52

Copyright © 2015-2025 Software Verify Limited

· In the Modules window, find your DLL, then read the Address column.

In the example above, for threadLockChecker.exe, the load address is 0x00130000.

WinDbg
https://msdn.microsoft.com/en-gb/library/windows/hardware/ff551063(v=vs.85).aspx

· Start WinDbg 

· From the File menu, choose Open Executable. Choose your executable.

· Type lm, then press return.

· All modules are listed. Find your module. The start address is the load address.



How to use DbgHelpBrowser 53

Copyright © 2015-2025 Software Verify Limited

In the example above, for threadLockChecker.exe, the load address is 0x00130000.

Final Comments

OK, you should now know how to find the load address of a DLL or an EXE (or any module type).
Remember that a load address obtained this way is only valid for symbol decoding if the executable
doesn't have ASLR applied to it. 



DbgHelp Browser Help54

Copyright © 2015-2025 Software Verify Limited

If your crash reporting code only grabs crash addresses and not DLL load addresses, you need to
update your code so that you grab DLL load addresses at the time of the crash. That way you know for
sure what the load addresses were and you won't have to guess the load addresses in future.



Part

VIII



DbgHelp Browser Help56

Copyright © 2015-2025 Software Verify Limited

8 Command Line Interface

DbgHelp Browser can be used from the command line as well as with the GUI.

The command line options allow you to view PDB debug information that is embedded in an executable
file, and optionally highlight a symbol at a specified offset.

/fileName
Specifies the module to load. This is typically a .exe or a .dll.

/fileName path-to-executable

Example: /fileName e:\om\c\test\release\test.exe

/offset
Specifies an offset inside the executable. DbgHelp Browser will highlight the symbol that

occupies this location.

Typically this offset will be calculated from a crash location. 

For example:

If a DLL is loaded at 0x00400000 and a crash happens at 0x00420192, the offset is
calculated by subtracting the DLL load address from the crash address. 

That is: 0x00420192 - 0x00400000, which gives 0x00020192.

The offset is 0x00020192.

The offset must be specified in hexadecimal with a leading 0x.

/offset value

Example: /offset 0x00020192

Example Command Line

32 bit applications
dbgHelpBrowser.exe /fileName e:\test\release\test.exe /offset 0x00020192

64 bit applications
dbgHelpBrowser_x64.exe /fileName e:\test\release\test.exe /offset 0x00020192



57

Copyright © 2015-2025 Software Verify Limited




	How to get DbgHelpBrowser
	What does DbgHelpBrowser do?
	What is a module?
	Menu
	File
	Settings
	Query
	Software Updates
	Help

	The user interface
	Settings Dialog
	Symbols
	Symbol Types
	Symbol Paths
	Symbol Server

	Misc
	Source Paths
	Path Substitutions


	How to use DbgHelpBrowser
	Decoding an absolute crash address
	Decoding a relative crash address
	Decoding a symbol relative crash address
	Decoding an Event Viewer XML crash log
	What is a load address?

	Command Line Interface

