
Copyright © 2002-2025 Software Verify Limited

Coverage Validator

Software Verify

by

Coverage Validator

Source code coverage analysis for Windows applications built
using .Net, .Net Core, C#, VB.Net, C, C++, Delphi, Fortran 95 and
Visual Basic 6.

by Software Verify Limited

Welcome to the Coverage Validator software tool. Coverage
Validator is a source code coverage analysis software tool.
Using Coverage Validator you can identify unvisited functions
and unvisited lines in your source code. This information can
be used to inform your testing program to ensure that you
test all of your software.

Coverage Validator provides numerous features to allow you
integrate Coverage Validator into your regression tests and
unit tests. This allows you to monitor the progress of your
software testing during your development programme.

We hope you will find this document useful.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: June 2025 in United Kingdom.

Coverage Validator Help

Copyright © 2002-2025 Software Verify Limited

Coverage Validator HelpI

Copyright © 2002-2025 Software Verify Limited

Table of Contents

Foreword 1

Part I Overview 2

... 41 Notation used in this help

... 52 Introducing Coverage Validator

... 63 Why Coverage Validator?

... 84 What do you need to run Coverage Validator?

... 95 Buying Coverage Validator and support

... 106 How does Coverage Validator work?

... 107 Supported Compilers

... 128 User Permissions

Part II Getting Started 18

... 191 Enabling Debugging

... 202 Quick Start

Part III The User Interface 24

... 251 First run configuration

... 342 Menu Reference

.. 35File menu

.. 35Launch menu

.. 37Edit menu

.. 37Settings menu

.. 38Managers menu

.. 38Query menu

.. 39Tools menu

.. 39Data Views menu

.. 40Software Updates menu

.. 41Help menu

... 413 Toolbar Reference

... 434 The status bar

... 445 Keyboard Shortcuts

... 456 Icons

... 467 The main display

.. 46Summary

.. 49Coverage

.. 56Branch Coverage

.. 66Functions

.. 75Directories

.. 83DLLs

.. 91Files and lines

.. 99Diagnostic

.. 105Floating Licence

IIContents

II

Copyright © 2002-2025 Software Verify Limited

... 1078 User Interface Mode

... 1089 UX Theme

... 10810 Settings

.. 109Data Collection Settings

... 112Data Display

... 112Display Behaviour

... 113Colours

... 115Data Display

... 117Code View ing

... 120Source Brow sing

... 123Editing

... 126File Locations

... 131Path Substitutions

... 134Filters

... 134Hooked DLLs

... 139Hooked File Extensions

... 141Source Files Filters

... 144Class and Function Filters

... 147.Net Function Inlining

... 148.Net Function Caching

... 148Code Exclusion

... 151Load Settings Pattern Match

... 155Instrumentation

... 155Instrumentation Detail

... 158Hook Insertion

... 160Hook Control

... 162Hook Safety

... 164Instrumentation Logging

... 165Symbol Handling

... 165Symbol Misc

... 167Symbol Lookup

... 170Symbol Servers

... 175Symbol Load Preferences

... 177Data Collection

... 177Auto Merge

... 179Statistics

... 181Warning

... 183Don't Show Me Again

... 184Diagnostic

... 185Applications to Monitor

... 191CoInitializeEx

... 192Data Transfer

... 196Third Party DLLs

... 196Stub Global Hook DLLs

... 199User Interface Global Hook DLLs

.. 201Loading and saving settings

.. 202No Coverage Data Collected Warning

... 20611 Managers

.. 206Session Manager

... 21012 Query and Search

.. 210Finding addresses

.. 213Finding objects

Coverage Validator HelpIII

Copyright © 2002-2025 Software Verify Limited

.. 214Finding functions

.. 216Find unhooked functions

.. 217Find visited/unvisited lines

.. 218Find visited/unvisited files

... 22013 Tools

.. 221Edit Source Code...

.. 225Refresh and Refresh All

.. 226Loaded Modules

.. 227DLL Debug Information

.. 232Symbol Path Truncation

.. 235Instrumentation Logging Data

.. 236Instrumentation Failure Data

.. 237Out Of Date DLLs

.. 238Reset All Statistics

.. 239Ask stub for coverage data

... 23914 Software Updates

... 24715 Sessions: Load, Save, Export, Close

.. 248Loading & Saving Sessions

.. 249Exporting Sessions

... 254XML Export Tags

... 25616 Starting your target program

.. 257Launch Chooser

.. 259Launching the program (native and .Net)

.. 268Launching the program (.Net Core)

.. 274Re-launching the program

.. 275Injecting into a running program

.. 279Waiting for a program

.. 289Monitor a service

.. 291IIS

... 291Monitor IIS and ISAPI

... 293Monitor IIS and ASP.Net

... 295Reset & Stop IIS

.. 295Web Development Server

... 295Monitor Web Development Server and ASP.Net

... 298Stop Web Development Server

.. 298ASP.Net Core Web Application

... 298Start ASP.Net Core Web Application

... 300Stop ASP.Net Core Web Application

.. 300Linking to a program

.. 301.Net Core Runtime Arguments Editor

... 30317 Stopping your target program

... 30318 Command Line Builder

... 30719 Data Collection

... 30820 Help

Part IV Environment Variables 314

Part V Command Line Interface 317

... 3191 Example Command Lines

... 3282 Environment variables

IVContents

IV

Copyright © 2002-2025 Software Verify Limited

... 3293 Development environment

... 3314 Target Program & Start Modes

... 3395 User interface visibility

... 3416 Session Management

... 3427 Merging sessions

... 3468 Session Export Options

... 3499 Filter and Hook options

... 35410 File Locations

... 35711 Command Files

... 35812 Help, Errors & Return Codes

... 36113 Command Line Reference

... 36614 Troubleshooting

Part VI API 368

... 3701 Native API Reference

... 3722 C# API

... 3733 Calling the API via GetProcAddress

... 3744 Convenience functions

Part VII Working with IIS and Services 375

... 3771 NT Service API

.. 380Changes to the NT Service API

.. 382NT Service API Reference

.. 387Troubleshooting

... 3882 Working with IIS

... 3893 Example Source Code

.. 390Example Service Source Code

.. 395Example ISAPI Source Code

Part VIII Working With VBUnit 398

Part IX Working with Visual Basic 6 (VB6) 403

Part X Examples 406

... 4071 Example application

.. 409Building the example application

... 4102 Example NT Service

.. 410Building the example service

.. 411Building the example client

.. 412Building the example service utility

.. 413Monitoring the service

... 4153 Example Application Launched from a Service

.. 416Building the service and application

.. 418Monitoring the application launched from the service

Coverage Validator HelpV

Copyright © 2002-2025 Software Verify Limited

Part XI Debug Information, Symbols, Filenames,
Line Numbers 421

... 4221 Visual Studio

... 4302 C++ Builder

... 4363 Delphi

... 4434 MingW, gcc, g++

... 4435 Dev C++

... 4456 Salford Software FORTRAN 95

... 4457 Metrowerks

... 4458 Visual Basic 6

Part XII Frequently Asked Questions 447

... 4481 General Questions

... 4502 Unexpected results

... 4523 Crashes and error reports

... 4554 Debug symbols and DbgHelp

... 4625 Extensions, services and tools

... 4696 System and environment

Part XIII Installing Floating Licensing 471

Part XIV Copyright notices 473

... 4741 Udis86

Index 475

Foreword

This is just another title page
placed between table of contents

and topics

1Foreword

Copyright © 2002-2025 Software Verify Limited

Part

I

Overview 3

Copyright © 2002-2025 Software Verify Limited

1 Overview

Hi, welcome to the Coverage Validator help manual.

This help manual is available in Compiled HTML Help (Windows Help files), PDF, and online.

Windows Help https://www.softwareverify.com/documentation/chm/coverageValidator.chm
PDF https://www.softwareverify.com/documentation/pdfs/coverageValidator.pdf
Online https://www.softwareverify.com/documentation/html/coverageValidator/index.html

Tutorials for Coverage Validator are available at https://www.softwareverify.com/tutorial/coverage-
validator-tutorial/.

Before reading this manual, it's worth taking a quick look at the notation used.

Read background information

The overview section covers things like:

· the capabilities of Coverage Validator

· how it works

· what's supported

· how to purchase.

If you've already purchased, thank you!

Learn about getting started

You can skip the background information, but do make sure you're aware of how to prepare your target
program in the getting started section.

Dive right in

The quick start section shows how to launch your application.

To find your way around the rest of the features and settings then read about the user interface, or
browse the examples.

If you're already feeling confident you can learn about some of the advanced features such as merging
sessions, or the command line interface.

Coverage Validator Help4

Copyright © 2002-2025 Software Verify Limited

1.1 Notation used in this help

 Instruction steps
 Menu action steps

Throughout the help you'll find instruction steps like this:

· Filter... shows the session comparison private filters dialog

or

 Settings Menu Edit Settings... Data Collection in the list Trace Hooks

This is a shorthand notation for performing consecutive steps in the user interface.

The first example indicates that the action of clicking the Filter... will result in showing the dialog
described.

The second example directs you to open the Settings menu (from the menu bar in this case), and
then choose the Edit Settings item, and in the dialog that appears, open the Data Collection option
via the list and select the Trace Hooks child entry.

Right mouse button menu

Where you see this mouse menu the instruction is to use the right mouse button menu (a.k.a.
popup menu or context menu) and select the menu option that follows this symbol.

For example: use Edit Source Code...

 Interactive images

Shown next to a picture, the hand symbol indicates the image is interactive and can be clicked
on in order to jump directly to the help section most relevant to the part of the image under the
cursor.

 External Links

You may see this symbol after some links. Those links lead to an external website (shown in
your default browser), as opposed to jumping to another section in the help. Naturally, if you have no
internet access, these links will be unavailable.

For example: Software Verify Limited

 Notes

Overview 5

Copyright © 2002-2025 Software Verify Limited

 Warning notes

Notes pertaining to the current topic are indicated by the symbol. Notes may include
exceptions to a rule, items to watch out for, or other asides to the main topic.

Notes that act as warnings will use the similar symbol, for example where there's a danger of
crashing your application. Don't panic though - there aren't many of these!

See also

Where there are other pages in the help that have more detail on the topic at hand, or if there is
additional reading that is not already linked within the content, you will find these sections linked
after the symbol.

1.2 Introducing Coverage Validator

What is Coverage Validator?

Coverage Validator is an automatic source code coverage analyzer for Windows.

Coverage Validator works with versions of Windows from 10.0 through Windows XP, on x86 and x64
processors (and compatible).

What does Coverage Validator do?

Coverage Validator can find:

· which lines of your program have been executed
· visit counts for each line, function, file, directory and DLL
· visit percentages for each source file visited

The results are displayed in a summary dashboard and a variety of comprehensive but easily explorable
hierarchical formats.

Source code editing is provided with colour coded lines so that you can see at a glance which lines were
hooked or not hooked, and visited or unvisited.

The Coverage overhead is very low and there is no need to recompile or relink the target program.

The only requirement is PDB files with debug information and/or MAP files with line number information.

Coverage Validator can also be used for unit testing and as part of a regression testing strategy used by
Quality Assurance teams.

The main sections of Coverage Validator

Coverage Validator Help6

Copyright © 2002-2025 Software Verify Limited

The user interface is split via tabs into separate report sections (+Tutorials), each presenting or analysing
coverage in the target program at different levels of granularity.

Here's a summary of those sections, each of which is covered in full in The User Interface section.

Summary A summary of the code coverage for the whole application.

Coverage A file by file summary of the number of lines visited, total visit count and percentage of
the file that has been visited.

Branch
Coverage

Statistics about branch coverage for each function containing branches.

Functions Function lines visited, total visit count and percentage of each visited function.

Directories Coverage information for each directory that contains source files

DLLs Coverage information for each DLL that contains source files

Files and
Lines

A file by file summary of the coverage details of visited files. Expandable to show
individual lines and the corresponding source code.

Diagnostic Lists diagnostic information collected by the stub, including lines that could not be
hooked.

1.3 Why Coverage Validator?

Adapts to everyone's workflow

Coverage Validator allows you to find how much of your software is being executed by a particular test,
using an intuitive colour-coded user interface.

If you want to edit the source code for a line that is not being visited, it's simple. Just double click on the
code fragment shown and the appropriate source code file will be loaded into Coverage Validator's colour-
coded editor, or into Microsoft® Visual Studio®, or you can choose your preferred awesome editor.

You can save sessions, reload them at a later date, and interact with the collected data. You can also
export to HTML or XML which can be used to create reports targeted to the appropriate audience: the
management team; quality assurance team; or to create detailed coverage reports for the software
engineers.

Designed with principles

Coverage Validator and the other products in our suite of tools have been created with the following
principles in mind:

Overview 7

Copyright © 2002-2025 Software Verify Limited

· must not adversely
effect the program's
behaviour

Any hooks placed into the target program's code must not affect the
registers or the condition code flags of that program. The program
must behave in the same way when being inspected by Coverage
Validator as without.

· must be reliable and
avoid causing the target
program to crash

Since we can't know exactly which DLLs and other components are
present on every computer that Coverage Validator is installed on,
every hook can be enabled or disabled, and/or installed or not
installed.

Thus if a new DLL is released in the future that causes problems with
certain functions, you can disable the hooks for those functions, and
continue using Coverage Validator until a fix for the new DLL's
behaviour is available.

· must have as little
impact on the target
program's performance
as possible

Coverage Validator has very little effect on the target applications
performance, but you can also enable and disable as many or as few
function hooks as you wish.

For example:

If you are only interested in coverage of a particular area of code
you can pick only that directory to be hooked.

If you're only interested in a selection of in-house DLLs, choose
only those modules to be hooked.

· must have a user
interface independent
of the target program

Coverage Validator's user interface is independent of the target
program.

This means:

If the target program crashes, the user interface will not crash -
you will still have data to work with.

If the target program is stopped in the debugger, Coverage
Validator's user interface will continue to work.

Coverage Validator Help8

Copyright © 2002-2025 Software Verify Limited

In the unlikely event that the Coverage Validator's own user
interface crashes, your target program will not crash.

· must be flexible We know our users like choices! Where there are multiple ways of
presenting the data, the user is given a choice over how that display
works, so that not all users have to work with the same settings.

1.4 What do you need to run Coverage Validator?

Compilers

The following makes of compiler are supported:

· Microsoft® Visual Studio®
· Borland C++
· Borland Delphi
· Intel
· Metrowerks
· MinGW
· QtCreator
· Fortran (various)

 Supported compilers for more details regarding versions and caveats.

User Privileges

Coverage Validator uses the CreateRemoteThread() Win32 function. You must have access privileges
that allow you to create threads in other programs.

Typically Administrator and Power User user types have the appropriate privileges. Ordinary user
accounts can be easily modified to have the required privileges.

 Learn more about user privileges in the section on User Permissions.

Registry Access Privileges

Coverage Validator requires read and write access to:

· HKEY_CURRENT_USER\Software\SoftwareVerification\CoverageValidator

· HKEY_USERS\.DEFAULT\Software\SoftwareVerification\CoverageValidator.

This is used when working with services

If read and write access is not allowed:

Overview 9

Copyright © 2002-2025 Software Verify Limited

· Coverage Validator will use default settings (thus any user selections will not apply)

· Error messages will be displayed when Coverage Validator tries to access the registry key

These error messages can be suppressed if they are not desired. For example, if you're not
working with services, then there's no requirement to access the second registry key, and all
error messages relating to it can be ignored.

Operating System

Any 'modern' windows machine is suitable to run Coverage Validator.

At a minimum, Coverage Validator requires Windows XP or better.

1.5 Buying Coverage Validator and support

The best way to purchase Coverage Validator is online from Software Verify Limited - just click the
Purchasing link at the top of the website.

Purchase options

There are options for single or multiple licenses, per-user or floating licenses, and although you can of
course purchase it as a single product, you can save significantly by buying Coverage Validator as part
of a suite of products. All the details are online.

Pre-purchase questions?

If you have any pre-purchase questions not answered in this help manual, or niggling little doubts about
something, we can be contacted as below.

email: sales@softwareverify.com (recommended)

web: https://www.softwareverify.com

or by old fashioned post:

Software Verify Limited
Suffolk Business Park
Eldo House
Kempson Way
Bury Saint Edmunds
IP32 7AR
United Kingdom

After sales support

Coverage Validator Help10

Copyright © 2002-2025 Software Verify Limited

If you need support after purchase, check our frequently asked questions and then drop us a line below
with as much detail as possible about your problem.

email: support@softwareverify.com

1.6 How does Coverage Validator work?

The Stub and the UI - more than the sum of its parts

Coverage Validator has two main parts - the stub and the user interface.

The stub is typically injected into the target program and communicates with the Coverage Validator user
interface.

The stub is injected into the target program using the CreateProcess() or CreateRemoteThread()
Win32 function. Communication between the stub and the user interface is via named pipes. There is no
human readable data sent between the two parts of the program. Both the stub and the user interface are
multi-threaded.

The stub walks the entire program image detecting the start of each source code line using PDB and/or
MAP files.

Each line is checked to see if it can safely be hooked without corrupting the code for another line or
function, or changing the function of the program. The line is hooked if possible, otherwise the user
interface is informed of the line hook failure.

As your program executes, the hooks on each line record the visit counts for the line and communicates
this to the user interface. The user interface calculates statistics based on the visit counts and provides
a colour coded display for the user to inspect.

The stub can also be linked if required, so that it doesn't need to be injected into the program.

1.7 Supported Compilers

Coverage Validator will work with any portable executable (PE) file format and supports .Net, .Net
Core, C#, VB.Net, C, C++, Delphi, Fortran 95 and Visual Basic.

Microsoft .Net, .Net Core

Both .Net and .Net Core technologies are supported as well all the native compilers listed below.

The following compilers are supported by Coverage Validator.

Microsoft http://www.microsoft.com

Overview 11

Copyright © 2002-2025 Software Verify Limited

Coverage Validator requires your application to be built using Microsoft® Visual Studio® 6.0 service pack
3 or later.
In practice, you may find that applications built with Developer Studio 4.2 and later can be used with
Coverage Validator.

· Microsoft Developer Studio 4.0
· Microsoft Developer Studio 5.0
· Microsoft Developer Studio 6.0
· Microsoft Visual Basic 6.0
· Microsoft Visual Studio 6.0 - service pack 3 or later
· Microsoft Visual Studio 7.0 / .net 2002
· Microsoft Visual Studio 7.1 / .net 2003
· Microsoft Visual Studio 8.0 / .net 2005
· Microsoft Visual Studio 9.0 / .net 2008
· Microsoft Visual Studio 10.0 / .net 2010
· Microsoft Visual Studio 11.0 / .net 2012
· Microsoft Visual Studio 12.0 / .net 2013
· Microsoft Visual Studio 14.0 / .net 2015
· Microsoft Visual Studio 15.0 / .net 2017
· etc...

Microsoft Developer Studio and Microsoft Visual Studio products support both C++ and Visual Basic.

Visual Studio and Visual Basic 6 in the Getting Started section.

Intel http://www.intel.com

· Intel performance compiler - The Intel compiler uses the Microsoft runtime already installed on
your computer rather than supply its own

· Intel Fortran

Intel use Microsoft's PDB proprietary symbol information format. If your compiler uses PDB symbol
information Coverage Validator will be able to use it.

Metrowerks

· Metrowerks CodeWarrior for Windows Version 8.0
· Metrowerks CodeWarrior for Windows Version 9.0

You will need to ensure the debug information is stored as CodeView information and not a custom
Metrowerks debug format. Metrowerks symbolic information is embedded in the .exe/.dll as CodeView
information. Please consult the documentation for CodeWarrior to include debug information (including
filenames and line numbers) in the CodeView information.

Embarcadero https://www.embarcadero.com/

This includes compilers formerly produced by Borland.

Coverage Validator Help12

Copyright © 2002-2025 Software Verify Limited

· C++ Builder 5.0 to C++ Builder 11
· Delphi 6.0 to Delphi 11
· Rad Studio

C++ Builder and Delphi in the Getting Started section.

MinGW http://www.mingw.org

· MinGW (Minimalist GNU for Windows)

MinGW can create symbols in a variety of formats. If you configure MinGW to produce DWARF
symbols, STABS symbols or COFF symbols Coverage Validator can read them.

MinGW compiler in the Getting Started section.

Qt (Digia, Nokia, Trolltech) http://qt.io

· QtCreator

Ensure that debug information is created in DWARF, STABS or COFF formats.

Salford Software http://www.salfordsoftware.co.uk

· Salford Software Fortran 95

Salford Software Fortran 95 uses COFF symbol information. If your compiler uses COFF symbol
information Coverage Validator will be able to use that information.

Compaq

· Compaq Visual Fortran 6.6

The Compaq Visual Fortran product may be compatible with Coverage Validator. If you are using
Compaq Visual Fortran and wish to use Coverage Validator please contact us.

Other...?

If the compiler you are using is not listed here, please contact us for advice. We add compilers as we
receive requests for them. In fact, the Borland C++, Borland Delphi, Metrowerks CodeWarrior, Salford
Software's Fortran 95 compiler, and Intel Fortran support were all added at the request of customers.

1.8 User Permissions

This section details the privileges a user requires to successfully run Coverage Validator.

Overview 13

Copyright © 2002-2025 Software Verify Limited

 Typically, Administrator and Power User user types will already have the appropriate privileges.

Why do user privileges matter?

Debugging tools such as Coverage Validator are intrusive tools - they require specific privileges not
normally granted to typical applications.

Coverage Validator requires specific privileges to write to the default user profile in the registry.

This is so that when Coverage Validator is working with services (or any application run on an account
which is not the current user's account) it can read the registry and the correct configuration data.

If the account upon which a service or application is running is not the user's account, the fallback
position is the DEFAULT account in HKEY_USERS\.DEFAULT.

You can enable and disable various warnings using the User Permissions Warnings dialog.

User privileges

Coverage Validator requires the following privilege to allow debugging of applications and services:

Debug Programs (SE_DEBUG_NAME)

Ordinary users will need to be granted these permissions using the Administrative User Manager tool.
The example below shows the NT4 User Manager - the Windows 2000 User Manager and Windows XP
User Manager will be different but similar in principle.

In the User Manager select the user - in this case "Test User".

Choose: Policies Menu User Rights check Show Advanced User Rights select Debug
Programs in the Right combo box

Coverage Validator Help14

Copyright © 2002-2025 Software Verify Limited

Click Add.... Show Users

Select [ComputerName]\Test User in the top list. Click Add OK OK Close the User Manager.

Registry access privileges

Coverage Validator requires read and write access to:

· HKEY_CURRENT_USER\Software\SoftwareVerification\CoverageValidator

Overview 15

Copyright © 2002-2025 Software Verify Limited

· HKEY_USERS\.DEFAULT\Software\SoftwareVerification\CoverageValidator.

This is used when working with services

If read and write access is not allowed:

· Coverage Validator will use default settings (thus any user selections will not apply)

· Error messages will be displayed when Coverage Validator tries to access the registry key

These error messages can be suppressed if they are not desired. For example, if you're not
working with services, then there's no requirement to access the second registry key, and all
error messages relating to it can be ignored.

You can modify the registry access permissions using the regedt32.exe tool Security menu (or similar).
Ask your administrator to modify your registry access permissions if you can't do this yourself.

What's the difference between Regedit and Regedt32?

Error notifications

When Coverage Validator fails to gain access for read or write to the registry a message box is displayed
indicating if the error is for the user interface (UI) or Services. The message indicates the name of the
registry key that failed and the failure reason.

This simple message box is displayed during early startup and late close-down of Coverage Validator:

Message box like the following are displayed when Coverage Validator is not starting up or closing down.
The messages differ in the registry key.

Coverage Validator Help16

Copyright © 2002-2025 Software Verify Limited

Detailed registry access error messages

The following detailed registry access error message is also displayed when failing to gain access to the
registry keys.

Insufficient user privileges

The following dialog is displayed if a user has insufficient privileges to use the software correctly.

Overview 17

Copyright © 2002-2025 Software Verify Limited

 Without the Debug Programs privilege, Coverage Validator will not work correctly with Services,
and may not work correctly with Applications.

 Creating Power User accounts for Windows XP.

Part

II

Getting Started 19

Copyright © 2002-2025 Software Verify Limited

2 Getting Started

For those that wish to 'dive in', this section will make you aware of how to prepare your target program
before giving a quick start introduction.

Otherwise skip right on to the next chapter - The User Interface.

Diving in?

If you have never used Coverage Validator before you have probably purchased Coverage Validator
because you wish to analyse the code coverage of your application. As such, you may want to 'dive in'
and start identifying your code coverage immediately.

However, if you choose to read this manual first, you'll find out more about Coverage Validator and how to
leverage it to its full advantage.

For new users of Coverage Validator, a configuration wizard appears the first time you run the
application. This ends with a brief overview video.

We also recommend watching the tutorials online - it's an easy way to explore the functionality
available.

2.1 Enabling Debugging

To get the best from our tools you will need to enable debugging information for your compiler and your
linker.

Detailed instructions are available for these IDEs / compilers:

· Visual Studio
· Visual Basic 6
· C++ Builder
· Delphi
· MingW, gcc, g++
· Dev C++
· Salford Software FORTRAN 95
· Metrowerks Code Warrior

Debug Information Formats

Thread Validator can understand debugging information in the following formats:

· Microsoft Program Database (PDB)
· Turbo Debugger Symbols (TDS)
· COFF
· DWARF
· STABS

Coverage Validator Help20

Copyright © 2002-2025 Software Verify Limited

The Intel Performance Compiler and Intel Fortran compilers produce symbols in Microsoft's PDB format.

2.2 Quick Start

If you are:

· an admin level user
· using Microsoft compilers
· on a modern OS
· already know that you create debug info in your debug and release product

...then you're more than likely good to go and dive in!

Otherwise, we recommend reading these topics before starting:

· What do you need to run Coverage Validator?
· Supported Compilers
· User Permissions

Testing on the Example Program

You can test drive the capabilities of Coverage Validator by launching the example program supplied with
Coverage Validator - nativeExample.exe.

The example program can be used in conjunction with the Coverage Validator tutorials.

Ensure you have debugging information

Your application needs to be compiled to produce debugging information and linked to make that
debugging information. Details are available for enabling debugging information with Visual Studio, C+
+ Builder, Delphi, MinGW, and other compilers.

If you have no PDB debugging information but you do have a Microsoft format MAP file available, it must
contain line number information by using the /MAPINFO:LINES linker directive.

Launching

To start your program click on the launch icon on the session toolbar.

What you see next depends on the user interface mode (wizard or dialog style).

The Launch Wizard...

Getting Started 21

Copyright © 2002-2025 Software Verify Limited

If you have just installed the software you will be shown the launch wizard:

Click Browse... to choose a program to launch Next Next Next Start Application...

...or the Launch Dialog

If you have switched to Dialog mode you will be shown the launch dialog:

Click Browse... to choose a program to launch Launch

Coverage Validator Help22

Copyright © 2002-2025 Software Verify Limited

During launch

Coverage Validator will start and inject the stub into the target program. Progress during this phase is
displayed in the title header of the main window.

Once correctly installed in the target program, the stub will establish communications with Coverage
Validator and data can be collected and viewed until the target program exits.

The Summary Tab and the Coverage Tab will update at intervals to show coverage so far. Other tabs
need manually refreshing.

After exit - examining the output

When the target program exits, Coverage Validator closes the session. The data collection icons on the
session toolbar are disabled, and the launch icons are enabled again.

The picture shown below shows an example of the Summary Tab displaying coverage at different
granularities.

Some quick takeaways from this dashboard include:

· About 80% of the files were covered, but no individual file had 100% coverage (dial 1)

· A third of the functions were covered, most of those had 100% coverage (dial 4)

· Less than a quarter of all lines of source code were visited (dial 7)

Getting Started 23

Copyright © 2002-2025 Software Verify Limited

Ending the session

Even though the target program has exited, the session is still active and can be examined or saved until
the session is closed via the File menu Close Session.

You can have more than one session open at a time.

Part

III

The User Interface 25

Copyright © 2002-2025 Software Verify Limited

3 The User Interface

The part of Coverage Validator that you get to see is the user interface.

Behind the scenes, the stub installs and controls the data hooks in the target program and interacts with
the user interface.

This section describes the various functions of the user interface so that you can get the most from using
Coverage Validator.

Typical workflow

Typical usage of Coverage Validator is very simple:

· Start the target program
· Collect and monitor the coverage data of the program
· Close the program
· Analyse the coverage - saving or exporting data if needed

However, there is much more to Coverage Validator than this simple workflow. For example, whilst your
program is running, you can display data and gain insight into a bug you are looking at in the debugger.
And of course you can determine the functionality needed for testing on order to achieve a higher
percentage of code execution.

The user interface

The user interface consists of the menus, toolbars, status bar and the main display tabs.

Read on to find out about all those features, or click parts of the image below to jump directly to any of
the menus, tabs or other sections of interest.

3.1 First run configuration

First run configuration

For new users of Coverage Validator, a configuration wizard appears the first time you run the
application.

Coverage Validator Help26

Copyright © 2002-2025 Software Verify Limited

The wizard collects a few details about environment, tools, update requirements (for non-evaluation
users) and ends with a short video tutorial.

User interface mode

After the introductory page, the wizard presents options for configuring the how the launch, inject and
wait dialogs present information to you.

The User Interface 27

Copyright © 2002-2025 Software Verify Limited

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode all options are contained in a single dialog

Experienced users will find this mode quicker to use

These settings can be changed at any time via the User Interface Mode option on the Settings menu.

Symbol search path environment variables

The next page of the wizard presents options for using environment variables for symbol search paths
when finding PDB symbols.

You don't have to choose any of these options as Coverage Validator will try to automatically determine
symbol path information.

Coverage Validator Help28

Copyright © 2002-2025 Software Verify Limited

These environment settings can be changed at any time via the Configure Symbol Handling Environment
Variables on the Symbol Server page of the Settings Dialog.

Symbol lookup

The next page of the wizard allows you to specify which IDE, Compiler or Linker you're using.

This is important as it affects how symbol lookup is performed. Visual Studio has various quirks in its
history of symbol handling and we have to work around that.

The default settings are shown below, although the Visual Studio version may vary.

The User Interface 29

Copyright © 2002-2025 Software Verify Limited

These lookup settings can be changed at any time on the Symbol Lookup page of the Settings Dialog.

Instrumentation details

The Instrumentation detail section of the wizard allows you to specify how lines are hooked and how
many times a line visit is counted.

Coverage Validator Help30

Copyright © 2002-2025 Software Verify Limited

Two instrumentation settings affect how quickly the instrumented program will run:

· the hooking of very short lines

Most lines can be monitored using a normal line hooking technology. These hooks are fast but
cannot be used for all lines.

Very short lines are hooked using breakpoint hooking technology which is very advanced but
also incurs a serious performance penalty for each visit to that line.

· the counting of lines on every visit

Counting lines just once is quicker than doing it on every visit.

The instrumentation level lets you balance the detail of collected visit counts for every line against speed
of execution.

· Incomplete but faster Short lines NOT counted. Lines counted once

· Incomplete but slower Short lines NOT counted. Lines counted every visit.

· Complete but faster Short lines counted. Lines counted once. (This is the recommended option)

· Complete but slower Short lines counted. Lines counted every visit.

The User Interface 31

Copyright © 2002-2025 Software Verify Limited

See more about very short lines, and related caveats.

These instrumentation settings can be changed at any time on the Instrumentation Detail page of the
Settings Dialog.

Software update credentials

The software updates page of the wizard is only shown to non-evaluation users.

You can configure your software update credentials within the application and where updates are
downloaded to.

You can test the login details to ensure they are valid:

· Test login details click to check your entered details are valid (requires an internet connection)

Valid details will be confirmed:

Coverage Validator Help32

Copyright © 2002-2025 Software Verify Limited

Invalid details may mean you entered credentials for another application in the Validator suite,
or they could have been entered incorrectly.

You should have received the correct credentials when you purchased Coverage Validator.

If you experience problems, check with your system administrator or contact Software Verify.

These update credentials can be changed at any time from the Software Updates menu.

Software update download location

It’s important to be able to specify where software updates are downloaded to because of potential
security risks that may arise from allowing the TMP directory to be executable.

We use the TMP directory as a default, but if you're not comfortable with that you can specify your
preferred download directory. This allows you to set permissions for TMP to deny execute privileges if you
wish.

An invalid directory, e.g. one that does not exist, will show text in red and will not be accepted until a
valid folder is entered.

· Reset reverts the download location to the user's TMP directory

The default location is c:\users\[username]\AppData\Local\Temp

The download location can be changed at any time from the Software Updates menu.

Build example projects

The User Interface 33

Copyright © 2002-2025 Software Verify Limited

The next page of the wizard allows you to build the example projects that ship with Coverage Validator.

The example projects demonstrate various application types containing bug you may wish to investigate
with Coverage Validator.

· Visual Studio... opens the example projects solution with the version of Visual Studio selected

· Download... downloads a prebuilt version of the example projects, unzips them and installs them
in the examples folder in the Coverage Validator installation directory

If you choose this option and you have not installed Coverage Validator in the default location
(assuming a 64 bit OS) the source file paths in the debug information will be incorrect - you will need
to use the File Locations settings to inform Coverage Validator of the correct location(s).

· Open example projects folder... opens the folder that contains all example projects

Video overview of application

The final page of the wizard presents a short video overview of Coverage Validator.

 The video has audio

Coverage Validator Help34

Copyright © 2002-2025 Software Verify Limited

More help is available via the Tutorials tab and the Help menu.

The video is also available on the product website. Visit https://www.softwareverify.com/products.php and
find the product link for Coverage Validator.

· Finish closes the First Run Configuration dialog leaving the application ready to use

3.2 Menu Reference

The menus provide access to all the major features in Coverage Validator. The most common ones are
also directly accessible via the toolbars.

The next few pages provide a convenient collection of links to the detailed help pages on each menu
item.

Click in the picture below to jump to any menu's page:

The User Interface 35

Copyright © 2002-2025 Software Verify Limited

3.2.1 File menu

The File menu allows you to:

· open, close and save sessions
· manage the launching of an application
· control the collection of data
· exit the application

Most of these actions are also available via the standard or session toolbars.

Near the bottom of the menu, a list of recently used file names allows you to easily reload a previously
saved session.

Click on an item in the picture below to find out more:

 The last two items are not linked to topics. Exit is self explanatory and above that is a list of
recently opened files.

3.2.2 Launch menu

The Launch menu allows you to:

· start applications and restart applications
· inject into running applications
· wait for applications to start then attach to them
· monitor services and ISAPI extensions
· stop monitoring an application

Coverage Validator Help36

Copyright © 2002-2025 Software Verify Limited

Most of these actions are also available via the standard or session toolbars.

These actions are grouped into submenus according to whether they involve applications or services.

Click on an item in the pictures below to find out more:

Applications

Services

Web

 In addition to the function key short cuts shown above, you can redisplay the previously chosen

launch dialog by using +

The User Interface 37

Copyright © 2002-2025 Software Verify Limited

3.2.3 Edit menu

Selections and the clipboard

The Edit menu options can be used to clear all selected items in a table or tree, copy selected items
(and relevant data where applicable) to the clipboard, or select all the items available.

Selected data is formatted into one line per row with a single space used to separate column data.

 Select All will include the header row as well as the data, and Copy will include the column titles.

For example, after running the example application, Select All on the Coverage Tab might show:

This would result in the following being copied to clipboard:

File % Visited Num Lines Num Visited Visit Count DLL
Totals 17.91% 201 36 36
nativeexample.cpp 57.89% 19 11 11 C:\Program Files (x86)\Software Verify\Coverage Validator x86\examples\nativeExample\ReleaseNonLinkANSI10_0\nativeExample.exe
mainfrm.cpp 87.50% 8 7 7 C:\Program Files (x86)\Software Verify\Coverage Validator x86\examples\nativeExample\ReleaseNonLinkANSI10_0\nativeExample.exe
testmemorydialog.cpp 0.00% 58 0 0 C:\Program Files (x86)\Software Verify\Coverage Validator x86\examples\nativeExample\ReleaseNonLinkANSI10_0\nativeExample.exe
testsdoc.cpp 50.00% 6 3 3 C:\Program Files (x86)\Software Verify\Coverage Validator x86\examples\nativeExample\ReleaseNonLinkANSI10_0\nativeExample.exe
testsvw.cpp 13.64% 110 15 15 C:\Program Files (x86)\Software Verify\Coverage Validator x86\examples\nativeExample\ReleaseNonLinkANSI10_0\nativeExample.exe

3.2.4 Settings menu

The Settings menu allows you to:

· choose the user interface mode (wizards or dialogs)
· change settings for global data and how it is displayed

Global settings are also accessible via the session toolbar.

Click on an item in the menu below to find out more:

Coverage Validator Help38

Copyright © 2002-2025 Software Verify Limited

3.2.5 Managers menu

Managers

The Managers menu provides just one lonely (but powerful) tool to manage sessions including
comparing and merging current or previous data.

Click on the menu item in the picture to find out more:

3.2.6 Query menu

Query

The query and search tools enable you to find particular coverage data collected in each session.

Some of these options are also available from the Query toolbar.

Click on an item in the picture below to find out more:

The User Interface 39

Copyright © 2002-2025 Software Verify Limited

3.2.7 Tools menu

Tools

The Tools menu provides access to a few different tools including a couple not found on the Tools
toolbar:

· A list of the modules loaded by your target application

· A list of the debug information status of modules loaded by your application

· A log of files, classes, functions, methods, or modules not instrumented, and reasons why not

Click on a menu item in the picture of the Tools Menu below to find out more:

3.2.8 Data Views menu

Data Views

The Data Views provides easy control of which tabs are displayed in the main view.

Selecting any of the items shows the relevant tab (if it's not visible already), and makes it the current
selected tab.

· Hide All Views hides all tabs except the one that's currently visible

· Show All Views shows all the listed tabs, and in their normal order

· Reset All Views shows only the most popular tabs, so excludes the Unit Tests, and the Files
and Lines tabs

This is the default setting when you first use the software

Coverage Validator Help40

Copyright © 2002-2025 Software Verify Limited

When you hide a tab (by clicking the cross on the right of the tab header), you'll initially be reminded of
where to go to show it again.

You can choose not to keep seeing this reminder.

The Summary tab will always remain shown.

Hidden views are remembered between sessions.

3.2.9 Software Updates menu

Software Updates

All six items in this menu are covered in the Software Updates topic.

The User Interface 41

Copyright © 2002-2025 Software Verify Limited

3.2.10 Help menu

Help Menu

Click on an item in the picture below to find out more about each item in the Help topic:

Check out the Frequently Asked Questions too!

3.3 Toolbar Reference

This reference section lists the various toolbars in Coverage Validator, with quick links to their own
section of the help manual.

The items are listed in left to right order.

Coverage Validator Help42

Copyright © 2002-2025 Software Verify Limited

Click on any part of the pictures below to jump straight to the topic:

Standard toolbar

· Load session
· Save session
· Help

Session toolbar

· Settings
· Launch application using the launch chooser
· Relaunch the previously launched application
· Inject into application
· Wait for application to start
· Stop application
· Ask stub for coverage data
· Enable collecting data
· Disable collecting data

Query

· Query address
· Query object
· Find function

Tools

· Reset statistics
· Refresh view
· Refresh all views

The User Interface 43

Copyright © 2002-2025 Software Verify Limited

3.4 The status bar

Elements of the status bar

The status bar has three main sections, from left to right:

· the message line
· data collection statistics
· program information

The message line

Most of the time, you'll just see this:

When you hover the mouse over a toolbar button or a menu item for a short time, a help message
appears in the status bar describing the button's action.

Data collection statistics

The data statistics counts give a crude indicator of how data is being collected by the stub and sent to
Coverage Validator.

This collection data has three counters and a collection status:

· Data items sent from stub that have been processed
· Symbols that have been processed
· Line coverage data entries
· Status indicating whether collection is currently on or off

The boxes stay gray when the values are static, but will be coloured for a few seconds when the value
changes:

 The value increased

 The value decreased

Coverage status

The status of the flow trace indicates what is currently happening.

· Ready. Waiting to start a run, or a run has finished and is waiting for you to analyze the data.

Coverage Validator Help44

Copyright © 2002-2025 Software Verify Limited

· Starting. Starting a run (hooks being installed etc).
· Running. Target executable is hooked and running.
· Terminating. Target executable has entered ExitProcess but has not yet finished executing.
· Post Processing. Target executable has finished executing. There is data that still needs to be

processed.

Target program name

This displays No active session when there is no session running, terminating or loaded.

When a session is running, terminated or loaded, this displays the name of the target program followed
by a timestamp.

3.5 Keyboard Shortcuts

Keyboard shortcuts

The following shortcuts are available. Note the useful F1 for contextual help.

 + Select All

 + Copy

 + Find (file or function)

 + Goto line (Source code views)

 + Open session

 + Save session

 Help (contextual for current view or dialog)

The User Interface 45

Copyright © 2002-2025 Software Verify Limited

 Wait for application

 Inject into process

 Start application (Native / .Net)

 + Start application (.Net Core)

 Restart application

 Monitor a Service

 Monitor IIS and ISAPI

 Monitor IIS and ASP.Net

 Monitor Web Development Server and ASP.Net

 + Redisplay the previously chosen launch dialog.

Also

 and + navigate forwards and backwards through unvisited lines when source code

has focus.

 and + navigate forwards and backwards through the visited lines of the source

code.

3.6 Icons

Icons used in the main displays

Some of the displays include an icon on the left border of the scrolled list/tree to indicate the type of data
that is present on that line.

 Option enabled

 Option disabled

 Source code line indicator

 Source code

 Line has been visited

Coverage Validator Help46

Copyright © 2002-2025 Software Verify Limited

 Line could not be hooked

3.7 The main display

The tab windows

The main display of Coverage Validator consists of tabbed windows. Not all the tabs may be visible - see
the Data Views menu to show any hidden tabs.

Each window allows the data collected to be viewed, inspected and queried in different and
complimentary ways.

Typical usage might be to use the Summary or Coverage tab to monitor high level coverage in the target
program, and then use another view to gain insights at a different granularity.

Click on an item in the picture below to find out more about each of the tabbed windows, or use the
list further below:

Hiding and showing tabs

Each tabbed window can be closed by clicking the small [x] on the right hand side of the tab. The
window can be redisplayed from the Data Views menu.

Icons

Most windows use a small number of icons to indicate different types of data.

3.7.1 Summary

The Summary tab view displays a dashboard of high level information about the coverage of the current
application.

The User Interface 47

Copyright © 2002-2025 Software Verify Limited

The summary tab

The display shows various coverage statistics with percentages where appropriate.

Each dial summarises coverage of the different types of information found in the main tabs.

· Files (Coverage)
· Directories
· DLLs
· Functions
· Branches and Function Branches
· Lines

Clicking on the dials takes you to the corresponding main tab to explore in more detail.

 Branches gets two dials, one for just branches (Branches) and one for functions that contain
branches (Function Branches)

Understanding the dials

Each dial displays:

· numeric statistics on visited and unvisited items, and those items with 100% coverage

· the unvisited/visited information as angular data

· the 100% coverage as inner radial data

· the partial coverage distribution as outer radial data

Coverage Validator Help48

Copyright © 2002-2025 Software Verify Limited

Example:

The following dial summarises data on a total of 26,748 known functions in a complex target program

 The radius of the inner area may grow or shrink as the target program runs, since the proportion of
visited functions that have 100% coverage can go up or down.

Status summary area

Below the dials is a status area showing any comments or special notices related to the current
session.

Underneath the comments you'll find the status of any filters, unit tests, or session merging.

Clicking Edit... or View... opens a dialog to edit or view the relevant settings.

In most cases the settings shown are identical to the relevant page of the global settings dialog.

Filter summary:

· DLLs Hooked Edit... Hooked DDLs settings
· File extension filters Edit... Hooked Source File Types settings
· File hooks Edit... Source Files Filter settings
· Class and function filters Edit... Class and Function Filter settings
· File location filters Edit... File Locations settings
· Instrumentation logging Edit... Instrumentation Logging settings (If logging is off)

View... Instrumentation Log dialog (If logging is on)

Session merging:

· Session manager status Edit... Session Chooser dialog
· Session merging status Edit... Auto Merge settings

The User Interface 49

Copyright © 2002-2025 Software Verify Limited

3.7.2 Coverage

The Coverage tab view displays file coverage and gives a good overall picture of the coverage.

Read on, or click a part of the image below to jump straight to the help for that area.

As with many of the tab views, the display is split into two resizable panes.

· the left side lists a summary of the file coverage data

· the right side shows source code for any file selected on the left

We'll cover the file list and its popup menu first, and then the source code view.

The file list

At the top of the list is a summary of the total current file coverage statistics.

Each subsequent line in the list of files displays the following:

· the file name - either the full path or the short name

· the percentage of hookable lines that have been visited

· the number of hooked lines in the file, (unhooked lines in brackets)

Coverage Validator Help50

Copyright © 2002-2025 Software Verify Limited

This is not the same as the total number of lines in a file, which may include comments,
declarations and white space.

Neither is it the same as the number of hookable lines since some lines or functions can be
excluded from hooking.

The count also includes lines which should have been hooked but failed, for example because
the instrumentation level was set low. The unhooked line count is shown in brackets.

· the number of different lines that have been visited

· the total visit count for the file

This may be equal to the number of different lines visited unless you're counting each visit
separately as seen below.

· the DLL in which the file was found

Files are ordered first by their directory and then by the files in those directories.

Line colours

Each line in the list is colour coded to indicate one of the following:

· the file has not been visited at all

· the file has been visited to some extent

· every hookable line in the file has been visited, i.e. 100% file coverage

· none of the lines in the file could be hooked

Unhooked lines

The User Interface 51

Copyright © 2002-2025 Software Verify Limited

The number of unhooked lines is shown in brackets in the Num Lines column.

Depending on what file or DLL hook filters are set up, not all the hookable lines in a header file may
attempt to be hooked.

Only those that are actually used (e.g. via macros or inlines) in the program may actually be hooked.

 By default, lines that could not be hooked don't stop the coverage from reaching 100%, but you can
change this.

In this example below, the instrumentation level was set low ('incomplete but faster') to force significant
numbers of unhooked lines.

Scrollbar visualisations

To the right of each pane, beside the vertical scrollbars, you'll see a coloured area which represents the
coverage.

For the file list, the visualisation shows the coverage of each file in the list - reflecting the progress
meters in the second column.

For the source code view, the visualisation shows the coverage of each line in the file

Coverage Validator Help52

Copyright © 2002-2025 Software Verify Limited

These visualisations provide a snapshot view of the whole list of files or the whole source file.

Irrespective of how much you can see in the file list or in the source code view, you can still get a global
overview of the coverage distribution.

Coverage options

The coverage controls are shown below.

Window orientation

The horizontal or vertical orientation of the statistics and source code panes can be toggled with the
orientation button.

Updating the display

· Update Interval (seconds) automatically updates the display at your choice of interval between
0.1 and 60 seconds - or not at all!

Adjust this depending on the complexity of your application.

Only the Coverage view has automatic update intervals controlled in this way.

· Refresh updates the display - as does the button on the Tools menu and toolbar

With an update interval set to No Update, you'll need to use this Refresh button to update the
display when you wish.

The User Interface 53

Copyright © 2002-2025 Software Verify Limited

Display settings

· Highlight unvisited lines highlights rows for files and lines that have not been visited (on by
default)

If switched off, unvisited lines appear white - or whatever colour you've set as the unselected
colour.

· Show Path shows the short file name or the longer file path in the File column of the data

File list menu options

The following popup menu is available over the data area to add filters or edit code.

Menu options: Instrumentation Filter

The instrumentation filter lets you add filters at different levels of granularity:

· Exclude Filename adds a new filter to the Source Files Filter settings, excluding it from the
results of subsequent sessions

· Exclude Directory excludes all files in the same directory as the selected file

From the sub menu, choose the directory level at which you want to exclude files, right up to the
drive specifier if you need to.

Coverage Validator Help54

Copyright © 2002-2025 Software Verify Limited

· Exclude DLL excludes all files belonging to the same executable or DLL as the selected file

This adds a filter to the Hooked DLLs settings.

 Filters become effective at the start of the next session. Adding a filter during a session will show
the relevant rows in grey so that you can see which files would be filtered, but the coverage results will
continue to be included for the rest of the current session.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

The file source code view

Clicking on a file in the file list, shows that file in the source code view on the right.

The source code uses syntax highlighting by default, with the background colour of the line indicating if
the line has been visited, is unvisited or could not be hooked.

Icons are displayed next to hooked and unhooked lines indicating visit and hook status and visit counts
are shown in-line with the code.

Hovering over a line for a short period of time shows a tooltip with the number of visits to the line.

Contiguous groups of lines can be collapsed and hidden from view.

Source code file information

On the right hand panel, above the source code, you'll find some information about the source file

The details shown include the following:

· 'quick view' details for visited and unvisited lines, pink for unvisited, light green for partial visited, and
dark green for 100% visited

The User Interface 55

Copyright © 2002-2025 Software Verify Limited

· the source code filename and the executable or DLL to which it belongs

· the same file statistics as seen in the left hand panel

Browsing visited and unvisited lines

· show the previous and next unvisited line of code

 and + also navigate forwards and backwards when the source code has focus.

· show previous and next visited line of code

The arrows are grey when disabled.

 and + also navigate forwards and backwards through the visited lines.

· Line step by individual lines of code

· Group step by groups of contiguous visited or unvisited lines

Keyboard access: Find and Goto

When the data view or the source code view has focus, some keyboard access is available to search for
files and other text, or to navigate to numbered lines.

Find filename in data view

In the data view, + displays a dialog that will allow you to search by full or partial match for

a filename.

Coverage Validator Help56

Copyright © 2002-2025 Software Verify Limited

Find text in source view

In the source code view + lets you search by full or partial match anywhere in the file.

Goto line in source view

In the source code view, + displays a goto-line dialog.

.

3.7.3 Branch Coverage

The Branch Coverage tab view displays branch coverage information for each function that contains
branches.

Read on, or click a part of the image below to jump straight to the help for that area.

The User Interface 57

Copyright © 2002-2025 Software Verify Limited

Branches

The branch coverage focuses only on those areas of code which are conditionally executed.

This includes if / else statements and conditional loops such as for and while.

When viewing the source code, only the first line in each branch is marked. This is because any
subsequent lines in the same code block must also be executed as part of the same branch.

As with many of the tab views, the display is split into two resizable panes.

· the left side lists a summary of the branch coverage data

· the right side shows source code for any method selected on the left

We'll cover the data view and its popup menu first, and then the source code view.

The data view

Each line in the view displays the following:

· the file, class, method or function, depending on the Type of the view

· the percentage of hookable branches that have been visited in the function

· the number of hooked branches in the function

This is not the same as the number of hookable branches since some lines or functions can be
excluded from hooking.

Coverage Validator Help58

Copyright © 2002-2025 Software Verify Limited

· the number of different branches that have been visited in the function

· the total visit count for all the branches in the function

This may be equal to the number of different branches visited unless you're counting each visit
separately.

· the DLL in which the method was found

The Branch Coverage can show a hierarchical or list view of data according to the Type setting.

Hierarchical views

A hierarchical view is shown when the Type is set to one of the following:

· class / method

· file / function (the default)

· directory structure / file / function

Examples:

 For class and directory hierarchical views, the statistics against each directory or class is an
aggregated sum of all the contained branches

List views

A hierarchical view is shown when the Type is set to one of the following:

· method or function

The User Interface 59

Copyright © 2002-2025 Software Verify Limited

· class or method (ordered by number of lines in file)

Example:

 Only the first column in the view can be used for sorting the data.

Unhooked lines

Depending on what file or DLL hook filters are set up, not all the hookable lines in a header file may
attempt to be hooked.

Only those that are actually used (e.g. via macros or inlines) in the program may actually be hooked.

 By default, lines that could not be hooked don't stop the coverage from reaching 100%, but you can
change this.

In this example below, the instrumentation level was set low ('incomplete but faster') to force significant
numbers of unhooked lines.

Line colours

Each line of data in any of the views is colour coded to indicate one of the following:

· the function has not had any branches visited at all

· some but not all branches in the function have been visited

Coverage Validator Help60

Copyright © 2002-2025 Software Verify Limited

· every hookable branch in the function has been visited, i.e. 100% file coverage

· no branches in the function could be hooked

 Unhookable branches are likely when the instrumentation level is set low, for example
'incomplete but faster'.

Scrollbar visualisations

To the right of each pane, beside the vertical scrollbars, you'll see a coloured area which represents the
coverage.

As with the scrollbar visualisation in the Coverage tab, the bar in the left hand pane shows an overall view
of the coverage distribution across every function listed.

However, because branch coverage is broken down to the function level, selecting a function in the left
hand pane will only highlight branches in the source code view for that function.

Branch coverage options

The branch coverage controls are shown below.

Window orientation

The horizontal or vertical orientation of the statistics and source code panes can be toggled with the
orientation button.

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

View type

The User Interface 61

Copyright © 2002-2025 Software Verify Limited

Changing the Type alters the view to one of the hierarchical or list views described earlier.

· By Class shows a hierarchical C++ class / method view

· By Function Name shows a list of all functions sorted by name

· By Directory shows a hierarchical view of directory / file / function

· By File shows a hierarchical file / function view

· By Number of Lines shows a list of classes or methods ordered by number of lines in file

 Each view shows the same overall data, just in different arrangements

Sort order

· Descending reverses the direction of the data, sorted by the names in first column

Expanding and collapsing the data

· Expand All / Collapse All switches any hierarchical view between collapsed and expanded view

· Collapsed sets the preferred state of the view when the data is refreshed

This includes when you change some of the other display settings.

Display settings

· Display... displays the branch display settings dialog

· Highlight unvisited lines highlights rows for branches that have not been visited (on by default)

Coverage Validator Help62

Copyright © 2002-2025 Software Verify Limited

If switched off, unvisited lines appear white - or whatever colour you've set as the unselected
colour.

· Show unhooked functions display information about functions that could not be hooked (off by
default)

This means unhookable lines, for example lines that were too short, rather than lines or
functions that are deliberately set not to be hooked.

File list menu options

The following popup menu is available over the data area to add filters, edit code, or expand and collapse
the view.

Menu options: Instrumentation Filter

The instrumentation filter lets you add filters at different levels of granularity:

· Exclude Filename adds a new filter to the Source Files Filter settings, excluding it from the
results of subsequent sessions

· Exclude Directory excludes all files in the same directory as the selected file

From the sub menu, choose the directory level at which you want to exclude files, right up to the
drive specifier if you need to.

The User Interface 63

Copyright © 2002-2025 Software Verify Limited

· Exclude DLL excludes all files belonging to the same executable or DLL as the selected file

This adds a filter to the Hooked DLLs settings.

The other options all add a filter to the Class and function filter settings

· Filter By Class excludes all functions in the selected class

Example filter: CTeststakDoc::

· Filter By Class And Method excludes only the selected class functions

Example filter: CTeststakDoc::OnNewDocument

· Filter By Method excludes only the selected method, whether in a class or the global
namespace

Example filter: OnNewDocument

 Filters become effective at the start of the next session. Adding a filter during a session will show
the relevant rows in grey so that you can see which files would be filtered, but the coverage results will
continue to be included for the rest of the current session.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu options: collapse / expand trace

· Expand or Collapse Entry shows and hides the selected section in the view, the same as using

the or buttons

· Collapse All completely collapses all sections

· Expand All expands all the sections

The branch source code view

Coverage Validator Help64

Copyright © 2002-2025 Software Verify Limited

Clicking on a function in the left hand panel, shows that file and function in the source code view on the
right.

The source code uses syntax highlighting by default, with the background colour of the line indicating if
the branch line has been visited, is unvisited or could not be hooked.

Icons are displayed next to hooked and unhooked branch lines indicating visit and hook status and visit
counts are shown in-line with the code.

Hovering over a line for a short period of time shows a tooltip with the number of visits to the line.

Contiguous groups of lines can be collapsed and hidden from view.

Source code branch information

On the right hand panel, above the source code, you'll find some information about branches in the
selected function in the source file

The details shown include the following:

· 'quick view' details for visited and unvisited branches in the function, pink for unvisited, light green for
partial visited, and dark green for 100% visited

· the source code filename and the executable or DLL to which it belongs

· the same branch statistics as seen in the left hand panel

Browsing visited and unvisited lines

· show the previous and next unvisited branch in the function

The User Interface 65

Copyright © 2002-2025 Software Verify Limited

 and + also navigate forwards and backwards when the source code has focus.

· show previous and next visited branch in the function

The arrows are grey when disabled.

 and + also navigate forwards and backwards through the visited lines.

· Line step by individual lines of code

· Group step by groups of contiguous visited or unvisited lines

Keyboard access: Find and Goto

When the data view or the source code view has focus, some keyboard access is available to search for
text, or to navigate to numbered lines.

Find text in data view

In the data view, + displays a dialog that will allow you to search by full or partial match for

text in the first column - the contents of which depends on the Type setting.

Find text in source view

In the source code view + lets you search by full or partial match anywhere in the file.

Coverage Validator Help66

Copyright © 2002-2025 Software Verify Limited

Goto line

In the source code view, + displays a goto-line dialog.

.

3.7.4 Functions

The Functions tab view displays function and line coverage information for each hookable function.

Read on, or click a part of the image below to jump straight to the help for that area.

Functions

The function coverage view focuses on coverage at the function level. If you need to see an overview of
coverage for a whole file, see the Coverage view.

When viewing the source code, only the lines in the selected function are highlighted.

As with many of the tab views, the display is split into two resizable panes.

· the left side lists a summary of the function coverage data

The User Interface 67

Copyright © 2002-2025 Software Verify Limited

· the right side shows source code for any function selected on the left

We'll cover the data view and its popup menu first, and then the source code view.

The data view

Each line in the view displays the following:

· the file, class, method or function, depending on the Type of the view

· the percentage of hookable lines that have been visited in the function

· the number of hooked lines in the function

This is not the same as the number of hookable lines since some lines or functions can be
excluded from hooking.

· the number of different lines that have been visited in the function

· the total visit count for the function

This may be equal to the number of different lines visited unless you're counting each visit
separately as seen in one of the hierarchical view examples below.

The count also includes lines which should have been hooked but failed, for example because
the instrumentation level was set low.

· the DLL in which the file was found

The Function coverage can show a hierarchical or list view of data according to the Type setting.

Hierarchical views

A hierarchical view is shown when the Type is set to one of the following:

· class / method

· file / function (the default)

· directory structure / file / function

Examples:

Data organised by file / function:

Coverage Validator Help68

Copyright © 2002-2025 Software Verify Limited

Data organised by directory / file / function:

 For class and directory hierarchical views, the statistics shown against each directory or class is an
aggregated sum of all the contained functions

List views

A hierarchical view is shown when the Type is set to one of the following:

· method or function ordered by name

· class or method ordered by number of lines in file

Example:

Data organised by function name:

 Function names are sorted alphabetically. Destructors (starting with ~) will likely be shown first or
last depending on the sorting order.

 Only the first column in the view can be used for sorting the data.

Line colours

Each line of data in any of the views is colour coded to indicate one of the following:

· the function has not had any lines visited at all

The User Interface 69

Copyright © 2002-2025 Software Verify Limited

· some but not all lines in the function have been visited

· every hookable line in the function has been visited, i.e. 100% file coverage

· no lines in the function could be hooked

 Unhookable lines are likely when the instrumentation level is set low, for example
'incomplete but faster'.

Unhooked lines

Depending on what file or DLLs hook filters are set up, not all the hookable lines in a header file may
attempt to be hooked.

Only those that are actually used (e.g. via macros or inlines) in the program may actually be hooked.

 By default, lines that could not be hooked don't stop the coverage from reaching 100%, but you can
change this.

In this example below, the instrumentation level was set low ('incomplete but faster') to force significant
numbers of unhooked lines.

Scrollbar visualisations

To the right of each pane, beside the vertical scrollbars, you'll see a coloured area which represents the
coverage.

As with the scrollbar visualisation in the Coverage tab, the bar in the left hand pane shows an overall view
of the coverage distribution across every function listed.

However, because function coverage is broken down to the function level, selecting a function in the left
hand pane will only highlight lines in the source code view for that function.

Function coverage options

Coverage Validator Help70

Copyright © 2002-2025 Software Verify Limited

The function coverage controls are shown below.

Window orientation

The horizontal or vertical orientation of the statistics and source code panes can be toggled with the
orientation button.

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

View type

Changing the Type alters the view to one of the hierarchical or list views described earlier.

· By Class shows a hierarchical C++ class / method view

· By Function Name shows a list of all functions sorted by name

· By Directory shows a hierarchical view of directory / file / function

· By File shows a hierarchical file / function view

· By Number of Lines shows a list of classes or methods ordered by number of lines in file

 Each view shows the same overall data, just in different arrangements

Sort order

· Descending reverses the direction of the data, sorted by the names in first column

Expanding and collapsing the data

· Expand All / Collapse All switches any hierarchical view between collapsed and expanded view

· Collapsed sets the preferred state of the view when the data is refreshed

This includes when you change some of the other display settings.

The User Interface 71

Copyright © 2002-2025 Software Verify Limited

Display settings

· Display... displays the branch display settings dialog

· Highlight unvisited lines highlight rows for any functions that have not been visited (on by
default)

If switched off, unvisited lines appear white - or whatever colour you've set as the unselected
colour.

· Show unhooked functions display information about functions that could not be hooked (off by
default)

This means unhookable lines, for example lines that were too short, rather than lines or
functions that are deliberately set not to be hooked.

File list menu options

The popup menu is identical to that for the Branch Coverage view.

The following popup menu is available over the data area to add filters, edit code, or expand and collapse
the view.

Menu options: Instrumentation Filter

The instrumentation filter lets you add filters at different levels of granularity:

Coverage Validator Help72

Copyright © 2002-2025 Software Verify Limited

· Exclude Filename adds a new filter to the Source Files Filter settings, excluding it from the
results of subsequent sessions

· Exclude Directory excludes all files in the same directory as the selected file

From the sub menu, choose the directory level at which you want to exclude files, right up to the
drive specifier if you need to.

· Exclude DLL excludes all files belonging to the same executable or DLL as the selected file

This adds a filter to the Hooked DLLs settings.

The other options all add a filter to the Class and function filter settings

· Filter By Class excludes all functions in the selected class

Example filter: CTeststakDoc::

· Filter By Class And Method excludes only the selected class functions

Example filter: CTeststakDoc::OnNewDocument

· Filter By Method excludes all functions in the selected class

Example filter: OnNewDocument

 Filters become effective at the start of the next session. Adding a filter during a session will show
the relevant rows in grey so that you can see which items would be filtered, but the coverage results will
continue to be included for the rest of the current session.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

The User Interface 73

Copyright © 2002-2025 Software Verify Limited

Menu options: collapse / expand trace

· Expand or Collapse Entry shows and hides the selected section in the view, the same as using

the or buttons

· Collapse All completely collapses all sections

· Expand All expands all the sections

The functions source code view

Clicking on a function in the left hand panel, shows that file and function in the source code view on the
right.

The source code uses syntax highlighting by default, with the background colour of the line indicating if
the function lines have been visited, are unvisited or could not be hooked.

Icons are displayed next to hooked and unhooked function lines indicating visit and hook status and visit
counts are shown in-line with the code.

Hovering over a line for a short period of time shows a tooltip with the number of visits to the line.

Contiguous groups of lines can be collapsed and hidden from view.

Source code function information

On the right hand panel, above the source code, you'll find some information about lines in the selected
function in the source file

The details shown include the following:

· 'quick view' details for visited and unvisited lines in the function, pink for unvisited, light green for
partial visited, and dark green for 100% visited

Coverage Validator Help74

Copyright © 2002-2025 Software Verify Limited

· the source code filename and the executable or DLL to which it belongs

· the same statistics as seen in the left hand panel

Browsing visited and unvisited lines

· show the previous and next unvisited line in the function

 and + also navigate forwards and backwards when the source code has focus.

· show previous and next visited line in the function

The arrows are grey when disabled.

 and + also navigate forwards and backwards through the visited lines.

· Line step by individual lines of code

· Group step by groups of contiguous visited or unvisited lines

Keyboard access: Find and Goto

When the data view or the source code view has focus, some keyboard access is available to search for
text, or to navigate to numbered lines.

Find text in data view

In the data view, + displays a dialog that will allow you to search by full or partial match for

text in the first column - the contents of which depends on the Type setting.

The User Interface 75

Copyright © 2002-2025 Software Verify Limited

Find text in source view

In the source code view + lets you search by full or partial match anywhere in the file.

Goto line

In the source code view, + displays a goto-line dialog.

.

3.7.5 Directories

The DLLs tab displays coverage information for each DLL that contains hooked code.

Read on, or click a part of the image below to jump straight to the help for that area.

Coverage Validator Help76

Copyright © 2002-2025 Software Verify Limited

The DLLs view is largely similar to the Coverage view except that the file list is structured as a hierarchy
of DLLs and files rather than just a flat list of files.

As with many of the tab views, the display is split into two resizable panes.

· the left side lists a summary of the directory and file coverage data

· the right side shows source code for any file selected on the left

We'll cover the file list and its popup menu first, and then the source code view.

The directory and file list

Each line in the view displays the following:

· the directory or file name

· the percentage of hookable lines that have been visited

· the number of hooked lines in the directory or file

This is not the same as the total number of lines in a file, which may include comments,
declarations and white space.

Neither is it the same as the number of hookable lines since some lines or functions can be
excluded from hooking.

The count also includes lines which should have been hooked but failed, for example because
the instrumentation level was set low.

· the number of different lines that have been visited

· the total visit count for the file

The User Interface 77

Copyright © 2002-2025 Software Verify Limited

This may be equal to the number of different lines visited unless you're counting each visit
separately as seen below:

· the DLL in which the file was found

The statistics for each directory is an aggregated view of all the files within it.

Line colours

Each line in the list is colour coded to indicate one of the following:

· the file has not been visited at all

· the file has been visited to some extent

· every hookable line in the file has been visited, i.e. 100% file coverage

· none of the lines in the file could be hooked

Unhooked lines

Depending on what file or DLLs hook filters are set up, not all the hookable lines in a header file may
attempt to be hooked.

Only those that are actually used (e.g. via macros or inlines) in the program may actually be hooked.

 By default, lines that could not be hooked don't stop the coverage from reaching 100%, but you can
change this.

In this example below, the instrumentation level was set low ('incomplete but faster') to force significant
numbers of unhooked lines.

Coverage Validator Help78

Copyright © 2002-2025 Software Verify Limited

Scrollbar visualisations

To the right of each pane, beside the vertical scrollbars, you'll see a coloured area which represents the
coverage.

For the directory and file list, the visualisation shows the coverage of each item in the list - reflecting the
progress meters in the second column.

For the source code view, the visualisation shows the coverage of each line in the file

These visualisations provide a snapshot view of the whole list of files or the whole source file.

The User Interface 79

Copyright © 2002-2025 Software Verify Limited

Irrespective of how much you can see in the directory and file list or in the source code view, you can still
get a global overview of the coverage distribution.

Window orientation

The horizontal or vertical orientation of the statistics and source code panes can be toggled with the
orientation button.

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

Sort order

· Descending reverses the direction of the data, sorted by the names in first column

Expanding and collapsing the data

· Expand All / Collapse All switches any hierarchical view between collapsed and expanded view

Display settings

· Highlight unvisited lines highlights rows for any functions that have not been visited (on by
default)

If switched off, unvisited lines appear white - or whatever colour you've set as the unselected
colour.

File list menu options

The popup menu is identical to that for the Branch Coverage and Functions view.

The following popup menu is available over the data area to add filters, edit code, or expand and collapse
the view.

Coverage Validator Help80

Copyright © 2002-2025 Software Verify Limited

Menu options: Instrumentation Filter

The instrumentation filter lets you add filters at different levels of granularity:

· Exclude Filename adds a new filter to the Source Files Filter settings, excluding it from the
results of subsequent sessions

· Exclude Directory excludes all files in the same directory as the selected file

From the sub menu, choose the directory level at which you want to exclude files, right up to the
drive specifier if you need to.

· Exclude DLL excludes all files belonging to the same executable or DLL as the selected file

This adds a filter to the Hooked DLLs settings.

 Filters become effective at the start of the next session. Adding a filter during a session will show
the relevant rows in grey so that you can see which items would be filtered, but the coverage results will
continue to be included for the rest of the current session.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu options: collapse / expand trace

The User Interface 81

Copyright © 2002-2025 Software Verify Limited

· Expand or Collapse Entry shows and hides the selected section in the view, the same as using

the or buttons

· Collapse All completely collapses all sections

· Expand All expands all the sections

The file source code view

Clicking on a file in the directory and file list, shows that file in the source code view on the right.

The source code uses syntax highlighting by default, with the background colour of the line indicating if
the line has been visited, is unvisited or could not be hooked.

Icons are displayed next to hooked and unhooked lines indicating visit and hook status and visit counts
are shown in-line with the code.

Hovering over a line for a short period of time shows a tooltip with the number of visits to the line.

Contiguous groups of lines can be collapsed and hidden from view.

Source code file information

On the right hand panel, above the source code, you'll find some information about the source file

The details shown include the following:

· 'quick view' details for visited and unvisited lines, pink for unvisited, light green for partial visited, and
dark green for 100% visited

· the source code filename and the executable or DLL to which it belongs

Coverage Validator Help82

Copyright © 2002-2025 Software Verify Limited

· the same statistics as seen in the left hand panel

Browsing visited and unvisited lines

· show the previous and next unvisited line of code in the file

 and + also navigate forwards and backwards when the source code has focus.

· show previous and next visited line of code in the file

The arrows are grey when disabled.

 and + also navigate forwards and backwards through the visited lines.

· Line step by individual lines of code

· Group step by groups of contiguous visited or unvisited lines

Keyboard access: Find and Goto

When the data view or the source code view has focus, some keyboard access is available to search for
directories, or to navigate to numbered lines.

Find filename in data view

In the data view, + displays a dialog that will allow you to search by full or partial match for

a directory path.

Find text in source view

The User Interface 83

Copyright © 2002-2025 Software Verify Limited

In the source code view + lets you search by full or partial match anywhere in the file.

Goto line in source view

In the source code view, + displays a goto-line dialog.

.

3.7.6 DLLs

The DLLs tab displays source file coverage information for each DLL that contains hooked functions.

Read on, or click a part of the image below to jump straight to the help for that area.

Coverage Validator Help84

Copyright © 2002-2025 Software Verify Limited

The DLLs view is largely similar to the Coverage view except that the file list is structured as a hierarchy
of DLLs and files rather than just a flat list of files.

As with many of the tab views, the display is split into two resizable panes.

· the left side lists a summary of the DLL and file coverage data

· the right side shows source code for any file selected on the left

We'll cover the file list and its popup menu first, and then the source code view.

The DLL and file list

Each line in the view displays the following:

· the DLL or file name

· the percentage of hookable lines that have been visited

· the number of hooked lines in the DLL or file

This is not the same as the total number of lines in a file, which may include comments,
declarations and white space.

Neither is it the same as the number of hookable lines since some lines or functions can be
excluded from hooking.

The count also includes lines which should have been hooked but failed, for example because
the instrumentation level was set low.

· the number of different lines that have been visited

· the total visit count for the file

This may be equal to the number of different lines visited unless you're counting each visit
separately as seen below:

The statistics for each DLL is an aggregated view of all the files within it.

Files in a DLL are ordered by their full paths, not by the directories in which they are found.

Line colours

The User Interface 85

Copyright © 2002-2025 Software Verify Limited

Each line in the list is colour coded to indicate one of the following:

· the file has not been visited at all

· the file has been visited to some extent

· every hookable line in the file has been visited, i.e. 100% file coverage

· none of the lines in the file could be hooked

Unhooked lines

Depending on what file or DLLs hook filters are set up, not all the hookable lines in a header file may
attempt to be hooked.

Only those that are actually used (e.g. via macros or inlines) in the program may actually be hooked.

 By default, lines that could not be hooked don't stop the coverage from reaching 100%, but you can
change this.

In this example below, the instrumentation level was set low ('incomplete but faster') to force significant
numbers of unhooked lines.

Scrollbar visualisations

Coverage Validator Help86

Copyright © 2002-2025 Software Verify Limited

To the right of each pane, beside the vertical scrollbars, you'll see a coloured area which represents the
coverage.

For the DLL and file list, the visualisation shows the coverage of each item in the list - reflecting the
progress meters in the second column.

For the source code view, the visualisation shows the coverage of each line in the file

These visualisations provide a snapshot view of the whole list of files or the whole source file.

Irrespective of how much you can see in the DLL and file list or in the source code view, you can still get
a global overview of the coverage distribution.

Window orientation

The horizontal or vertical orientation of the statistics and source code panes can be toggled with the
orientation button.

Updating the display

The User Interface 87

Copyright © 2002-2025 Software Verify Limited

· Refresh updates the display - as does the button on the Tools menu and toolbar

Sort order

· Descending reverses the direction of the data, sorted by the names in first column

Expanding and collapsing the data

· Expand All / Collapse All switches any hierarchical view from collapsed to expanded view

Display settings

· Highlight unvisited lines highlights rows for any functions that have not been visited (on by
default)

If switched off, unvisited lines appear white - or whatever colour you've set as the unselected
colour.

File list menu options

The popup menu is identical to that for the Branch Coverage and Functions view.

The following popup menu is available over the data area to add filters, edit code, or expand and collapse
the view.

Menu options: Instrumentation Filter

The instrumentation filter lets you add filters at different levels of granularity:

Coverage Validator Help88

Copyright © 2002-2025 Software Verify Limited

· Exclude Filename adds a new filter to the Source Files Filter settings, excluding it from the
results of subsequent sessions

· Exclude Directory excludes all files in the same directory as the selected file

From the sub menu, choose the directory level at which you want to exclude files, right up to the
drive specifier if you need to

· Exclude DLL excludes all files belonging to the same executable or DLL as the selected file

This adds a filter to the Hooked DLLs settings.

 Filters become effective at the start of the next session. Adding a filter during a session will show
the relevant rows in grey so that you can see which items would be filtered, but the coverage results will
continue to be included for the rest of the current session.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu options: collapse / expand trace

· Expand or Collapse Entry shows and hides the selected section in the view, the same as using

the or buttons

· Collapse All completely collapses all sections

· Expand All expands all the sections

The file source code view

Clicking on a file in the DLL and file list, shows that file in the source code view on the right.

The source code uses syntax highlighting by default, with the background colour of the line indicating if
the line has been visited, is unvisited or could not be hooked.

Icons are displayed next to hooked and unhooked lines indicating visit and hook status and visit counts
are shown in-line with the code.

Hovering over a line for a short period of time shows a tooltip with the number of visits to the line.

The User Interface 89

Copyright © 2002-2025 Software Verify Limited

Contiguous groups of lines can be collapsed and hidden from view.

Source code file information

On the right hand panel, above the source code, you'll find some information about the source file

The details shown include the following:

· 'quick view' details for visited and unvisited lines, pink for unvisited, light green for partial visited, and
dark green for 100% visited

· the source code filename and the executable or DLL to which it belongs

· the same statistics as seen in the left hand panel

Browsing visited and unvisited lines

· show the previous and next unvisited line of code in the file

 and + also navigate forwards and backwards when the source code has focus.

· show previous and next visited line of code in the file

The arrows are grey when disabled.

 and + also navigate forwards and backwards through the visited lines.

Coverage Validator Help90

Copyright © 2002-2025 Software Verify Limited

· Line step by individual lines of code

· Group step by groups of contiguous visited or unvisited lines

Keyboard access: Find and Goto

When the data view or the source code view has focus, some keyboard access is available to search for
DLLs, source code, or to navigate to numbered lines.

Find filename in data view

In the data view, + displays a dialog that will allow you to search by full or partial match for

a DLL path

Find text in source view

In the source code view + lets you search by full or partial match anywhere in the file

Goto line in source view

In the source code view, + displays a goto-line dialog

The User Interface 91

Copyright © 2002-2025 Software Verify Limited

.

3.7.7 Files and lines

The Files and lines view displays coverage data for files and their lines.

Read on, or click a part of the image below to jump straight to the help for that area.

The Files and Lines view is structured as a hierarchy of filenames and the hooked lines within those files.

As with many of the tab views, the display is split into two resizable panes.

· the left side lists a summary of the file and line coverage data

· the right side shows source code for any file or line selected on the left

We'll cover the file and line list and its popup menu first, and then the source code view.

The file and line list

Each line in the view displays the following:

Coverage Validator Help92

Copyright © 2002-2025 Software Verify Limited

· the filename or function line within the file

· for files, the percentage of hookable lines that have been visited, while line data echos the 'progress
bar' of their file

· for files, the number of hooked lines in the file, (unhooked lines in brackets)

This is not the same as the total number of lines in a file, which may include comments,
declarations and white space.

Neither is it the same as the number of hookable lines since some lines or functions can be
excluded from hooking.

The count also includes lines which should have been hooked but failed, for example because
the instrumentation level was set low. The unhooked line count is shown in brackets.

· for files, the number of different lines that have been visited

· the total visit count for the file or line

This may be equal to the number of different lines visited unless you're counting each visit
separately:

Line colours

Each line in the list is colour coded to indicate one of the following:

· the file or line has not been visited at all

· the file has been visited to some extent (or the line has been visited)

· every hookable line in the file has been visited, i.e. 100% file coverage

· the line in the file could be hooked

Unhooked lines

Depending on what file or DLLs hook filters are set up, not all the hookable lines in a header file may
attempt to be hooked.

Only those that are actually used (e.g. via macros or inlines) in the program may actually be hooked.

The User Interface 93

Copyright © 2002-2025 Software Verify Limited

 By default, lines that could not be hooked don't stop the coverage from reaching 100%, but you can
change this.

In this example below, the instrumentation level was set low ('incomplete but faster') to force significant
numbers of unhooked lines.

Scrollbar visualisations

To the right of each pane, beside the vertical scrollbars, you'll see a coloured area which represents the
coverage.

For the file and line list, the visualisation shows the coverage of each item in the list - reflecting the
progress meters in the second column.

For the source code view, the visualisation shows the coverage of each line in the file

Coverage Validator Help94

Copyright © 2002-2025 Software Verify Limited

These visualisations provide a snapshot view of the whole list of files or the whole source file.

Irrespective of how much you can see in the file and line list or in the source code view, you can still get
a global overview of the coverage distribution.

Files and lines options

The coverage controls are shown below.

Window orientation

The horizontal or vertical orientation of the statistics and source code panes can be toggled with the
orientation button.

Updating the display

· Refresh updates the display - as does the button on the Tools menu and toolbar

Display settings

· Highlight unvisited lines highlights rows for any lines that have not been visited (on by default)

If switched off, unvisited lines appear white - or whatever colour you've set as the unselected
colour.

The User Interface 95

Copyright © 2002-2025 Software Verify Limited

· Show Path for filenames, shows the short file name or the longer file path in the File column of
the data

· Show unhooked functions display information about lines that could not be hooked (off by
default)

This means unhookable lines, for example, lines that were too short, rather than lines or
functions that are deliberately set not to be hooked.

Files and lines menu options

The following popup menu is available over the data area to add filters, edit code, or expand and collapse
the view.

Menu options: Instrumentation Filter

The instrumentation filter lets you add filters at different levels of granularity:

· Exclude Filename adds a new filter to the Source Files Filter settings, excluding it from the
results of subsequent sessions

· Exclude Directory excludes all files in the same directory as the selected file

From the sub menu, choose the directory level at which you want to exclude files, right up to the
drive specifier if you need to

Coverage Validator Help96

Copyright © 2002-2025 Software Verify Limited

· Exclude DLL excludes all files belonging to the same executable or DLL as the selected file

This adds a filter to the Hooked DLLs settings.

The other options all add a filter to the Class and function filter settings

· Filter By Class excludes all functions in the selected class

Example filter: CTeststakDoc::

· Filter By Class And Method excludes only the selected class functions

Example filter: CTeststakDoc::OnNewDocument

· Filter By Method excludes all functions in the selected class

Example filter: OnNewDocument

 Filters become effective at the start of the next session. Adding a filter during a session will show
the relevant rows in grey so that you can see which items would be filtered, but the coverage results will
continue to be included for the rest of the current session.

Menu option: editing source code

· Edit Source Code... opens the default or preferred editor to edit the source code

Menu options: collapse / expand trace

· Expand or Collapse Entry shows and hides the selected section in the view, the same as using

the or buttons

· Collapse All completely collapses all sections

· Expand All expands all the sections

The file source code view

Clicking on a file in the file and line view shows that file in the source code view on the right, with the
selected line highlighted.

The User Interface 97

Copyright © 2002-2025 Software Verify Limited

The source code uses syntax highlighting by default, with the background colour of the line indicating if
the line has been visited, is unvisited or could not be hooked.

Icons are displayed next to hooked and unhooked lines indicating visit and hook status and visit counts
are shown in-line with the code.

Hovering over a line for a short period of time shows a tooltip with the number of visits to the line.

Contiguous groups of lines can be collapsed and hidden from view.

Source code file information

On the right hand panel, above the source code, you'll find some information about the source file

The details shown include the following:

· 'quick view' details for visited and unvisited lines, pink for unvisited, light green for partial visited, and
dark green for 100% visited

· the source code filename and the executable or DLL to which it belongs

· the same statistics as seen for the file in the left hand panel

Browsing visited and unvisited lines

When a line has been selected in the files and lines view, the line is marked in the source code.

You can then use the following buttons to move to adjacent lines;

Coverage Validator Help98

Copyright © 2002-2025 Software Verify Limited

· show the previous and next unvisited line of code in the file

 and + also navigate forwards and backwards when the source code has focus.

· show previous and next visited line of code in the file

The arrows are grey when disabled, for example when a filename rather than a line is selected
on the left.

 and + also navigate forwards and backwards through the visited lines.

· Line step by individual lines of code

· Group step by groups of contiguous visited or unvisited lines

Keyboard access: Find and Goto

When the data view or the source code view has focus, some keyboard access is available to search for
filenames, code or to navigate to numbered lines.

Find text in data view

In the data view, + displays a dialog that will allow you to search by full or partial match for

text in the filenames in the first column.

Find text in source view

In the source code view + lets you search by full or partial match anywhere in the file

The User Interface 99

Copyright © 2002-2025 Software Verify Limited

Goto line

In the source code view, + displays a goto-line dialog

.

3.7.8 Diagnostic

The Diagnostic tab displays information collected by Coverage Validator about the target program.

There are two subtabs. One for Diagnostic information and one for displaying any data captured from
stdout and stderr.

Diagnostic

Coverage Validator Help100

Copyright © 2002-2025 Software Verify Limited

Diagnostic information

When Coverage Validator's stub is injected into the target program, it logs diagnostic information to the
main window for inspection.

Examples of diagnostic data collected are below, and may be displayed with a message, although you
may not see some of these if all is well:

Hooking information Other information

· Ordinal hook found
· Function hook success or failure
· Delay loaded function hooked
· Possible hook found
· Function already hooked
· Hook at address

· DLL load address
· DbgHelp searching
· Image source line
· Unknown instruction found
· Disassembly of troublesome code
· Other text message

The locations of loaded DLLs are also displayed in the window for each LoadLibrary(),
LoadLibraryEx() and FreeLibrary() in the target program.

 If for whatever reason, you don't want to collect diagnostic information, you can switch it off in the
Data Collection > Miscellaneous settings.

Unhooked lines

The User Interface 101

Copyright © 2002-2025 Software Verify Limited

Messages indicating that particular source lines could not be hooked are common and are because
there was not enough space to safely insert a hook for the particular line.

This is normal and is to be expected. The number of lines that cannot be hooked because of this will vary
from program to program, and from debug mode to release mode based on what the program is doing
and how the program is optimized.

Filtering diagnostic information

By default, all information is displayed, but you can filter the messages to show only one type:

· All the default
· Information operating system and environment information, etc
· Hooks hooking success and failure messages
· DLLs DLL related information
· Symbols symbol loading status messages
· DbgHelp debug messages from DbgHelp.dll about the DLL symbol search processes
· Symbols and DbgHelp debug both the previous two

As well as filtering different types of lines, you can also search for specific terms:

· Filter enter some text and Apply Filter to show lines with the term in the Message column

 When identifying why symbols aren't loading, you'll find it's much easier when showing only the
DbgHelp debug information.

Stdout and Stderr

Coverage Validator Help102

Copyright © 2002-2025 Software Verify Limited

The Stdout tab displays any data collected from stdout and stderr. The option to enable this data
collection is specified on the launch dialog/wizard.

The above image shows some data collected from a program that reverses the characters in each line
passed to it.

· Copy copy all data from the display on to the clipboard. For large amounts of data this can be
time consuming.

· Clear clear the display of any captured data.

· Display Most Recent the display will be scrolled to ensure the most recently captured data is
displayed.

Environment Variables

The User Interface 103

Copyright © 2002-2025 Software Verify Limited

Environment variables tab displays environment variables from Coverage Validator, environment variables
from the program under test and environment variable substitution errors.

Choose which data you wish to view using the combo box at the top left of the tab.

Coverage Validator environment variables

Target application environment variables

If you launched the target application from the Validator the target application’s environment variables will
be similar to those in the Validator, but with some additional env vars to control .Net profilers and and
some other SVL_ prefixed env vars to communicate various data to Software Verify components that are
loaded.

If you launched the target application as a standalone application, or service and used one of our APIs to
connect to the Validator, the environment variables shown will reflect those in force at the time the
application/service was started, and the account that application/service is running on.

Coverage Validator Help104

Copyright © 2002-2025 Software Verify Limited

Environment variable errors

The environment variable errors display shows the name of the environment variable that could not be
found, the string containing the environment variable, a comment indicating where the string came from
(in this example, the command line), and a timestamp.

Child Processes

Information about child processes, and the appropriate launch parameters passed to CreateProcess (and
related functions) are displayed on this tab.

A context menu is provided to allow you to perform some actions with the launched application data.

The User Interface 105

Copyright © 2002-2025 Software Verify Limited

· Launch parent application and monitor this application... the launch application dialog is
displayed configured to launch the parent application and monitor this application

· Launch application... the launch application dialog is displayed configured to launch and monitor
this application

· Open directory... Windows Explorer is launched to view the contents of the launch directory (the
directory field is empty nothing will be shown)

· Open application directory... Windows Explorer is launched to view the directory that contains
the application (if the application specification has no path nothing will be shown)

3.7.9 Floating Licence

The Floating Licence view displays information about the computers using the floating licence.

This view is only displayed if a floating licence has been purchased. Evaluation users will not see this
view.

The screenshot above show two computers using the same 2 user floating licence, that has maintenance
id 15838. Both computer users are licenced and can use the software.

On startup the software automatically checks to see if a floating licence is available, and acquires the
licence if possible. This takes a few seconds to process, after startup of the software.

Global Floating Licences
An internet connection is required for floating licences to work . The licence server is managed

and run by Software Verify.

Local Network Floating Licences
An internet connection is not required for local network floating licences to work . No licence

server is required. The licences are automatically managed by the computers on the local network.

Licence information

The information show in this display allows you to identify which of your colleagues are using the
software and which versions of the software are in use.

Coverage Validator Help106

Copyright © 2002-2025 Software Verify Limited

· User
The user id (1 to number of licensed users).

· Computer Name
The name of the computer

· Computer User
The login name of the user of the computer.

· Identifier
The unique identifier for this licence, used on the licence server.

· ID
The maintenance id for the software.

· Software Tool
The software tool and version of the software that is running on that computer.

· Computer ID
The unique id for this computer.

· IP Address
This computer's IP address.

Unlicenced users

If any additional users are trying to get a licence for the software, but there are not enough licences, they
will also be shown in the display, but with red text on a yellow background.

Please note that on the machine of an unlicensed user the status information will be different.

The software checks to see if a licence has been released on a periodic basis, so that if a licence is
released by another user, it can be acquired by the next waiting user.

Releasing a licence

If you have finished using a licence and wish to let a team mate use the software, you have two choices.

You can close Thread Validator, releasing the licence as it closes.

Or you can keep Thread Validator running by manually releasing the licence. Do this by clicking the
Release Licence button.

Acquiring a licence

The User Interface 107

Copyright © 2002-2025 Software Verify Limited

If you have released a licence you will need to actively reclaim a licence when you wish to use Coverage
Validator again. You can start this procedure by clicking the Acquire Licence button.

3.8 User Interface Mode

Setting the user interface mode - Wizards or Dialogs?

For some key tasks, there are two user interface modes controlling the way in which options are
presented to you:

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode all options are contained in a single dialog

Experienced users will find this mode quicker to use

To set the user interface mode

 Settings menu User Interface Mode... select the desired mode in the User Interface
Chooser dialog:

The user interface mode affects the following tasks:

· Attaching to an application (Injection)

· Launching an application

· Wait for application to start

Coverage Validator Help108

Copyright © 2002-2025 Software Verify Limited

3.9 UX Theme

The user interface provides three UX themes.

· Modern. The look and feel of current Software Verify tools.
· Classic. The look and feel of previous Software Verify tools.
· High Contrast. A higher contrast version of the Modern theme.

Setting the UX theme

To set the UX theme

 Settings menu UX Theme... shows the UX Theme chooser dialog

Changing the UX theme will update some of the colours that you can modify with the colour settings
dialog.

3.10 Settings

Coverage Validator allows extensive control over which data is collected and how that data is displayed.
Additional options control the way the application behaves.

These settings can generally be considered as Global settings or Local settings.

Global and local settings

Global settings affect all data collected and its display throughout Coverage Validator.

Global settings are changed via the Data Collection Settings Dialog and the following 25 or so pages
describe each available group of settings.

Local settings apply to controls and data displayed in each of the main display windows.

Local settings are found at the top of each relevant tab.

The User Interface 109

Copyright © 2002-2025 Software Verify Limited

Other settings

There are a few more settings not included in the global settings dialog such as:

· User interface mode

· Session settings

3.10.1 Data Collection Settings

The Data Collection Settings dialog allows you to control all the global settings in Coverage Validator that
affect the way data is collected and displayed. There are also local display options on most of the main
tabs.

 This page has a warning about use of the Reset button.

Opening the settings dialog

To view the settings dialog, choose Settings menu Edit Settings...

Or use the option on the Session Toolbar:

Using the settings dialog

The dialog has a scrolled list on the left hand side, grouping the topics. When a topic is clicked, its
related controls are displayed on the right hand side.

The default display of the dialog is shown below with the first topic selected.

Coverage Validator Help110

Copyright © 2002-2025 Software Verify Limited

After selecting a topic, you can also use the cursor up and down arrow keys to change the selected
item.

Entering a character on the keyboard cycles though topics starting with that letter.

 Too many settings? It may seem that there is an overwhelming number of settings to worry about.
Don't panic! The good news is that for new users, very few (if any) settings actually need to be changed
to use the application in most cases, and even for experienced users, many groups of settings will not
be needed. However, Coverage Validator remains flexible for all our users in many different scenarios.

Click on any item in the picture below to find out more about the settings for that group.

The User Interface 111

Copyright © 2002-2025 Software Verify Limited

Restoring the default settings

The settings dialog has Reset All and Reset buttons near the bottom left of the dialog which you can
use to reset all global settings back to their default values.

 The Reset All button resets all global
settings in Coverage Validator, not just the settings
visible on the current tab of the dialog.

Coverage Validator Help112

Copyright © 2002-2025 Software Verify Limited

 The Reset button resets just the settings
visible on the current tab of the dialog.

3.10.1.1 Data Display

3.10.1.1.1 Display Behaviour

The Display Behaviour tab allows you control how which displays are shown when a program starts
executing and when a program finishes executing.

The default options are shown below:

Coverage Validator can change the current display to any of the following displays.

· Summary the main display
· Coverage code coverage
· Branch Coverage branch code coverage
· Functions function code coverage
· Directories : Types directory code coverage
· DLLs : Sizes dll code coverage
· Files and Lines : Locations code coverage for files and lines
· Diagnostic : Diagnostic diagnostic information
· Diagnostic : Stdout text collected from stdout
· Diagnostic : Environment Variables environment variables from the program under test
· Diagnostic : Child Processes processes launched by the program under test

Program Starts Executing Behaviour

When Coverage Validator starts monitoring the behaviour of an application the current display can
automatically be switched to any of the displays listed above.

The User Interface 113

Copyright © 2002-2025 Software Verify Limited

There is also the option not to change the display.

Program Finished Executing Behaviour

When Coverage Validator has finished processing all the information from the target application the
current display can automatically be switched to any of the displays listed above.

There is also the option not to change the display.

The type of display that may interesting for collected data depends on the type of program that was
executed. Native, .Net or Mixed mode. To accommodate this we provide one setting for each of the three
program types.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.1.2 Colours

The Colours tab lets you choose the colours used to display statistics and source code.

The default colours are shown below:

Coverage Validator Help114

Copyright © 2002-2025 Software Verify Limited

The colours on the right are used for highlighting data in the Summary Tab; other tab data displays, and
the source code.

The three colours on the left are used for percentage bars in the data displays.

Highlighting data that won't be shown on the next run

You can use other settings, such as the Source Files Filter, to exclude files or directories of source code
from being analyzed.

If you've already got coverage data being displayed, and you filter out some of that data, it is not removed
from statistics in the current session.

However, you can opt to highlight the data that will excluded. The Selected colour (light grey in the above
example) will be used for this.

· Display files that will be filtered on the next run... If checked, this will highlight filtered data
(the default)

In the example below, the Microsoft Visual Studio folder has just been added to the Source Files Filter,
removing two of the files that were displayed:

Changing display colours

For each colour you can choose a predefined colour or make your own:

· Use the drop-down list pick one of 16 predefined colours below

The User Interface 115

Copyright © 2002-2025 Software Verify Limited

· Click the button edit the colour using the standard colour dialog:

 See the Data Display Settings for changing the colour of the visit count shown in the source code..

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.1.3 Data Display

The Data Display page allows you to specify how data is shown on all the data displays.

Coverage Validator Help116

Copyright © 2002-2025 Software Verify Limited

Numerical data format

Numeric data on the displays can contain some pretty big values, up to 2 6̂4-1 if needed!

Long values are hard to read without grouping digits. To improve readability Coverage Validator can
delimit each group of three digits, so 1234567 becomes 1,234,567 for example.

· No separators / Use separators Choose whether to group digits

The format used to delimit digit groups is set to User Default, which uses your computer's current
locale, but you can change the format to suit another language if you wish.

· Language Format numbers according to the default locale, or choose another language

Numerical data alignment

Numeric data on the displays can be aligned left or right, with right aligned numbers being more easily
compared.

· Left alignment / Right alignment Choose preferred alignment

Embedding visit counts in the source code

The source code displayed on most of the main tabs can show a colour-coded visit count in-lined to the
left of the source code.

You can choose a colour to display these statistics to distinguish them from the code and line numbers.

The User Interface 117

Copyright © 2002-2025 Software Verify Limited

Without embedding statistics:

With embedded statistics:

· Display embedded statistics Choose whether to include the visit count

If displayed (the default), you can choose a preferred text colour, and a width for the column:

· Visit count Set your preferred colour

· Visit width Change the column width

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.1.4 Code View ing

The Code Viewing tab allows you to configure some options when viewing the source code pane.

Coverage Validator Help118

Copyright © 2002-2025 Software Verify Limited

Source Code Viewing Pane

The source code pane is displayed on the right hand side of most of the main tabs:

· Coverage
· Branch Coverage
· Functions
· Directories
· DLLs
· Unit Tests
· Files and Lines

Syntax highlighting

Usually the source code shows a colour coded syntax:

· Enable syntax colouring... Untick if you don't want colour coded syntax

Visit count tooltips

Tooltips showing the visit count may be useful if you've disabled the display of the visit count in the
source code.

· Enable tooltips... Tick if you want tooltips like the one below

The User Interface 119

Copyright © 2002-2025 Software Verify Limited

Collapsing lines

You may want to temporarily collapse sections of source code you're not interested in.

· Enable collapsing lines... Check this to enable collapsing lines (see below)

To create a collapsible region:

Left click drag (up or down) in the dark grey margin immediately to the left of the source code.
Release the mouse at the end of the region you want to collapse.

 Page up/down and mouse-wheel scrolling works during the drag if you want to select more than
you can see.

A 'collapse line' will appear as below:

To collapse the region, left click anywhere on the collapse line, and the region will reduce to a single
grey highlighted line:

To expand the region again, left click the symbol.

To remove the collapsible status, right click anywhere on the collapse line.

 A collapsible region that spans right across another region will take precedent and the smaller
regions will be removed.

 Creating a region that partially overlaps another will merge them into one.

Auto update

Coverage Validator Help120

Copyright © 2002-2025 Software Verify Limited

Viewing the source code while your program is still running may cause the view to update as you
browse.

Updates happen once a second by default, but you can change this interval in the local settings of each
tab view.

Reasons you might want to also disable the auto-update could be:

· You want to keep an eye on the statistics, but still browse the source code without it updating every
second

· You may find that very large files are slow to update regularly.

To disable the auto update:

· Automatically update coverage colours... Uncheck this to prevent the source code auto
updating

Without auto-update, you'll need to use the manual refresh button found on each view.

Fully qualified file names

If the display of file names in the data is of a shortened format (as reported by DbgHelp), Coverage
Validator can determine the fully qualified file name based on any source file locations you may have
provided.

· Always display fully qualified filenames... Check to show complete file name paths where
possible

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.1.5 Source Brow sing

There a few areas in Coverage Validator where you can view snippets of source code, such as in the
Query tool results.

The Source Browsing tab allows you control how much source code is displayed and the indentation.

The default options are shown below:

The User Interface 121

Copyright © 2002-2025 Software Verify Limited

Source browsing

When viewing sections of source code, you can choose to see the whole function or a few lines either
side of the line of interest.

· Show entire function shows the whole function source as below:

· Show lines shows a given number of lines before and after the point of interest:

· Lines before trace number of lines before, from 0 to 100

· Lines after trace number of lines after, from 0 to 100

The default is to show 5 lines above and below, as in this example:

Coverage Validator Help122

Copyright © 2002-2025 Software Verify Limited

Source browsing - how much to show?

Showing the entire function is more likely to show the full context of the line of interest, but if you have
particularly long functions it may become cumbersome to browse query data!

Because of the unpredictable lengths of showing entire functions, the entire function is not the default
setting.

Showing a set number of lines reduces the amount of source display to something that is consistent and
manageable.

You may see parts of neighbouring functions that are not relevant (as above), or you may not see enough
of the preceding lines to determine the full context of the line. If this happens often, try changing the
number of lines displayed.

Tab size formatting

When formatting the source code being displayed you can control the tab size

· Tab width set the tab size between 1 and 16 characters

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

The User Interface 123

Copyright © 2002-2025 Software Verify Limited

3.10.1.1.6 Editing

The Editing tab allows you to configure which editor Coverage Validator will use for editing source code.

The default settings are shown below:

Editing source code

From the Tools menu, or any of the data views in the main tabs, you can right click to edit the source
code.

By default, source code is opened in a provided source code editor using syntax colouring, but you can
change where you edit code via the drop-down list:

Coverage Validator Help124

Copyright © 2002-2025 Software Verify Limited

When choosing one of the editors listed, you can request a currently open instance (e.g. the same one
you are using to develop your application), or to open a new instance.

SCiTE is included in the list of editors, but there are many text editors that can be used for source
code on windows. Wikipedia has a comparison of editors including their programming feature support

Editing with your preferred editor

We've all got our favourite editors! To use yours:

· Select User defined editor from the list of options enables the fields below

· Enter the Editor path and filename or just Browse choose the executable for your preferred
editor

Now when you want to edit source code, that editor will be opened, but typically you'll need to specify
some command line arguments with which to start the editor.

The User Interface 125

Copyright © 2002-2025 Software Verify Limited

Starting your preferred editor with command line arguments

By default, just the file name is passed as a command line argument to the editor.

Depending on the editor, you may need to tailor the arguments, for example if you want the file scrolled
to a particular line.

The arguments can be specified by adding them to the table provided, one at a time and in the order
required

· Add adds a row to the Editor arguments table select an argument Type from the following
options

The possible arguments include:

· (Space) Filename appends a space followed by the filename
· Filename appends just the filename

· (Space) Line Number a space followed by the line number
· Line Number just the line number

· Space a space

· (Space) Other a space followed by the text typed in the Value column of the list
· Other just the text typed in the Value column of the list

 Only the Other options need an entry in the Value column.

 You will need to press Return after entering the value otherwise the entry won't get recognized.

The example below configures NotePad++ to edit a file at the required line using the -n switch

Coverage Validator Help126

Copyright © 2002-2025 Software Verify Limited

As you modify the arguments an example command line is shown below the list.

Managing the command line arguments

Edit a Type or Value by double clicking the entry. The usual controls apply for removing list items:

· Remove removes selected arguments in the list

· Remove All removes all arguments, clearing the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.1.7 File Locations

The File Locations tab allows you to specify which directories Coverage Validator should look in for
source code files, whether that's your own or third party code.

The default settings are shown below:

Read on, or click on a setting in the picture below to find out more:

The User Interface 127

Copyright © 2002-2025 Software Verify Limited

File locations

Sometimes the information Coverage Validator has access to consists of the file name, but not the
directory.

When this happens Coverage Validator scans a set of directories that it knows about in order to find the
file.

The options below allow you to specify those directories that should be searched for source files, PDB
files and MAP files.

If a file can't be found, you'll get prompted for a location, but you can control this below as well.

Setting directories for a path type

There are four path types, and a separate list of directories to scan for each one.

· Path Type select the type of file with which you want to modify the list directory

 You don't have to specify any directories if you don't want to, or if you just don't have them. Nor do
you have to give directories for all the path types.

Coverage Validator Help128

Copyright © 2002-2025 Software Verify Limited

Prompting for file locations

Whenever a file still cannot be found, then the default action is for a dialog to ask you where it is.

To avoid frequent user interruption, it is recommended that the directories for source code files (yours
and third party) are specified, enabling Coverage Validator to automatically load source code for
browsing.

If however, you don't want to be prompted for locations, you can disable that too.

· Ask for location of file... untick to stop prompting for file locations

Even when prompting is switched on, it can still happen that the line in question is invalid anyway, e.g.
line number 0 or -1.

The default is not to prompt for invalid lines, but if you want to know when that happens, just switch that
behaviour off.

· Don't ask for location of file if line number is not valid... untick to be prompted for invalid
lines anyway

PDB (program database) file paths

Normally PDB search paths are automatically generated, based on the same directories that .exe and
.dll files are found in:

· Automatically detect PDB paths automatically detect PDB locations (the default)

However, it is recommended that you specify paths for PDB (program database) files, especially if your
build environment dictates that PDB files are kept in different directories to their binaries.

If you don't automatically generate PDB paths and you don't specify any paths for PDBs, the search path
will be defined as the current directory plus any paths found in the following environment variables:

· _NT_SYMBOL_PATH
· _NT_ALTERNATE_SYMBOL_PATH
· SYSTEMROOT

MAP file paths

It's recommended that you specify paths for Map files if your build environment means they are kept in
different directories to their binaries.

If you don't specify any paths for Map files, then search paths are automatically generated, based on the
same directories that .exe and .dll files are found in.

Manually adding path type directories

The User Interface 129

Copyright © 2002-2025 Software Verify Limited

Once you have chosen your path type you can modify the list of files for each path type in the following
ways:

· Add appends a row to the directory list enter the directory path

Edit a directory path by double clicking the entry. The usual controls apply for removing list items:

· Remove removes selected items from the list

· Remove all clears the list

· Remove invalid removes all items that are not valid directories from the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Scanning for directories to add

The File Scan... button displays the File Search dialog to provide three ways of specifying the files to
scan.

· Visual Studio Search choose the version of Visual Studio OK starts a scan for directories
related to that version of Visual Studio

· Directory Search Browse... displays a directory browser navigate to a location you want to
scan within OK starts a scan for directories

· File System Search OK starts a scan of all drives for directories containing files

Coverage Validator Help130

Copyright © 2002-2025 Software Verify Limited

All options will bring up a File Scan dialog indicating number of relevant directories found, and giving you
a chance to Stop or Cancel the scan at any time:

Once the scan is complete you'll see the File Paths dialog showing you the scan results:

You can modify the list of resulting directories by adding, removing or editing, exactly as for the path
type list above.

Once you're happy with the scan results, either append or replace the path type directories with the scan
results.

· Add To List adds the scan results list to the path type directories and closes the File Paths
dialog

· Replace List replaces the path type directories with the scan results

· Cancel discard the scan results and close the dialog

Exporting and Importing

Since the list of path types and their file locations can be quite complicated to set up and optimise, you
can export the settings to a file and import them again later. This is useful when switching between
different target applications.

The User Interface 131

Copyright © 2002-2025 Software Verify Limited

· Export... choose or enter a filename Save outputs all the path types and their file locations
to the file

· Import... navigate to an existing *.cvxfl file Open loads the hooking rule and the list of
modules

 The exported file can be used with the -fileLocations command line option.

Export file format

The file format is plain text with one folder listed per line. Sections are denoted by a line containing
[Files] (for source code files), [Third] (for third party source code files), [PDB] etc.

Example:

[Files]
c:\work\project1\
[Third]
d:\VisualStudio\VC98\Include
[PDB]
c:\work\project3\debug
c:\work\project3\release
[MAP]
c:\work\project3\debug
c:\work\project3\release

Checking directory scanning order

To see the order in which the DbgHelp.dll process checks directories to find symbols, see the diagnostic
tab, showing DbgHelp debug in the drop-down.

Reset All - Resets all global settings, not just those on the current page.

Currently, the four checkbox items at the bottom of this page are not reset as part of the global settings.

Reset - Resets the settings on the current page.

Currently, the four checkbox items at the bottom of this page are not reset.

3.10.1.1.8 Path Substitutions

The Path Substitutions tab allows you to specify how file paths can be modified to account for copying
a build from a build machine to a development machine or test machine.

File paths need to be modified otherwise the debug information will point to source code in locations that
don't exist on the new machine.

Coverage Validator Help132

Copyright © 2002-2025 Software Verify Limited

There are no substitutions set up by default:

Path Substitutions

Some software development schemes have multiple rolling builds of their software, often enabled by
using substituted disk drive naming schemes.

When you download the build to your development machine for development and testing, debugging
information may reference disk drives that don't exist on your machine, for example, drive X: while your
machine only has C:, D:, and E: drives.

Or you may just be copying a build from a drive on a development machine to a subdirectory on a drive
on your test machine.

These options let you remap the substitution so that the Coverage Validator looks in the correct place for
the source code.

· Add adds a row to the File Paths Substitutions table enter the new path that will replace the
old path in the New Path column click in the Old Path column enter the path that is being
replaced

For example, you might enter c:\users\stephen\documents for the new path and f:\dev\build
for the old path.

You can double click to edit drives and paths in the table, or remove items:

· Remove removes selected substitutions from the list

· Remove All removes all substitutions from the list

The User Interface 133

Copyright © 2002-2025 Software Verify Limited

Alternatively, press to delete selected items, and + to select all items in the list first.

Example: Changed disk drive
Project originally located at m:\dev\build\testApp
Project copied to e:\dev\build\testApp
New Path e:\
Old Path m:\

Example: Project copied to a new location
Project originally located at f:\dev\build\testApp
Project copied to C:\Users\Stephen\Documents\testApp
New Path C:\Users\Stephen\Documents
Old Path f:\dev\build

 The slashes do not have to match, a forward slash will match a backslash when comparing path
fragments. This is deliberate - to improve ease of use with libraries built by different compilers (LLVM and
compilers that use it use forward slashes, whereas Visual Studio etc use backslashes).

Path Substitution Method

Path substitution can be turned off, use only manually specified paths, perform automatic path
substitution based on best guesses based on information in the executable, or a combination.

Use the combo box to choose the appropriate path substitution method. The default is automatic path
substitution and if that fails to try path substitution using the manually specified paths.

· No path substitution path substitution does not happen
· Only substitute specified paths path substitution uses the manually specified paths
· Automatic substitution only path substitution is performed automatically using information in the

executable
· Automatic substitution, specified paths if substitution fails an attempt at automatic path

substitution is made, if this fails path substitution is performed using the manually specified paths

The default is Automatic substitution, specified paths if substitution fails.

IMPORTANT

File Substitution is for updating the source code paths in the debugging information as the code coverage
information is being collected.

It is not for fixing up paths because you accidentally collected coverage using one set of paths on
computerA and a different set of paths on computerB and then want to fix those paths (for example when
merging collected data).

The correct solution for this scenario is to fix the paths on both machines to match each other. You are
in control of this scenario, therefore you can set it up correctly.

Coverage Validator Help134

Copyright © 2002-2025 Software Verify Limited

It is not the same as the build machine vs dev machine environment where the build directory may
change with each rolling build and the dev machine may have multiple branches on it, each with a
different path.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.2 Filters

3.10.1.2.1 Hooked DLLs

The Hooked DLLs tab allows you to specify which DLLs should be hooked or not.

The default is simply to hook everything.

Read on, or click on a setting in the picture below to find out more.

Which DLLs to hook - the hooking rule

By default, Coverage Validator will try to hook all DLLs and .EXEs used by your application, but you can
choose to list only those which should be included or excluded:

· Hook all DLLs hook everything - ignoring the settings in the list

The User Interface 135

Copyright © 2002-2025 Software Verify Limited

· Hook the enabled DLLs in the list hook only the ticked modules listed

· Do not hook the enabled DLLs in the list ignore all the ticked modules in the list, and hook
everything else

Populating the process modules list

The process modules list should specify the following items to be included or excluded from hooking in
the target application

· DLLs
· .EXEs
· folders containing DLLs and .EXEs

Initially the list is empty as the default option is to hook all DLLs and ignore the list. You can add
modules to the list by:

· automatically adding modules on which your application is dependent
· manually adding modules or folders
· editing modules or folders already in the list

Automatic module addition

You can automatically populate the list with all the dependent modules for your application:

· Choose Exe... navigate to your application and click Open all the process modules appear in
the list

Manual module addition

You can also manually add one or more modules or a folder to the list.

Coverage Validator Help136

Copyright © 2002-2025 Software Verify Limited

· Add Module navigate to the DLL or EXE and click Open all the selected items are added

· Add Folder navigate to the folder and click OK the folder is added to the list

Manual addition might be useful for example if you use LoadLibrary() to load a DLL rather than linking
it, as this would not be picked up automatically by the Choose Exe... method.

By default, all the modules are ticked in the yellow checkboxes.

Any DLLs in the list override the DLL Hook Insertion settings on the Hook Insertion tab.

Note that ticked modules or folders are either included or excluded depending on the hooking rule
above

Altering existing module names

Although you can't add blank entries to the list and edit them, you can edit existing items in the list by
double clicking on an entry:

· enter only the module name, not the path
· you can use wild-cards like MFC*.dll, but only for DLLs, not folders

Managing the process modules list

The usual controls apply for removing or changing the enabled state of items in the list:

· Remove removes selected items in the list

· Remove All removes all items, clearing the list

· Enable All ticks all items in the list for applying to the hooking rule

· Disable All unticks all items in the list, meaning they won't apply to the hooking rule

Alternatively, press to delete selected items, and + to select all items in the list first.

Exporting and importing

Since the list of hooked DLLs (and the rule being applied) can be quite complicated to set up and
optimise, you can export the settings to a file and import them again later. This is useful when switching
between different target applications.

· Export... choose or enter a filename Save outputs the hooking rule and the list of modules
to the file

· Import... navigate to an existing *.cvx file Open loads the hooking rule and the list of
modules

The User Interface 137

Copyright © 2002-2025 Software Verify Limited

 The exported file can also be used with the -dllHookFile command line option.

Optionally hooking delay loaded DLLs

· Don't hook delay loaded DLLs prevents hooking of delay loaded DLLs. The default is to hook
these.

 What is 'delay loading'?

Delay loading a DLL is when it is implicitly linked, but not actually loaded until your code
references a symbol contained in the DLL.

Delay loading can speed up startup time, but unhandled exceptions may cause your program to
terminate if the DLL can't be found when needed during the run time.

Launching new Applications

When specifying DLLs to hook, and launching different applications, it can be quite easy to forget to
change the hooked DLLs for the new program. This might be the case when performing unit tests, for
example.

Using the wrong list of hooked DLLs for a program will likely cause incorrect coverage results, so you
can opt to be warned about the DLLs being hooked whenever the target application changes between
sessions (using the dialog below).

The choices in the drop down list are only applicable when the application changes:

· Ask about DLLs to Hook settings if some DLLs defined

You'll only be asked about the settings if you defined some DLLs in the list and if the hooking
rule is not set to hook all DLLs

· Always ask about DLLs to Hook settings

You'll always be asked about the settings - whatever the other settings are.

· Never ask about DLLs to Hook settings

The 'Launch Different Application' dialog

When being asked about the hooked DLL settings, you'll see the following dialog:

Coverage Validator Help138

Copyright © 2002-2025 Software Verify Limited

You can update the settings; ignore them and launch anyway, or just cancel the launch:

· Update Settings and Launch edit the settings click OK the application will be launched

· Ignore Settings and Launch the application will be launched without updating the settings

· Cancel won't launch the application

To change when you are asked this question, just choose the appropriate option in the dialog.

Advanced options

There are a few system DLLs which are generally not much use when hooked for code coverage.

The source code for these DLLs is unlikely to be available, and even if it is, your application is unlikely to
be able to influence the code coverage.

Consequently, by default these system files are not hooked - unless you override that by specifically
including them in the process modules list above.

With the advanced options below, you can change this behaviour if you need to, letting you specify which
DLLs will be processed according to the rules for Source Code Line Hook Insertion.

· Advanced shows the Hooked DLLs (Advanced) dialog for function and line profiling

The User Interface 139

Copyright © 2002-2025 Software Verify Limited

In the Hooked DLLs (Advanced) dialog:

· Use the Hooked DLL settings... if selected then only the general settings apply (i.e. those on the
Hooked DLLs tab)

· Use these default DLL settings... if selected then the checkboxes control the default behaviour
for the relevant DLLs

The default is not to track functions in files in the following:

· MFC DLLs... check to cover MFC*.DLL or leave unchecked to ignore

· MSVC DLLs... check to cover MSVC*.DLL or leave unchecked to ignore

· STL support DLL... check to cover MSVCP*.DLL or leave unchecked to ignore

· the system directory... check to cover anything in C:\WINDOWS\SYSTEM32 or leave
unchecked to ignore them

· Reset resets the settings in the dialog

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.2.2 Hooked File Extensions

The Hooked File Extensions page lets you specify which source code file types should be hooked or
not.

Coverage Validator Help140

Copyright © 2002-2025 Software Verify Limited

Which file types to hook - the hooking rule

By default, Coverage Validator will try to hook all file types used by your application, but you can choose
to list only those which should be included or excluded:

· Hook all file types hook everything - ignoring the settings in the list

· Only hook the file types in the list hook only the listed file types

· Don't hook the file types in the list ignore all the listed file types, and hook everything else

File extensions to hook

By default, all source code files are hooked, but you can change this by specifying only those file
extensions which should be hooked.

For example, you may want to include C++ source and header files but exclude C source files with the
.c extension:

cpp
h

or
cpp
cxx
hpp
hxx
h

The usual controls apply for adding, removing or changing items in a list:

The User Interface 141

Copyright © 2002-2025 Software Verify Limited

· Add... adds a new row to the list enter the extension you want to allow

· Remove removes selected items in the list

· Remove All removes all items, clearing the list

· C++ adds the file extensions for C++

· C# adds the file extensions for C#

· Delphi adds the file extensions for Delphi

· Fortran 95 adds the file extensions for Fortran 95

· VB.Net adds the file extensions for the VB.Net

· VB6 adds the file extensions for the Visual Basic 6

Alternatively, press to delete selected items, and + to select all items in the list first.

Clear the list to hook all source file types again.

 Do not include the dot in the extension.

The filters take effect on the next session. If you're in the middle of a session and existing views show
data that will be excluded in the next session, then that data will be highlighted according to the colours
settings

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.2.3 Source Files Filters

The Source Files Filter page allows you to specify which source files should not be hooked.

Coverage Validator Help142

Copyright © 2002-2025 Software Verify Limited

Listing files to exclude or include

By default, Coverage Validator will try to hook all source files used by your application, but you can
choose to list only those which should be included or excluded

· Hook all files... hook all files

· Don't hook the files in the list... hook everything except the files in the list

· Only hook the files in the list... hook only the source files listed

In the list you can include files or directories. If using directories you may want only that specific
directory, or everything underneath it (the default):

· Only match exact directory... check this so as not to recurse into child directories

Managing the list of files

Add files or directories on disk:

· Add File... navigate to the source files select one or more files click Open all the selected
items are added

· Add Dir... navigate to the folder select it and click OK the folder is added to the list

Or manually enter a file:

The User Interface 143

Copyright © 2002-2025 Software Verify Limited

· Add... a new row is added to the list Type the file path press Return the file is added to
the list

Remove items as normal:

· Remove removes selected items in the list

· Remove All removes all items, clearing the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Exporting and importing

Since the list of source files can be quite complicated to set up, you can export the settings to a file and
import them again later. This is useful when switching between different target applications.

· Export... choose or enter a filename Save outputs the filtered source files to the file

· Import... navigate to an existing *.cvxft file Open loads the filtered source files

 The exported file can be used with the -sourceFileFilterHookFile command line option.

Wildcards

All file and directory specifications can contain the * wildcard.

Some examples will help:

Consider a project with three source directories:

e:\dev\srcMain\
e:\dev\srcCommon\
e:\dev\srcCustom\

Possible filters could be:

e:\dev\src*\
\src\
*\srcC**

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Coverage Validator Help144

Copyright © 2002-2025 Software Verify Limited

3.10.1.2.4 Class and Function Filters

The Class and function filter page allows you to set specific classes, methods and functions to be
included in, or excluded from, the hooking process.

 These filters apply only to the DLLs and files that you have not already excluded via other filters.

Listing what to exclude or include

By default, Coverage Validator will try to hook all classes, methods and functions in the hooked files, but
you can choose to list only those which should be included or excluded.

· Hook all... hook everything (the default)

· Only hook ... hook only the classes, methods and functions listed

· Don't hook ... hook everything except the classes, methods and functions listed

Managing the list

Choose from known methods:

· Add... shows the Class::Method Browser dialog below

Type or choose a class and/or method from the pre-populated drop-down list of all functions:

The User Interface 145

Copyright © 2002-2025 Software Verify Limited

When typing an entry, you'll see a message at the bottom of the dialog if the symbol doesn't
exist:

Choose from known methods:

· Add List... shows the List of classes or functions dialog below

Enter any number of plain class::method or function names or just paste them in.

Coverage Validator Help146

Copyright © 2002-2025 Software Verify Limited

The list will not be validated against known functions. Do not include return types, brackets,
parameters or other details.

Remove items as normal:

· Remove removes selected items in the list

· Remove All removes all items, clearing the list

Alternatively, press to delete selected items, and + to select all items in the list first.

Exporting and importing

Since the list can be quite complicated to set up, you can export the settings to a file and import them
again later. This is useful when switching between different target applications.

· Export... choose or enter a filename Save outputs the filtered list to the file

· Import... navigate to an existing *.cvxc file Open loads the filtered list

 The exported file can be used with the -classAndFunctionFile command line option.

Reset All - Resets all global settings, not just those on the current page.

The User Interface 147

Copyright © 2002-2025 Software Verify Limited

Reset - Resets the settings on the current page.

3.10.1.2.5 .Net Function Inlining

The .Net Function Inlining tab allows you to configure how .Net inlines functions.

Inlining of .Net functions can affect your code coverage results.
· Do not inline any functions.
· Inline all functions.
· Inline only .Net Framework functions.
· Inline only .Net Framework functions, and functions in specific DLLs.
· Inline only functions in specific DLLs.

We recommend that you don't inline any functions. This is the default option.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Coverage Validator Help148

Copyright © 2002-2025 Software Verify Limited

3.10.1.2.6 .Net Function Caching

The .Net Function Caching tab allows you to configure how .Net caches functions.

Caching of .Net functions can affect your code coverage results.
· Do not cache any functions.
· Cache all functions.
· Cache only .Net Framework functions.
· Cache only .Net Framework functions, and functions in specific DLLs.
· Cache only functions in specific DLLs.

We recommend that you don't cache any functions. This is the default option.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.2.7 Code Exclusion

The Code Exclusion tab allows you to configure blocks of code to be removed from code coverage,
using comments in the source code.

The User Interface 149

Copyright © 2002-2025 Software Verify Limited

Code exclusion

In general the code coverage filters work on discreet elements like file, class and function names.

Code exclusion lets you further control sections of a source file to be excluded by using pragmas
(keyword directives) to mark the a region of code.

The pragmas can surround complete classes, functions or just single lines of code.

Using code exclusion

The reason for providing code exclusion is to allow code coverage tests to be setup knowing that a file
can reach 100% coverage even if certain lines are not processed.

Such lines may not be processed because they are on a code path that will only be taken during error
conditions. See the examples below.

· Enable code exclusion pragmas check the box to turn the feature on

Multi-line code exclusion

· Start Pragma enter the keyword that you will use in the code to mark the start of a block to
exclude

E.g. CVPragmaMultiLineStart

· End Pragma enter the keyword that you will use in the code to mark the end of the excluded
block

Coverage Validator Help150

Copyright © 2002-2025 Software Verify Limited

E.g. CVPragmaMultiLineEnd

Now you can exclude a section of code by enclosing code with comments containing these pragmas

Example:

Without code exclusion switched on, the for loop below would count towards coverage:

After turning code exclusion on, the pragmas shown here force the loop to be excluded from coverage
statistics:

Single line code exclusion

· Single Line Pragma enter the keyword that you will use in the code

E.g. CVPragmaSingleLineIgnore

Now you can exclude a single line of code by adding a comment to the line containing the pragma
CVPragmaSingleLineIgnore

Example:

The assert statement in the code below only happens in an error situation, and probably an
unrecoverable one at that.

The User Interface 151

Copyright © 2002-2025 Software Verify Limited

Without using code exclusion, the assertion would count towards incomplete coverage.

After turning code exclusion on and setting up the pragma blow, the assertion line is ignored in the
coverage

Instrumentation logging

The logging of DLLs, source files, classes, methods and functions that are not instrumented can help
you understand the reason why part of your code isn't getting the coverage information you expect.

Once enabled, and a session has started, you can view a list of items that have not been instrumented
via the Tools menu.

· Enable instrumentation logging check to enable logging once the next session starts

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.2.8 Load Settings Pattern Match

The Load Settings Pattern Match tab allows you to configure loading of different settings depending on
the executable being launched (or relaunched).

Coverage Validator Help152

Copyright © 2002-2025 Software Verify Limited

The grid shows one pattern match per line.

The buttons alongside allow you to Add, Edit and Remove patterns that you have created. You can also
enable and disable them all.

· Add... display the pattern match dialog to create a pattern to match.

· Edit... display the pattern match dialog to edit the selected pattern.

· Remove... delete the selected pattern.

· Remove All... delete all selected patterns.

· Enable All... enable all patterns.

· Disable All... disable all patterns.

Pattern Match Dialog

The pattern match dialog allows you to create and edit pattern matches.

The User Interface 153

Copyright © 2002-2025 Software Verify Limited

· Enable enable or disable this pattern.

· Action how to evaluate if this pattern is matched.

§ Load settings for first executable... the first executable that matches a pattern causes the
settings to be loaded.

§ Load settings for each executable... each executable that matches a pattern causes the
settings to be loaded provided it is not the same executable that previously loaded the settings.

§ Load settings for every executable... every executable that matches a pattern causes the
settings to be loaded.

When a different pattern matches the first/each status is reset.

· Pattern a text pattern, including the * wildcard, to match an executable path.

Examples:
 \examples\nativeExample
 c:\tests*
 e:\dev\myProject\release*.exe

· Settings the full path to the settings you want to load if the action and pattern match an
executable.

How does the pattern matching work?

It is probably easiest to demonstrate how pattern matching works with some examples.

Let's assume we have two patterns:

\examples\nativeExample that will load e:\settingsExamples.cvs
coverageValidator that will load e:\settingsCV.cvs.

We'll cover each of the possible action criteria for a sequence of application launches, showing which
settings are loaded and why.

Coverage Validator Help154

Copyright © 2002-2025 Software Verify Limited

· Load settings for first executable... the first executable that matches a pattern causes the
settings to be loaded.

Launched application Settings loaded Reason
e:\examples\nativeExample\release\nativeExample.exe e:

\settingsExamples.c
vs

1st application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe repeat application,
same pattern

e:\examples\nativeExample\debug\nativeExample.exe 2nd application, same
pattern

c:\program files (x86)\software verify\coverage validator
x86\coverageValidator.exe

e:\settingsCV.cvs 1st application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe e:
\settingsExamples.c
vs

1st application, new
pattern

· Load settings for each executable... each executable that matches a pattern causes the
settings to be loaded provided it is not the same executable that previously loaded the settings.

Launched application Settings loaded Reason
e:\examples\nativeExample\release\nativeExample.exe e:

\settingsExamples.c
vs

new application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe repeat application,
same pattern

e:\examples\nativeExample\debug\nativeExample.exe e:
\settingsExamples.c
vs

new application, same
pattern

c:\program files (x86)\software verify\coverage validator
x86\coverageValidator.exe

e:\settingsCV.cvs new application, new
pattern

e:\examples\nativeExample\release\nativeExample.exe e:
\settingsExamples.c
vs

new application, new
pattern

· Load settings for every executable... every executable that matches a pattern causes the
settings to be loaded.

Launched application Settings loaded Reason
e:\examples\nativeExample\release\nativeExample.exee:

\settingsExamples.c
vs

Every application

e:\examples\nativeExample\release\nativeExample.exee:
\settingsExamples.c
vs

Every application

e:\examples\nativeExample\debug\nativeExample.exe e:
\settingsExamples.c
vs

Every application

c:\program files (x86)\software verify\coverage validator
x86\coverageValidator.exe

e:\settingsCV.cvs Every application

e:\examples\nativeExample\release\nativeExample.exee:
\settingsExamples.c

Every application

The User Interface 155

Copyright © 2002-2025 Software Verify Limited

vs

Warning

When a pattern is matched and the action criteria are satisfied the specified settings will be loaded.

A warning can be displayed at this point to remind you that the settings are being changed.

· Display warning dialog... the warning dialog will be displayed when the pattern match criteria
are met.

The warning dialog looks like this:

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.3 Instrumentation

3.10.1.3.1 Instrumentation Detail

The Instrumentation Detail page allows you to specify how lines are hooked and how many times a
line visit is counted.

Coverage Validator Help156

Copyright © 2002-2025 Software Verify Limited

Instrumentation detail versus speed of execution

Two instrumentation settings affect how quickly the instrumented program will run:

· the hooking of very short lines

Most lines can be monitored using a normal line hooking technology. These hooks are fast but
cannot be used for all lines.

Very short lines are hooked using breakpoint hooking technology which is very advanced but
also incurs a serious performance penalty for each visit to that line.

· the counting of lines on every visit

Counting lines just once is quicker than doing it on every visit.

Instrumentation Level

The instrumentation level lets you balance the detail of collected visit counts for every line against speed
of execution.

· Incomplete but faster Short lines NOT counted. Lines counted once

· Incomplete but slower Short lines NOT counted. Lines counted every visit.

· Complete but faster Short lines counted. Lines counted once.

The User Interface 157

Copyright © 2002-2025 Software Verify Limited

· Complete but slower Short lines counted. Non-breakpoint lines counted every visit. Breakpoint
lines counted once.

More about very short lines

For instruction sequences that are too short (less than 5 bytes) to be hooked, Coverage Validator has an
additional method of hooking instructions.

Breakpoint instruction and operating system exception handler routines intercept individual breakpoint
instructions and direct the exception handler to the original code for the line.

Due to the exception handling overhead for each instruction hooked this way this is a slower execution
method than normal line hooking.

It is effective however, and allows Coverage Validator to hook most lines in most applications with no
failures.

The only instructions that can't be hooked are breakpoints and the various x86 LOOP instructions, which
are avoided by modern compilers.

Caveats to hooking very short lines

There are two caveats to using the Breakpoint Hooks option.

You can't use them at the same time as:

· Running your application in the debugger (or attaching the debugger to your application) at the same
time as using Coverage Validator to monitor the application.

The debugger will see the breakpoint exception before our hook on the exception handling
mechanism.

· Using MAP files for release builds.

The information in the MAP file does not correctly identify the start of individual lines of code.

This is because the MAP file is produced before the linker optimizer re-arranges the code for the
specified optimization flags.

Because it is not possible to differentiate between debug build MAP files and release build MAP
files, Coverage Validator will not use Breakpoint Hooks with MAP files.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Coverage Validator Help158

Copyright © 2002-2025 Software Verify Limited

3.10.1.3.2 Hook Insertion

The Hook Insertion page allows you to specify which groups of source files are hooked in the target
program.

 These hook settings will not take effect during a session that is already running.

Source Code Line Hook Insertion

The File Locations settings let you set several lists of files including

· your own source files
· third party source files

and then of course there's implicitly:

· 'everything else' that you didn't specify.

The default behaviour is to hook everything referenced in a PDB or MAP file that is in one of these three
categories.

You can change whether to include or exclude any of these sets.

Untick the boxes to stop tracking all lines in all files in...

· directories listed as source directories

· directories listed as third party source directories

The User Interface 159

Copyright © 2002-2025 Software Verify Limited

· all other directories (i.e. not any directory matching the two options above)

Function Line Hooking

To hook each source code line Coverage Validator has to find the start address of each line and then
ensure hooking the line will not result in corruption of the code relating to other parts of the program.

The data to determine the location of each source code line is found in PDB files and MAP files that
contain line number information.

You can choose whether to use only PDB files, only MAP files, or to set a preference for one source over
the other.

· Use PDB files... Allow use of PDB files for iterating files

· Use MAP files... Allow use of MAP files for iterating files

If setting PDB and MAP files to be used, you can set the preferred use in the drop-down list:

Hook insertion preference

· PDB files only Ignores MAP files (same as unchecking MAP file usage)

· MAP files only Ignores PDB files (same as unchecking PDB file usage)

· Use MAP when no PDB PDB files are used in preference to MAP files.

MAP files are only used when the required PDB file cannot be found

· Use PDB when no MAP MAP files are used in preference to PDB files.

PDB files are only used when the required MAP file cannot be found, or the MAP file does not
contain line number information

 Warning: You should be aware that MAP files may not include all line information.
Consider using the Use MAP when no PDB option instead.

Map file not recognised?

Due to daylight saving times it is possible for a MAP file to have an embedded timestamp that is different
than the DLL timestamp by an hour.

Coverage Validator will not recognise such a MAP as valid, but rebuilding the application will resolve this.

When MAP files are enabled, the MAP file dates must match DLL check box is displayed.

Coverage Validator Help160

Copyright © 2002-2025 Software Verify Limited

Normally you should have this check box enabled, so that the MAP file dates are compared with the DLL
dates.

But there can be circumstances where you know the MAP file is valid, but the dates don't match, which
prevents instrumentation. In that case deselect MAP file dates must match DLL.

We strongly recommend that you keep MAP file dates must match DLL selected and rebuild your
application to make the MAP file dates match the DLLs.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.3.3 Hook Control

The Hook Control page allows you to specify how some of the more 'awkward' lines of code are hooked.

Most of these options are fairly advanced. They are also mostly enabled by default, but as usual, we
provide the ability to control the settings if needed.

Hook Control

Some lines of code are trickier to hook than others. By default Coverage Validator is quite zealous in
performing the safety checks and enabling hooking of these lines.

The User Interface 161

Copyright © 2002-2025 Software Verify Limited

If necessary, you can choose not to enable these hooks.

The options are:

· Hook 32 bit relative JMP instructions hooks lines with JMP instructions in them

· Hook return (RET and RETN) instructions hooks lines with RET or RETN instructions in them

· Hook short branches (Jcc) if possible hooks lines with short branches in them

(Jcc is a conditional jump)

· Hook long branches (Jcc) if possible hooks lines with long branches in them

Line ordering due to compiler optimisation

When the compiler optimizes things it can move lines around relative to the original source code.

During instrumenting extra checks are added so that hooks can get correctly recognized/improved
automatically.

· Compensate for compiler optimisation untick to switch off these extra checks

Extra care at function ends

An additional option makes Coverage Validator more cautious when detecting the end of a function, to
avoid overwriting the code for any function that follows.

· Detect end of functions with extra tests hook lines with JMP instructions in them

Filling in the gaps

Finally Coverage Validator can synthesize coverage results for lines that simply could not be hooked.

Not all lines can have their coverage results synthesized, only those in the same execution path.

Using this option will not introduce errors into your coverage tests.

· Use synthetic coverage hooks synthesize coverage results - not on by default.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

Coverage Validator Help162

Copyright © 2002-2025 Software Verify Limited

3.10.1.3.4 Hook Safety

The Hook Safety page allows you to specify which safety features are enabled during hooking.

Hook safety with Release Mode software

When hooking functions, it is important that the information being used is verified against the actual
object code being modified to insert the hooks.

This is especially important in Release builds where the code optimizer may have rearranged the object
code so that it does not match the information in the PDB and MAP files.

To ensure this, the default behaviour is to disassemble each function and check it prior to hooking it. If
the function can't be disassembled, it won't get hooked.

You can switch off disassembling of functions and hook them anyway:

· Don't hook functions if function cannot be disassembled uncheck to hook the functions
anyway

 It's recommended to keep this option enabled for Release builds

Hook safety with multi-threaded applications

When working with multi-threaded applications, it is possible for the thread hooking the application to be
modifying code that is executing in a different thread.

If you think this might be affecting you, you can pause the other threads while hooking..

The User Interface 163

Copyright © 2002-2025 Software Verify Limited

· Pause other threads whilst hooking check to pause other threads

Hook caching

When hook caching is enabled, the first time a module (DLL or EXE) is instrumented, various information
about the module is stored in a cache file.

Every subsequent time the module is instrumented, the cached data is used to instrument the module,
rather than inspecting the module again.

This can provide quite significant performance improvements.

· Cache instrumentation data check to use the instrumentation cache

 If the module is recompiled/relinked, the cache data will be discarded and recalculated.

About cache files

Cached instrumentation files are stored in the same directory as the module to which they refer.

They have the same name as the module, with the .svlCV_coverage extension.

For example, instrumentation data for:

c:\winnt\system32\msvcrtd.dll

is stored as:

c:\winnt\system32\msvcrtd.dll.svlCV_coverage

Cleaning up the cache files

You may not want to keep cache files lying around on your system amongst your code, so Coverage
Validator provides a utility to automatically clean up those files.

Files with the .svlCV_coverage extension are searched for on your drive, and deleted if found.

· Clean instrumentation cache shows the Symbol Cache Cleaner utility dialog

Coverage Validator Help164

Copyright © 2002-2025 Software Verify Limited

· Include network drives tick this to clean up networked drives

· Scan and delete symbol cache files starts the scan

The dialog shows a count of the number of files scanned and the total number of cache files
found

· Close cancels the process and closes the dialog

 You can continue to use Coverage Validator as normal while the scan takes place. If starting a new
session that caches instrumentation, be aware that cache files may be recreated after the scan has
passed!

Cached files and the Class and Function Filters

If the Class and Function Filter has been set up to only include or exclude specified classes or functions,
then the Cached Instrumentation data will be ignored.

Instead, functions will be hooked according to the Class and Function Filter.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.3.5 Instrumentation Logging

The Instrumentation Logging tab allows you to control Coverage Validator's internal logging.

The User Interface 165

Copyright © 2002-2025 Software Verify Limited

If you enable instrumentation logging a log file will be created during instrumentation that indicates why
each DLL, file and function was or was not instrumented according to the various settings and filters.

The instrumentation log can be useful to identify the reasons why a particular file or function or class is
or is not be instrumented.

· View Log... to view the instrumentation log. You can also view the log from the Tools menu.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.4 Symbol Handling

Enter topic text here.

3.10.1.4.1 Symbol Misc

The Symbol Misc tab allows you to set miscellaneous symbol settings.

Coverage Validator Help166

Copyright © 2002-2025 Software Verify Limited

Immediate or deferred symbol loading

When converting program addresses to symbol names, you can choose immediate symbol loading, or
defer loading until each symbol is needed.

· Use deferred symbol loading uses deferred symbol loading rather than 'all at once' (on by
default)

Microsoft® recommend deferred symbol loading, claiming it is the fastest option. We give you
the choice.

Symbol Reader Logging

Symbols are fetched from symbol servers using a helper process svlDbgHelpSymbolReader.exe. We log
the command line and behaviour of this helper tool. This is displayed on the diagnostic tab.

If you wish the log files can be kept for later analysis. By default this option is turned off.

· Keep svlDbgHelpSymbolReader log files keep the log files after Coverage Validator has
finished processing them

The path to the directory containing the log files is shown.

· Clean delete all svlDbgHelpSymbolReader log files

The User Interface 167

Copyright © 2002-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.4.2 Symbol Lookup

The Symbol Lookup tab allows you to specify how and where symbolic information is retrieved for your
application or service.

The default settings are shown below, although the Visual Studio version may vary.

Compiler / IDE Choice

Use the first combo box to choose which compiler / IDE you used to build your software.

Coverage Validator will use the appropriate methods to read your symbols.

The choices are:

· Visual Studio
· Visual Basic 6
· Delphi or C++ Builder
· MingW
· Rust
· Dev C++
· Metrowerks CodeWarrior

Coverage Validator Help168

Copyright © 2002-2025 Software Verify Limited

· Salford Fortran 95
· Other

Symbol lookup for Microsoft / Intel compilers

· We can provide a Dbghelp.dll choose one of Coverage Validator's known good DbgHelp.dll's
based on the version of Visual Studio you are using

Coverage Validator fetches symbols for your application using an appropriate symbol handler for the
type of debugging information you have.

For Microsoft Visual Studio users each version of Visual Studio provides different debugging formats
which are readable by the appropriate DbgHelp.dll supplied by Visual Studio. A given version of
DbgHelp.dll is usually able to read earlier formats of Microsoft debugging information but is not able
to read a future format. For example Visual Studio 2005 (version 8) can read Visual Studio 6 debug
information but cannot read Visual Studio 2008 debug information.

Visual Studio 6.0 doesn't supply a DbgHelp.dll so we have provided one for use with Visual Studio
6.0.

Visual Studio 10 is unusual in that the DbgHelp.dll (6.12) supplied by Visual Studio cannot read the
debug information created by Visual Studio. To solve this problem we have supplied DbgHelp.dll
(6.11) as an alternative.

Coverage Validator will choose the appropriate (most recent) version of Visual Studio automatically.
You can override Coverage Validator's choice by choosing the Visual Studio version from the Visual
Studio combo box.

Specify your own DbgHelp.dll

· Or, you may locate a version of DbgHelp.dll specify your own DbgHelp.dll to use with
Coverage Validator

If you wish to explicitly specify which DbgHelp.dll to use choose the Or, you may locate a version
of DbgHelp.dll option enter the path in the DbgHelp.dll edit field or use the Browse... button to
select the dbgHelp.dll.

Note that the directory that contains DbgHelp.dll should also contain symsrv.dll if you wish to use
symbol servers with Coverage Validator.

Don't update DbgHelp.dll

· You're providing your own DbgHelp.dll use the DbgHelp.dll that ships with your application

If your application needs to use a specific version of DbgHelp.dll that you're already providing with
your application you should choose the You're providing your own DbgHelp.dll option to prevent
Coverage Validator from overwriting your DbgHelp.dll.

The User Interface 169

Copyright © 2002-2025 Software Verify Limited

Note that the directory that contains DbgHelp.dll should also contain symsrv.dll if you wish to use
symbol servers with Coverage Validator.

Visual Studio DbgHelp.dll version compatibility

For Microsoft Visual Studio users, each VS version provides different debugging formats which are
readable by the appropriate DbgHelp.dll supplied with Visual Studio.

These handlers are usually backwards compatible, but not forwards compatible. For example Visual
Studio 2005 (version 8) can read Visual Studio 6 debug information but cannot read Visual Studio 2008
debug information.

Visual Studio 6.0 doesn't supply a DbgHelp.dll so we have provided one for use with Visual Studio 6.0.

Visual Studio 10 is unusual in that the DbgHelp.dll (6.12) supplied by Visual Studio cannot read the
debug information created by Visual Studio! To solve this problem we supply version 6.11 as an
alternative.

 To see the order in which the DbgHelp.dll process checks directories to find symbols, see the
diagnostic tab with the filter set to DbgHelp debug.

Symbol lookup for other compilers

If you are using another compiler click the link to see information about configuring debug information for
that compiler.

After selecting the compiler, clicking the link will show a dialog box containing information relevant to the
selected compiler.

For example:

Coverage Validator Help170

Copyright © 2002-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.4.3 Symbol Servers

The Symbol Servers tab allows you to specify Symbol Servers to retrieve symbols used in your
application.

 You do not need to specify symbol servers if you do not wish to, and Coverage Validator will
work correctly without them.

Read on, or click a setting in the picture below to find out more.

The User Interface 171

Copyright © 2002-2025 Software Verify Limited

Symbol servers

Symbol servers are entirely optional, but are useful for obtaining symbols from a centralized company
resource or for obtaining operating symbols from Microsoft.

The default symbol server is the Microsoft symbol server used for acquiring symbols about Microsoft's
operating system DLLs. You may also wish to add some symbol servers for any software builds in your
organisation.

A symbol server is defined by at least the following:

· the symbol server dll to be used to handle the symbol server interaction
· a directory location where symbol definitions are saved
· the server location - a url

Each symbol server can be enabled or disabled allowing you to keep multiple symbol server
configurations available without constantly editing their definitions.

You can define up to four symbol servers and more than one can be enabled at a time.

Symbol Server Errors

Any symbol server entry shown in red indicates there is a problem with parts of the definition of that
symbol server.

In the image shown above the symbol server at http://127.0.0.42:8000 cannot be reached. It is either
offline or does not exist.

Managing symbol servers

Coverage Validator Help172

Copyright © 2002-2025 Software Verify Limited

· Add... displays the symbol server dialog described below

· Remove remove selected symbol server(s) in the list
· Remove All remove all symbol servers

· Enable All enables all symbol servers in the list
· Disable All disables all symbol servers

You can also enable or disable an item in the list via the yellow check box at the left of each
row.

To edit the details for a symbol server, just double click the entry in the list to show the symbol server
dialog again.

Symbol server dialog

The dialog initially appears pre-populated with some default values and allows you to set up or edit the
definition of a symbol server. Some of the default values can be changed.

· Enable Symbol Server enable or disable this server

The following three entries must be set to enable the OK button and define the symbol server.

 OK button not enabled?The OK button will only be enabled when the following entries have a
valid value: - Symbol Server DLL names a dll present in the Memory Validator install
directory. - Symbol Store Directory has been specified and exists. - Symbol Server URL
has been specified (this value will not be checked for correctness).

· Symbol Server select a predefined public symbol server or enter the URL of the symbol server
you wish to use - the Microsoft server is initially set as the default

The User Interface 173

Copyright © 2002-2025 Software Verify Limited

· Symbol Store Directory enter or Browse to set the directory that will contain local copies of the
downloaded symbols

· Create Dir creates a directory if you entered a directory name that does not exist yet

The Symbol Server DLL is set based on the Symbol Lookup settings you have chosen.

You can optionally associate a directory to scan when you are prefetching symbols (below)

· Prefetch Directory specify the directory to scan for symbols

Environment variables related to symbols

If you wish, you can set some environment variables to supply symbol paths.

· Configure Symbol Handling Environment Variables opens the dialog below

Check the desired options - if any.

Pre-fetching symbols

To avoid delays when using symbol servers, you can trigger the retrieval of symbols (by running
SymChk.exe) to collect symbols for all executable files specified in the exe/dll which you associated
with each symbol server.

· Prefetch Symbols... open the Prefetch Symbols dialog below to continue

Coverage Validator Help174

Copyright © 2002-2025 Software Verify Limited

Prerequisites for pre-fetching symbols

The pre-fetching of symbols requires the installation of Microsoft's Debugging Tools .

You may already have Debugging Tools if you've previously installed the Windows Driver Kit (DDK or
WDK) or the Windows SDK.

· Install Debugging Tools for Windows opens a web page (as above) to download and install the
x86 or x64 Debugging Tools for Windows

After installing the Debugging Tools, you must specify the location of SymChk.exe from the installed
area.

· SymChk.exe enter or Browse to SymChk.exe location

A typical path might be C:\WinDDK\7600.16385.1\Debuggers\symchk.exe

Getting the symbols

 Note that prefetching symbols may consume a large amount of disk space and download
bandwidth.

You should ensure that you have at least 2 or 3Gb of disk free space, because of the total size of the
download packages.

· Prefetch Symbols... runs SymChk.exe to get all the symbols

The symbols for each symbol server are stored in the associated symbol store directory.

 If no symbol servers are specified in the symbol server settings above, you'll see a warning dialog
and no symbols will be fetched.

Command line pre-fetching of symbols with the SymChk utility

The section on Pre-fetching symbols above is a convenient alternative to manually using the
SymChk,exe utility.

To avoid delays when using symbol servers, you can pre-fetch symbols using the SymChk.exe
command line tool that is part of Microsoft's Debugging Tools .

The User Interface 175

Copyright © 2002-2025 Software Verify Limited

You may want to add the folder of the Debugging Tools for Windows package to the PATH environment
variable on your system so that you can access this tool easily from any command prompt.

Example:

To use SymChk.exe to download symbol files for all of the components in the c:\windows\System32
folder, you might use the command:

symchk.exe /r c:\windows\system32 /s SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

where
/r c:\windows\system32 finds all symbols for files in that folder and any sub-folders

/s SRV*c:\symbols*http://msdl.microsoft.com/download/symbols specifies the symbol
path to use for symbol resolution.

In this case, c:\symbols is the local folder where the symbols will be copied from the
symbol server.

To obtain more information about the command-line options for SymChk.exe, type symchk /? at a
command prompt.

Other options include the ability to specify the name or the process ID (PID) of an executable file that is
running.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.4.4 Symbol Load Preferences

The Symbol Load Preferences tab allows you to configure which debug information types are looked
for and which are ignored.

This can save some time fetching symbols each time a DLL is loaded.

Coverage Validator Help176

Copyright © 2002-2025 Software Verify Limited

· Select your compiler / IDE... choose a preset definition for a compiler / IDE, or edit one of four
custom symbol load preferences

The present definitions are:
o I don't know which compilers choose this if you don't know which compilers were used to

build the software
o All compilers choose this to let Coverage Validator fetch the symbols

o Visual Studio choose this if you're only using Visual Studio

o Visual Basic 6 choose this if you're only using Visual Basic 6

o Delphi choose this if you're only using Delphi

o C++ Builder choose this if you're using C++ Builder on 32 bit Windows

o C++ Builder 32 bit choose this if you're using C++ Builder to build 32 bit applications

o C++ Builder 64 bit choose this if you're using C++ Builder to build 64 bit applications

o MingW / gcc / g++ / QtCreator / Dev C++ choose this if you're using MingW / gcc / g++

o QtCreator / Dev C++ choose this if you're using QtCreator

o Dev C++ choose this if you're using Dev C++

o Rust choose this if you're using Rust

o Salford Fortran 95 choose this if you're using Salford Fortran 95

o Custom 1 choose this to edit a definition you can reuse

o Custom 2 choose this to edit a definition you can reuse

o Custom 3 choose this to edit a definition you can reuse

o Custom 4 choose this to edit a definition you can reuse

Editing a definition

Once a definition has been selected the appropriate check boxes next to each debug information type
are populated.

The User Interface 177

Copyright © 2002-2025 Software Verify Limited

You can edit these selections, for example to include or exclude PDB debug information for operating
system DLLs, or allow Coverage Validator to search for COFF debug information, whatever is optimal
for the way you are working.

Custom definitions

Only the custom definitions will be remembered if they are edited.

The four custom definitions will be remembered, so the next time you choose them you'll get the
definition you edited. If you choose one of the preset definitions and edit it, you'll use the edited
definition, but if you then change to a different preset (or a custom definition) and then back to the
original preset you'll get the preset definition, not your edited version of the preset definition.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.5 Data Collection

3.10.1.5.1 Auto Merge

The Auto Merge page allows you to specify how the automatic coverage merging functions works.

Coverage auto merging

Coverage Validator Help178

Copyright © 2002-2025 Software Verify Limited

Different runs of your application may execute different parts of your application, in which case you might
want to merge the results of one run with the results of another.

The automatic merging works by merging the results of each individual coverage session into a central
session.

The central session is stored on disk in a file you specify, or in a file using the name of the session.

E.g. A TestThis.exe session would get saved in TestThis.cvm in the same directory as Coverage
Validator resides.

· Merge session results of individual runs into central session switches the merging feature on
(note - the default is off)

Merging data into the current session

When session merging is enabled, you can specify that the central session is merged into the current
session.

This can be done at the start of a session or when a session is finished.

For interactive testing you will typically want to merge the central session into the current session at the
start of the current session:

· Merge central session into current session at start... merges data into the current session as
it starts

For non-interactive testing, say unit testing where you are only interested in the merged results at the
end of all the tests, then merging into the current session when it finishes may be more suitable:

· Merge central session into current session when finished... merges data into the current
session as it ends

Central session file

Depending on how many applications you are performing coverage on, you may want your coverage data
to go to one central location or to a different location for each application under test.

· Name of auto-merge session is based on the name of the application under test saves the
central session in a file named according to the application under test in this session (the default)

By default, the auto-merge session will be stored in the same directory as Coverage Validator,
but you can change this:

Directory for auto-merge session saves the auto-merge session in the specified directory
(enter or Browse... to a directory)

For example, if you run the application nativeExample.exe, and specify a central session
directory of e:\coverageResults, the central session will be saved in a file named e:
\coverageResults\nativeExample.cvm.

The User Interface 179

Copyright © 2002-2025 Software Verify Limited

· Name of central session is specified save the auto-merge session in a filename and path of
your choice (enter or Browse... to a file)

Auto-merge session reset

The auto-merge results can be automatically cleared by certain triggers, or not cleared at all.

When performing coverage analysis sometimes you will uncover a bug in your software and need to
modify the software, and/or run different executables. When this happens, line numbers and/or files often
change, and you usually wouldn't want to merge coverage data from the modified software with existing
coverage data.

The four triggers for clearing the merged session results are:

· Clear all merged session results when any source file is modified (the default)

· Clear only merged session results for source files that have been edited

· When the application under test changes

· No clearing of merged session results occurs under any circumstance

There is also a manual option to clear the central session results at any time (a session needs to be
recorded/loaded if the central session name is based on the application being tested).

· Clear Results deletes the saved central session results

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.5.2 Statistics

The Statistics page allows you to control how statistics are calculated by Coverage Validator for
unhooked lines and for multiple inclusions of the same file.

Coverage Validator Help180

Copyright © 2002-2025 Software Verify Limited

Statistics Calculation

By default, lines which could not be hooked do not get included in coverage statistics.

 Note that this does not affect DLLs, files and lines which get filtered out before instrumentation.

· Include unhooked lines in the coverage statistics include the number of unhooked lines in the
coverage statistics

Multiple source code file inclusion

Depending on how you build your software it's possible that some of your source files are present in
more than one module (DLL / EXE) in your application.

For some coverage uses, you may prefer to treat these multiple source file inclusions as independent
files or as the same file.

· Collect statistics per source file for each DLL... calculate coverage separately for each
inclusion

· Collect statistics per source file ignoring which DLL... calculate coverage for a single instance

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

The User Interface 181

Copyright © 2002-2025 Software Verify Limited

3.10.1.5.3 Warning

The Warning page allows you to control some of the warnings that Coverage Validator displays.

MAP file timestamp threshold

When working with MAP files the timestamp of a module and its MAP file often differ by many seconds.

You can set the maximum acceptable difference between the two timestamps before the MAP file is
considered invalid.

· Threshold enter the maximum acceptable difference (the default is 60 seconds)

User permissions warnings

You may see warning dialogs when Coverage Validator receives an error accessing the registry or
obtaining debugging privileges.

These warnings are enabled by default, but you can opt not to see them:

· Edit User Permissions Warnings... shows the User Permissions Warnings dialog below

Coverage Validator Help182

Copyright © 2002-2025 Software Verify Limited

The Help button displays the User Permissions help topic.

See also, the answer to the question about creating Power User accounts on Windows XP.

No file path warnings

When Coverage Validator collects code coverage data and finds filenames without paths the No File Path
Warning dialog can be displayed.

Without knowing the file path Coverage Validator can't inspect the file for source code exclusion
pragmas, and also can't display the source code in any of the displays.

The solution is to declare where source code (and 3rd party source) is located using the File Locations
settings.

· If files with no path are found... when enabled the No File Path Warning dialog will be
displayed when files without a path are found in code coverage data

· Edit File Locations... displays the File Locations settings dialog set to "Source Code"

The User Interface 183

Copyright © 2002-2025 Software Verify Limited

· Don't show this again... turns off the display of this dialog. To re-enable it, select the If files
with no path are found... check box on the Warnings settings.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.5.4 Don't Show Me Again

The Don't Show Me Again page allows you to control warnings that Coverage Validator displays.

Debug Information

Debug Information Failure Warning

When there is a failure collecting debug symbols a warning can be displayed. The options are:
· Always show dialog
· Never show dialog
· Show dialog when symbol fetches throw exceptions

Display Debug Information Warning

When no debug information is available for at least one module a warning can be displayed. The options
are:

Coverage Validator Help184

Copyright © 2002-2025 Software Verify Limited

· Always show dialog
· Never show dialog
· Show dialog when debug information is missing

Services API

· Service not linked to Software Verify NT Service API warning will be shown if you try to
monitor a service not linked to the Software Verify NT Service API. (on by default)

When trying to monitor a service Coverage Validator can detect if the service is not linked to the NT
Service API and display a warning.

It is possible to use the service API without linking to it (use GetProcAddress() to lookup the
functions and call them) - in this case you would want to turn this warning off.

· Application may be linked to Win32 Service API warning will be shown if you try to start an
application that appears to be a service - it uses Win32 Service APIs. (on by default)

ISAPI

NT Service API
When trying to monitor ISAPI extensions Coverage Validator can detect if the ISAPI is not linked to the
NT Service API and display a warning.

It is possible to use the service API without linking to it (use GetProcAddress() to lookup the functions
and call them) - in this case you would want to turn this warning off.

Debug Information
Coverage Validator can warn if the ISAPI has no debug information. There may be cases where you don't
want to see this warning.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.5.5 Diagnostic

The Diagnostic page controls diagnostic display.

The User Interface 185

Copyright © 2002-2025 Software Verify Limited

Diagnostics

Collection: A lot of diagnostic information is collected and displayed on the diagnostic tab when
attaching to a target program.

Some of this information is always sent to Coverage Validator, but you may not want to see it all.

· Enable diagnostic data collection displays all diagnostic information in the diagnostic tab (on
by default)

Disassembly: When hooking source code lines, some lines cannot be hooked due to the object code
that corresponds to the source code location.

· Send disassembly for failed hooks shows the disassembly for lines that cannot be hooked
(enabled by default)

This can increase startup time and memory usage if used very frequently.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.5.6 Applications to Monitor

If your target program launches other child applications then the Applications to Monitor page lets you
choose which ones to monitor.

Coverage Validator Help186

Copyright © 2002-2025 Software Verify Limited

Monitoring child applications

You may have a case where the program you need to start is not the one you are interested in.

Your program may launch child applications and it may be one of those that you want to monitor with
Coverage Validator.

An example might be for unit testing where a test program spawns one or more child applications, or it
might launch the same application multiple times.

The applications to monitor

The main list of Applications to monitor shows programs you may want to launch and the child
applications they subsequently start - i.e. the you may be interested in monitoring.

Once a definition has been added, you can then use the Application to Monitor setting on the Launch
Dialog or wizard to choose which of these child applications you actually want to monitor in a given
session.

Managing the applications to monitor

The list contains a set of definitions - each one being for a different launch program.

For each launch program you can set the child applications you might want to monitor later.

An application is defined by its type (native and .Net, or .Net Core), the application executable name,
and for .Net Core applications an additional application DLL that is used to identify the application.

The User Interface 187

Copyright © 2002-2025 Software Verify Limited

· Add add a new module definition using the Application to Monitor dialog below

· Edit modify a selected definition in the list, using the Application to Monitor dialog again

· Remove removes any selected definitions in the list

· Remove All clears the list

· Set Defaults reset the list of known applications to those as configured with a new install of
Coverage Validator

The defaults are currently setup for Microsoft's Visual Test software vstest.console.exe.

The Application to Monitor dialog

The Application to Monitor dialog lets you define or edit a launch program and it's child applications.

The values you specify here are the ones used on the launch dialog and launch wizard to customize
which application actually gets monitored.

· Application to Launch Edit... to select the initial starting application that will be launching the
applications you want to monitor

Any executable names found in the selected program will automatically be displayed in the list of
Applications to Monitor.

Coverage Validator Help188

Copyright © 2002-2025 Software Verify Limited

If you don't wish to use these automatic names you can Remove them.

· Add add an additional application that you know will be started by the launch program

Child applications that you add are used without the path.

Excluding the path gives more scope for matching launched application names if they are
launched with a different path.

· Remove removes any selected applications in the list

· Remove All clears the list

· Default application to monitor choose the appropriate item to be the default item

The default application will be selected on the launch dialog (or wizard) whenever the start program
is specified as the one at the top of this dialog.

The Application and DLL dialog

The Application and DLL dialog lets you define or edit a launch program and a launch DLL.

· Application type choose the type of application

o Native and .Net

o .Net Core (Framework Dependent)

o .Net Core (Self Contained)

· Application to monitor edit or Browse... the application EXE to monitor.

This can be an executable name or the full path to the executable. For example test.exe or c:
\unitTests\test.exe.

For native applications this is the application executable.

For .Net Framework applications this is the application executable.

The User Interface 189

Copyright © 2002-2025 Software Verify Limited

For .Net Core Framework-dependent applications this is most likely going to be c:\program
files\dotnet\dotnet.exe.

For .Net Core Self-contained applications this is the application executable.

· DLL to monitor edit or Browse... the application DLL to monitor. This field is only needed for .Net
Core applications.

This can be an executable name or the full path to the executable. For example test.dll or c:
\unitTests\test.dll.

For native applications this is not used.

For .Net Framework applications this is not used.

For .Net Core Framework-dependent applications this is the application dll. (the name of the dll that
you would pass to dotnet.exe on the command line).

For .Net Core Self-contained applications this is the dll that has the same name as the application
executable. (for theApp.exe, the dll name is theApp.dll).

Example Dialogs

Native

.Net

Coverage Validator Help190

Copyright © 2002-2025 Software Verify Limited

.Net Core (Framework-dependent)

.Net Core (Self-contained)

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

The User Interface 191

Copyright © 2002-2025 Software Verify Limited

3.10.1.5.7 CoInitializeEx

The CoInitializeEx tab allows you to set the default behaviour used to initialize COM if Coverage
Validator needs to initialize COM to acquire symbols for .Net modules.

The default settings are shown below:

CoInitializeEx

In some situations the Validator needs to get .Net symbols and to do that COM needs to be initialized.
This normally isn't a problem, but if your program also performs COM initialization and the sequence of
events results in your COM initialization coming after the Validator's COM initialisation rather than getting
the expected ERROR_SUCCESS return code you'll get either ERROR_INVALID_FUNCTION or
RPC_E_CHANGED_MODE.

If you get ERROR_INVALID_FUNCTION this is OK, this just means you've called CoInitialize() or
CoInitializeEx() multiple times with the same flags. Your code needs to handle
ERROR_INVALID_FUNCTION as not an error.

If you get RPC_E_CHANGED_MODE this means you need to change the Validator's default value to the same
value your program is using. That's what this dialog allows you to do.

If you also wish to disable OLE DDE or favour speed rather than memory use we've provided appropriate
options for you to select to add those flags to the threading mode.

See the Microsoft documentation for additional information on the behaviour of CoInitialize() and
CoInitializeEx().

Coverage Validator Help192

Copyright © 2002-2025 Software Verify Limited

Runtime detection of CoInitializeEx conflict

When the above scenario happens, that the Validator has initialized COM before your code initializes
COM and your call returns RPC_E_CHANGED_MODE, we display a dialog to warn you about this failure
and provide you with the option of editing the default value for subsequent runs of your application.

· Edit Settings... opens the CoInitializeEx dialog shown above

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.5.8 Data Transfer

The Data Transfer tab allows you to specify the overall behaviour of data transfer between your
application and Coverage Validator.

The User Interface 193

Copyright © 2002-2025 Software Verify Limited

Data Transport

Choose the type of data transport you wish to use.

· Automatic. Applications and services use shared memory to transfer data. IIS uses disk based data
transfer.

· Disk. Applications, services and IIS use disk based data transfer.

· High Volume. Data transfer has no data throttling applied to it. This mode is for use with applications
that generate very high volumes of data rapidly. They typically exceed the buffering capabilities of
Coverage Validator when working with shared memory. The High Volume setting uses a data transport
that doesn't have a data-throttling requirement allowing the high volume application to continue without
waiting.

Automatic

Under most circumstances data transfer between Coverage Validator and the target program (desktop,
service, etc) is via shared memory. This is handled automatically.

Disk Data

Some applications and services don't allow shared memory access. For these occasions we use a file
based data transfer, where the files are stored in a directory of your choice.

Coverage Validator Help194

Copyright © 2002-2025 Software Verify Limited

We provide two options for this, one for most applications and services, and one for Internet Information
Server, as this operates in a very restricted environment.

Both options are configured automatically, but you can override either by typing the path to a suitable
directory or using the Microsoft directory browser.

The ISS path you enter will be determined by the settings you have configured for IIS using the Internet
Information Services Manager tool. We won't discuss that here because if you're using IIS we assume
you already know how to configure IIS correctly.

Advanced Shared Memory

Shared memory data transfer can also be configured but we strongly recommend that you leave
these settings alone.

 The Data Transfer Helper is a separate application supplied in the installation directory.

· Advanced... opens the data transfer settings dialog.

Here be dragons!

 Caution: Modifying the settings on this page and using the data transfer helper application can
prevent Coverage Validator from working correctly.

· Set To Defaults if you have modified the settings, this resets them

The User Interface 195

Copyright © 2002-2025 Software Verify Limited

See also the Reset to default buttons on the data transfer helper application below

If in doubt, don't modify these settings. If you promise to be careful, read on!

Delayed data transfer

Delayed data transfer is the process of throttling data rates in the stub so that the slower user interface
can keep up with processing the data received.

In the stub, as an event occurs, data is queued and then sent to the user interface.

In the user interface, data from the stub is received and queued again for processing.

Any delay is usually in the slower user interface, but still not a problem for most applications.

However, some data intensive applications can generate so much data that the user interface gets
swamped and can't process it all before running out of memory.

Temporarily limiting the data rate in the stub allows the user interface to stabilize the data processing.

Managing data rates

We recommend the default settings as shown above:

· disable delay data transfer for most applications

· enable automatic delay data transfer at a threshold of between 100,000 and 1,000,000 data items

If delayed data transfer is enabled all the time, the automatic options don't apply.

If you have more than 1GB RAM, you can raise these thresholds.

Data transfer helper application

A separate data transfer helper application is supplied in the installation directory.

The helper application can be used to modify low level settings that apply when delay data transfer is
activated as above.

 The helper should be used with care. We already warned of dragons above, but here we are, warning
you again!

An HTML help page for this application is available by clicking the Help button on the helper application.

You can also find the help page directly as dataTransferHelp.html.

Please do take a moment to read the help before use.

Coverage Validator Help196

Copyright © 2002-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.6 Third Party DLLs

3.10.1.6.1 Stub Global Hook DLLs

The Stub Global Hook DLLs tab allows you to detect and specify global hook DLLs that may not be
wanted in the stub process.

The User Interface 197

Copyright © 2002-2025 Software Verify Limited

About global hook DLLS

Some third party products such as storage devices and video cards are supplied with software to help
integrate the hardware device into the computer desktop environment.

An example is the Iomega® Zip® drive. This uses a global hook via the IMGHOOK.DLL which allows
the browse for files and browse for folders interfaces to correctly display all the storage devices on the
computer, including the zip drive and any special options for the drive.

Some global (or system) hook DLLs can interfere with the correct operation of Coverage Validator when it
inserts hooks into the target program, (although the IMGHOOK.DLL mentioned above doesn't).

The settings below allow you to specify and/or detect DLLs that should be treated as global hook
DLLs.

Any DLL listed will fail to load into the target program when loaded via LoadLibrary() or
LoadLibraryEx().

For situations where the hook DLL is already present in the target program, it can optionally be forcibly
unloaded. This may happen if it was loaded before Coverage Validator attached to the process.

Managing global hook DLLs

· Test for Window Blinds... test for Window Blinds DLLs loading into your application, and prevent
them from loading

Window Blinds DLLs WBOCX.OCX and WBLIND.DLL are not compatible with Memory Validator.

· Test for Sugar Sync... test for Sugar Sync DLLs loading into your application, and prevent them
from loading

Coverage Validator Help198

Copyright © 2002-2025 Software Verify Limited

Sugar Sync DLLs SugarSyncShellExt.dll and SugarSyncShellExt_x64.dll are not compatible with
Memory Validator.

· Test for Visual Leak Detector... test for Visual Leak Detector DLLs loading into your application,
and prevent them from loading

Visual Leak Detector is not compatible with Memory Validator. If you are linked to Visual Leak
Detector you'll need to create a build without Visual Leak Detector to use with Memory Validator.

· Test for user specified... test for user specified DLLs loading into your application, and prevent
them from loading

· Add DLL... browse and select one or more DLLs Open adds the chosen DLLs to the Global
Hook DLLs list

· Remove removes any selected DLL from the list

· Remove All removes all DLLs from the list

Auto detecting global hook DLLs

Coverage Validator can detect any DLLs in its own process that are not ones it uses itself. Such DLLs
are likely to be global hook DLLs:

· Auto Detect automatically detect DLLs which may be global hook DLLs, adding them to the
Global Hook DLLs list

Additionally, you can request unloading of any of the listed global hook DLLs that are detected as
already loaded into the target process when Coverage Validator attaches to it:

· Unload already loaded global hooks when ticked, forces an unload of any listed global hook
DLLs

 Use this with caution, as not all global hook DLLs may have been designed or intended for
this!

Viewing the diagnostic information

If a DLL is prevented from loading because of these settings, or is allowed to load because of these
settings, there will be an entry on the Diagnostic tab.

To view this data, go to the Diagnostic tab, select the Diagnostic sub tab, then set the Show combo box
to "Dlls". All information about DLLs will be shown. Scroll through the list looking for "Prevented DLL
load" in the left hand column. The right hand column will indicate if a DLL was prevented from loading, or
allowed to load. The DLL name will also be shown.

The User Interface 199

Copyright © 2002-2025 Software Verify Limited

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.1.6.2 User Interface Global Hook DLLs

The User Interface Global Hook DLLs tab allows you to detect and specify global hook DLLs that may
not be wanted in the Coverage Validator user interface process

About global hook DLLS

See the similar topic on stub global hooks to read about global hook DLLs

Coverage Validator Help200

Copyright © 2002-2025 Software Verify Limited

The user interface hook DLL loading rule

The default behaviour is not to allow the global hooks to load, but you can change this if necessary

· Allow all global hooks to load allows all global hook DLLs to load into Coverage Validator

· Do not allow any global hooks to load prevent any global hook DLLs from loading (the default)

· Use the list of dlls shown provide per-DLL control over which DLLs load or don't load via the User
Interface Global Hook DLLs list

Any global hook DLLs not listed will result in the user being asked for permission to load a DLL
via the Global Hook Warning Dialog below

Managing user interface global hook DLLs

· Add DLL... browse and select one or more DLLs Open adds the chosen DLLs to the Global
Hook DLLs list

Having added a DLL to the list, you can change whether the DLL is allowed to load or not, by
double clicking in the second column and changing the value: Load or Don't load

· Remove removes any selected DLL from the list

· Remove All removes all DLLs from the list

Auto detecting global hook DLLs

Coverage Validator can detect any DLLs in its own process that are not ones it uses itself. Such DLLs
are likely to be global hook DLLs:

· Auto Detect automatically detect DLLs which may be global hook DLLs, adding them to the
Global Hook DLLs list

Global Hook Warning Dialog

When the global hook loading rule above is set to Use the list of dlls shown, the Allow load column
controls whether the hook DLL is loaded.

When a global hook is loaded that is not on the list of known global hooks, the user is presented with a
warning dialog like that shown below.

The user can then accept or block the global hook from loading. The dialog lists a couple of known
problematic DLLs.

The User Interface 201

Copyright © 2002-2025 Software Verify Limited

· Help displays this help page
· Yes lets the DLL load
· No blocks the DLL

Your response is automatically recorded in the Global Hook DLLs list, so that you won't be asked
again.

Reset All - Resets all global settings, not just those on the current page.

Reset - Resets the settings on the current page.

3.10.2 Loading and saving settings

Saving and loading settings files

Coverage Validator settings can be saved to a file and restored at any time.

 Settings menu Save Settings... save settings to a file

 Settings menu Load Settings... load a previously saved settings file

Loading settings via command line option

Coverage Validator Help202

Copyright © 2002-2025 Software Verify Limited

Different settings files can be used in the command line interface by using the -settings command line
option and the required file path to load the settings when Coverage Validator starts up.

3.10.3 No Coverage Data Collected Warning

The No Coverage Data Collected warning dialog

The no coverage data collected warning dialog is displayed to warn you no coverage data has been
collected.

· Debug Information... shows the DLL Debug Information dialog so that you can inspect which
DLLs have debug information and understand why debug information may have failed to load.

· Did we ignore... shows the Symbol Load Preference dialog so that you can inspect which
symbol types you are interested in and which you are ignoring. Sometimes you'll fail to load symbol
information because you have your symbol load preferences incorrectly configured. In in doubt set
them to "All Compilers".

The User Interface 203

Copyright © 2002-2025 Software Verify Limited

· Hooked DLLs... shows the Hooked DLLs dialog so that you can choose which DLLs are
processed for code coverage.

· File Types... shows the Source File Types dialog so that you can choose which source file types
(file extensions) are processed for code coverage.

· Source Files... shows the Source Files dialog so that you can choose which source files are
processed for code coverage.

· Class and Function... shows the Class and Functions dialog so that you can choose which
functions, classes and class methods are processed for code coverage.

· Code Exclusion... shows the Code Exclusion dialog so that you can edit the code exclusion
parameters that affect code coverage processing.

Why is this dialog displayed?

You will see a No Coverage Data Collected warning dialog in whenever no code coverage data is
collected.

There are two main reasons for not getting any code coverage.

· No debug information.
· Instrumentation filters excluding too much data.

No Debug Information

There are many reasons that debug information may fail to load. This is discussed in detail in the DLL
Debug Information topic.

Instrumentation Filters

Instrumentation filters are useful for focusing code coverage on the parts of your program that you are
interested in.

However it's also possible to create combinations of filters than when used together exclude all code
coverage locations from the result set. This results in no code coverage data.

The five instrumentation filter groups are Hooked DLLs, Source File Types, Source Files, Class and
Function filters and Code Exclusion pragmas.

You will need to examine the various filters to identify which filters need editing to prevent all code
locations from being excluded from a code coverage report.

Items coloured in red are items that Coverage Validator thinks may be causing the problem. In the above
image Is debug information available? indicates that the Debug Information should be inspected to ensure
that the debug information has been found, and if not, why wasn't it found?

Coverage Validator Help204

Copyright © 2002-2025 Software Verify Limited

The Instrumentation Log

Sometimes it's hard to understand the behaviour of the filters by just looking at the filters.

It would be useful if you could see a log of the behaviour of the filters.

To do that select the Enable Instrumentation Logging check box and re-run your code coverage test.

When there is an instrumentation log to view you can view it using View Log... on this dialog or
 Tools menu Instrumentation Logging Data...

The User Interface 205

Copyright © 2002-2025 Software Verify Limited

In the above image we can see:

· a filename match
· some MFC files are ignored
· some class and function filter matches
· some C runtime files are ignored
· in the area of the log we can't see are also entries describing DLLs that have been ignored (Microsoft

and C runtime DLLs)

The filename match and the class and filter matches are of interest to us. We'll need to change these to
ensure we get some code coverage results.

Coverage Validator Help206

Copyright © 2002-2025 Software Verify Limited

3.11 Managers

3.11.1 Session Manager

Managing multiple sessions

Coverage Validator can manage multiple sessions at once.

As well as the actively running session, open sessions may include those run since Coverage Validator
started, or reloaded sessions that had been saved earlier.

 Managers menu Session Manager... shows the Session Chooser dialog below, highlighting
the current session

Each time a session is started or loaded it is added to this list, using the name of the executable
program and the date and time the session started.

Managing the sessions

· Select makes the selected entry the current session, i.e. the one for which data will be displayed

 Some tab views may update immediately, others may need a manual refresh

· Set Alias... opens the Edit Session Alias dialog so you can give the session a more useful name

The User Interface 207

Copyright © 2002-2025 Software Verify Limited

· Delete removes the selected session

You can't delete a session that is actively collecting data.

· Delete All removes all the loaded sessions

If one of the session is actively collecting data, this will be disabled.

· Close closes the dialog (as opposed to closing any selected sessions!)

Merging sessions

When two different sessions are loaded they can be merged into one.

· Merge... shows the Merge Session dialog

Choose the two sessions that you want to merge.

· Session to merge into pick the final destination session for all merged data

Coverage Validator Help208

Copyright © 2002-2025 Software Verify Limited

Optionally use the resulting statistics to update the tab views (the default)

· Display this session... uncheck to not update the views

· Session to be merged into the other session pick the 'other' session

· Merge starts the merge, displaying progress as it goes

 Note that the merged session data is not saved to disk . To save it, Select the resulting merged
session to make it current, and then save the session.

Comparing loaded sessions

When two different sessions are loaded they can be compared as part of a manual regression test.

· Compare... shows the Compare Session dialog for comparing coverage.

Select the two sessions to compare:

· Baseline session the session you want to compare against

· Comparison session to compare against the baseline

· Compare shows the Session Compare dialog

The User Interface 209

Copyright © 2002-2025 Software Verify Limited

The results of the comparison are shown in the top half.

In the visit statistics, entries with the same value are displayed once, while values that differed in each
session have both values displayed.

To view the code coverage comparison for a particular file, select that file in the list at the top.

Scrolling one source code window will scroll the other source code window.

Using the drop-down list at the top, you can show All Coverage Data, or just the Differences only.

The other options in the dialog are identical to those in the Coverage tab.

Limiting the number of sessions

You can choose to limit the maximum number of sessions open at once. Once the maximum is
reached, then each time a new session is added, the oldest session may automatically be removed:

· Auto purge sessions ensures that the number of loaded sessions is limited to the maximum
(below)

· Maximum number of sessions sets the maximum number of sessions allowed if auto-purge is
on

Coverage Validator Help210

Copyright © 2002-2025 Software Verify Limited

3.12 Query and Search

About Query and Search

Coverage Validator provides a handful of query tools to enable you to find particular coverage data
collected in each session:

Searches can include:

· Query Address Search the data for lines at or near an address

· Query Object Search for lines belonging to a C++ object type

· Find function Search for lines occurring in functions matching a function name of interest

· Find unhooked functions Browse a list of functions that have not been hooked (or those that have)

· Find unvisited lines Browse all lines that have not been visited, or those that have

· Find unvisited files Browse all files that have not been visited, or those that have.

Click on an item in the picture below to jump to the relevant topic:

3.12.1 Finding addresses

Finding lines by address

Using the Find Line by Address dialog below, you can search the data for lines at or near an address.

Searches can include:

· lines exactly at an address of your choice

· lines appearing within two chosen address

To show the dialog, choose the menu option below:

 Query menu choose Query Address... displays the Find Line by Address dialog

The User Interface 211

Copyright © 2002-2025 Software Verify Limited

Or use the following icon on the Query Toolbar.

Search criteria

The query is made at an exact address, or between a range of addresses.

The first search address is essential, but the second search address allows for some optional tolerance
or range.

· First address to search for enter the memory address of interest

The format of the values can be decimal or prefixed with 0x for a hexadecimal format.

· Last address to search for enter the end of the address range in which to search (optional)

The last address must be the larger of the two.

Query results

· Query performs the search

The search results are added to the list in the dialog.

· Clear clears all the results from the list

The list is not automatically cleared with each search, so you can accumulate or compare
results of different searches

Coverage Validator Help212

Copyright © 2002-2025 Software Verify Limited

Example: While running the example application, searching between addresses 0x004018a0 and
0x004019a0 you might get a result like this:

You can expand the search results, and double click the data items to edit source code in your preferred
editor.

The amount of code shown can be controlled via the source browsing settings, for example the whole
function or a few lines either side of the result.

If you want to try this out, but don't know what addresses to use, the Functions tab shows addresses
against each function listed.

The User Interface 213

Copyright © 2002-2025 Software Verify Limited

3.12.2 Finding objects

Finding lines by object types

Using the Find Line by C++ Object Type dialog below, you can search for lines belonging to a C++
object type in a similar way to finding addresses.

To show the dialog, choose the menu option below:

 Query menu choose Query Object... displays the Find Line by C++ Object Type dialog

Or use the following icon on the Query Toolbar.

Search criteria

Just choose the object type for which you want to find related lines.

· Object type choose the data-type of the objects you're interested in

The class names that Coverage Validator uses are taken from the list of functions that are
hooked by Coverage Validator.

Query results

· Query performs the search

Coverage Validator Help214

Copyright © 2002-2025 Software Verify Limited

The search results are added to the File list in the dialog.

· Clear clears all the results from the list

The results are not automatically cleared with each search, allowing you to accumulate
searches of multiple object types.

You can expand the search results, and double click the data items to edit source code in your preferred
editor.

The results are displayed as a tree of files, functions and lines, as in the example below.

3.12.3 Finding functions

Finding lines in functions

Using the Find Function dialog below, you can search for lines occurring in functions matching a
function name of interest.

This feature is similar in behaviour to finding objects or addresses except here the results are cleared
each time.

To show the Find Function dialog, choose the menu option below:

 Query menu choose Find function... displays the Find Function dialog

Or use the following icon on the Query Toolbar.

The User Interface 215

Copyright © 2002-2025 Software Verify Limited

Search criteria

Enter a function name, and optionally whether to match case or the complete name

· Function enter full or partial function name

· Match case tick to do a case-sensitive match

· Complete function name tick to only match the whole name

 For C++ methods, complete names must be of the form classname::methodname.

Function match results

· Find performs the search displaying results in the list

Results replace any previous search, unlike querying addresses or objects where the results are
added to the list.

You can expand the search results, and double click the data items to edit source code in your preferred
editor.

The picture above shows results of a search for 'About' in the example application.

The filename is shown in green, indicating that some parts of the file have been visited, but not
necessarily in the functions matching the search.

The lines themselves are shown above in pink, indicating that they have not been visited.

Coverage Validator Help216

Copyright © 2002-2025 Software Verify Limited

Showing the about dialog in the example application and doing the search again would show the lines as
green as below:

3.12.4 Find unhooked functions

Unhooked functions

Coverage Validator allows you to browse a list of functions that have not been hooked (or those that
have).

 Query menu choose Find unhooked functions... displays the Unhooked Functions dialog

The dialog initially displays the names of all functions that have not been hooked.

The User Interface 217

Copyright © 2002-2025 Software Verify Limited

· Refresh updates the list

· Hooked Functions display functions that have been hooked

· Unhooked Functions display functions that have not been hooked

3.12.5 Find visited/unvisited lines

Unvisited and visited lines

You can browse all lines that have not been visited, or those that have.

 Query menu choose Find unvisited lines... displays the Unvisited Lines dialog

The dialog displays a hierarchical view of the files, functions and lines.

Coverage Validator Help218

Copyright © 2002-2025 Software Verify Limited

In this colour scheme all lines will be shown in pink since they are all unvisited.

As with the other query dialogs, you can expand the search results, and double click the data items to
edit source code in your preferred editor.

· Refresh updates the list

· Visited Lines displays lines that have been visited

All lines would then be shown in green or whatever colour you set.

· Unvisited Lines lines that have not been visited

3.12.6 Find visited/unvisited files

Unvisited and visited files

Similar to unvisited lines, you can also browse all files that have not been visited, or those that have.

 Query menu choose Find unvisited files... displays the Unvisited Files dialog

The dialog displays a list of files.

The User Interface 219

Copyright © 2002-2025 Software Verify Limited

In this colour scheme all files will be shown in pink since they are all completely unvisited.

 There are no hierarchical views to expand, and double clicking does not open the file in an editor.

· Refresh updates the list

· Unvisited Files files that have not been visited

· Visited Files displays files that have been visited, even if only partially

All files listed would then be shown in green or whatever colour you set:

Coverage Validator Help220

Copyright © 2002-2025 Software Verify Limited

3.13 Tools

Tools

The Tools menu provides access to a few different tools including a couple not found on the Tools
toolbar:

· A list of the modules loaded by your target application

· A list of the debug information status of modules loaded by your application

· A log of files, classes, functions, methods, or modules not instrumented, and reasons why not

Click on a menu item in the picture of the Tools Menu below to find out more:

The User Interface 221

Copyright © 2002-2025 Software Verify Limited

3.13.1 Edit Source Code...

Source code editing

The editing settings let you set an editor of your choice to view or edit source code. Coverage Validator's
built-in editor is one of those options.

The built-in editor can be started in several ways:

· Double click on a source code fragment (e.g. in the Query tools)

· popup menu Edit Source Code...

· Tools menu Edit Source Code...

Using the built-in editor

The built-in editor supports the basic operations expected for editing source code:

The highlighting is identical to that in the source code views of the main tabs:

· The lines in green (for this colour scheme) have been visited

· Lines that have not been visited are displayed in pink

· Lines with a green tick next to them indicate that they have been successfully hooked

· Lines that could not be hooked have a red cross against them

· An arrow indicates the source code line of interest when the source code editor was displayed

Coverage Validator Help222

Copyright © 2002-2025 Software Verify Limited

 File menu

The file options need no explanation:

 Edit menu

All the following edit options should also be familiar:

The User Interface 223

Copyright © 2002-2025 Software Verify Limited

Undo/Redo is unlimited by default, but this can be changed in the options below.

 Formatting menu

The formatting menu has general display and editing options

· Convert Tabs to spaces turns all tabs into spaces
· Convert Spaces to tabs turns all spaces into spaces

· Use Colour toggles the colour coded display

· Fonts and Line Numbers... change text colours, fonts and line numbers

Coverage Validator Help224

Copyright © 2002-2025 Software Verify Limited

· Options... set tab length and other options

The User Interface 225

Copyright © 2002-2025 Software Verify Limited

· Wrap Width... changes the column width at which lines will wrap in the display

Status bar

The status bar shows help text at the bottom as you hover over menu and toolbar options.

To the right of the status bar are insert mode, column number and line number.

Line collapsing

You can temporarily collapse sections of code as follows:

· Left click in the margin to start the section Drag to define the length Release to set the
end of the section

Click anywhere on the resulting indicator to collapse, and on the + to expand a section.

Expanded:

Collapsed:

Line collapsing is temporary and not remembered between edit sessions.

3.13.2 Refresh and Refresh All

Refreshing data

You have the option in some views to automatically update the view at an interval of your choice.

Coverage Validator Help226

Copyright © 2002-2025 Software Verify Limited

Sometimes you need to refresh the data when you want to, especially while inspecting the data.

Most views have a local refresh button, which updates the data.

The same function is found in the Tools menu, as well as an option to update all views at once:

 Tools menu Refresh refresh the data displayed only on the current tabbed view

 Tools menu Refresh All refresh the data on all the tabbed views

Or use the Refresh and Refresh All icons on the Tools toolbar.

3.13.3 Loaded Modules

Viewing the loaded modules

You can view a list of the modules which are loaded by your target application.

 Tools menu Loaded Modules... shows the Loaded Modules dialog

The dialog shows:

· the Address space occupied by the module (DLL or EXE)

· the type of Code in the module (native, managed, mixed mode or resources only

· the type of Build - is the code debug or release?

· the Path the module was loaded from

The User Interface 227

Copyright © 2002-2025 Software Verify Limited

3.13.4 DLL Debug Information

Viewing the DLL debug information

If you are having problems collecting coverage data for a particular EXE/DLL the problem may be that the
debug information that is required to perform the instrumentation of the software cannot be found.

You can view a list of the debug information status of modules loaded by your target application.

 Tools menu DLL Debug Information... shows the DLL Debug Information dialog below

The dialog shows:

· the path from which Modules (DLL or EXE) were loaded

· the debug Status (below)

Coverage Validator Help228

Copyright © 2002-2025 Software Verify Limited

· if any symbol server is not reachable (offline or doesn't exist) a message will be shown in red at the
bottom of the dialog. You can edit the symbol server definitions here.

Debug status

There are various reasons why a module may not have its debug information read.

The dialog shows a comment or reason in the status column. Examples might be:

· PDB or MAP if the debug information was found and used

· Debug information not present

· A reason for being ignored

· Module is a part of the C Run-time Library (CRT) or Standard Template Library (STL)

· Location is a system directory

· Ignored due to Hooked DLLs advanced settings

· File is a Software Verify own module

· Module has been specified as a 3rd party

· No executable code is contained

· The module only has GUI resources

More information about PDB and MAP files

Clicking on the Learn more... link at the top right of the dialog shows some more details with additional
links to topics in this help.

Click the links below to see read more in our frequently asked questions.

The User Interface 229

Copyright © 2002-2025 Software Verify Limited

Finding out more using the Debugging Information Diagnosis Dialog

When debug information is not present for a given module the DLL Debug Information dialog (above) may
display a button in the Status column to show the Debugging Information Diagnosis dialog.

The dialog shows:

· Information, advice, and diagnostic help

· Quick links to change settings

Coverage Validator Help230

Copyright © 2002-2025 Software Verify Limited

The information options include:

· Show me how debug information was searched for... shows the Debug Information Search
Path dialog

This information is extracted from the Diagnostic tab and shows only the relevant information for
the module selected in the DLL Debug Information dialog.

The User Interface 231

Copyright © 2002-2025 Software Verify Limited

· Help me choose what flags... shows the Debugging Flags wizard

Use the wizard to first select the compiler or linker you're using

Next >> Provides the relevant debug compiler and linker flags. An example for Visual Studio
2017 to 2015 is below:

Coverage Validator Help232

Copyright © 2002-2025 Software Verify Limited

· Debugging information advice... shows the Symbols and Debugging Information dialog above.

The options for changing settings include quick links to the following pages from the Global Settings
Dialog

· Edit PDB search paths... shows the File Location settings page for PDB files.

· Edit symbol lookup options... shows the Symbol Lookup settings page

· Edit symbol server options... shows the Symbol Servers settings page

· Edit symbol load preferences... shows the Symbol Load Preferences settings page

· Edit symbol debug options... shows the Symbol Misc settings page

3.13.5 Symbol Path Truncation

The Symbol Path Truncated warning dialog

The symbol path truncated warning dialog is displayed to warn you when the symbol path is too long.

The User Interface 233

Copyright © 2002-2025 Software Verify Limited

· Edit Symbol Paths... shows the file locations dialog so that you can edit the paths used for
subsequent runs of the program.

You can choose when this dialog is displayed.

· Always show The dialog is always shown when the symbol path is too long.
· Show when path changes The dialog is shown when the symbol path is too long, but only if the

symbol path is different than last time this warning was shown.
· Never show The dialog is never shown.

Whether this dialog is displayed or not there is always a warning message written to the diagnostic
window when the symbol path is truncated.

The display lists each path with it's length (including the unshown ';' path separator) and the total length
so far so that you can see which paths exceed the truncation point (length and total displayed in red).

Any paths that don't exist on this computer are displayed in red.

Why is this dialog displayed?

You may see a Symbol Path Truncated warning dialog in some rare circumstances.

This dialog is displayed when the symbol path that has been calculated to pass to DbgHelp.dll to load
Microsoft debugging symbols (found in .PDB files) is too long.

Coverage Validator Help234

Copyright © 2002-2025 Software Verify Limited

If the symbol path has been truncated because it is too long it is possible this may mean that some
symbol searches will fail, resulting in failure to load some symbols. We display this dialog so that you
are aware that the symbol path is too long and would benefit from editing to make the symbol path
shorter.

Passing a symbol path that is too long to DbgHelp.dll will cause the program being tested to end with an
EXCEPTION_INVALID_CRUNTIME_PARAMETER C runtime error. This happens because internally
DbgHelp.dll is using a fixed length array to format a string. To prevent this fatal termination of the test
program we limit the length of the path passed to DbgHelp.dll.

Typically if a path that is long enough to cause this problem is passed to DbgHelp it's because the
number of paths in the calculated path contain paths not relevant to finding symbols for the test program.
We use the Symbol Path Truncated warning dialog to show you the calculated paths so that you can
work out which paths to delete.

The calculated symbol paths come from several places:

· File locations PDB paths
· Symbol server symbol storage directories
· Symbol handling environment variables

Fixing the symbol path

For this example, we are testing the program E:\om\c\3RD_SRC\cdplayer\Release\cdplayer.exe

In the image shown above you can see that seven paths exceed the truncation limit, one of the 7 paths
doesn't exist.

To work out what to do we need to do several actions:

1. Looking at the environment variable settings shows that none of the environment variables are
being used. We do not need to consider the content of these environment variables.

2. Examining the symbol servers shows that C:\Users\Admin is a local symbol storage location. We
should keep this path.

3. We should delete the path that doesn't exist: E:
\om\c\testApps\testStdinStdoutRedirectEx\Release. We do this using the file locations dialog
by clicking Edit Symbol Paths... then click Delete invalid.

4. Examining the paths in the file locations dialog we can identify any paths not relevant to the
program we are testing. In this case the following paths are not relevant and can be deleted.

E:\om\c\testApps\testStdinStdoutRedirect\Release
E:\om\c\testApps\testAppTheReadsFromStdinAndWritesToStdout\Release
E:\om\c\testApps\testSimpleMemoryLeak\Release
e:\om\c\3rd_src\cppunit-1.12.1\examples\cppunittest\release
e:\om\c\3rd_src\cppunit-1.12.1\examples\cppunittest\releasedll

The User Interface 235

Copyright © 2002-2025 Software Verify Limited

3.13.6 Instrumentation Logging Data

Instrumentation Log Data

It can be very useful to know why your code hasn't been instrumented. For example, a file or part of a file
you were expecting to receive coverage information may have been excluded by one or more of the
class, file, DLL or or other filters in the Global Settings dialog.

To log details of why dlls, source files, classes, methods and functions are not instrumented, first switch
on the instrumentation logging settings.

Once enabled, and a session has started, you can view a list of the files that have not been instrumented
via the Tools menu.

 Tools menu Instrumentation Logging Data... shows the Instrumentation Log Data dialog

The dialog shows:

· log order

· the name of the item that hasn't been instrumented

· the reason why each item wasn't instrumented

Example reasons why an item might not be instrumented include the following:

· MFC file ignored

· Microsoft C Runtime file ignored

· Microsoft DLL ignored

· CRT DLL ignored

· Software Verify's own DLL ignored

Coverage Validator Help236

Copyright © 2002-2025 Software Verify Limited

· Class or function excluded by class and function filters

· File extension excluded by hook source file type filters

· Files excluded by source files filters

3.13.7 Instrumentation Failure Data

Instrumentation Failure Data

It can be very useful to know which functions in your code failed instrumentation.

You can view a list of the functions that have failed instrumentation via the Tools menu.

 Tools menu Instrumentation Failure Data... shows the Instrumentation Failures dialog

The dialog shows:

· the file name of the item that hasn't been instrumented

· the line number of the item that hasn't been instrumented

· the symbol name of the item that hasn't been instrumented

· the reason why each item wasn't instrumented

Example reasons why an item might not be instrumented include the following:

· Disallow computed unconditional jmp

· Failed to disassemble

· Found privileged instruction

The User Interface 237

Copyright © 2002-2025 Software Verify Limited

3.13.8 Out Of Date DLLs

It may happen that if you forget to build a DLL, or if a build error occurs that you perform code coverage
on DLLs that are not built with the most recent version of your source code.

We refer to these DLLs are out of date DLLs because they are out of date compared to the source code
that is compiled to create the DLLs.

Coverage Validator can detect this, and warn you about it.

Summary tab

When out of date DLLs are found a warning is displayed on the summary tab, in the lower section of the
display.

Out Of Date DLLs Dialog

The View... link will display the Out Of Date DLLs dialog.

There is also an option to display the Out Of Date DLLs dialog on the Tools menu.

The Out of date DLLs dialog shows the DLLs that are out of date, and the source files for each DLLs. The
dates of both the DLLs and the source files are displayed.

Coverage Validator Help238

Copyright © 2002-2025 Software Verify Limited

The above image shows 2 DLLs that are out of date, with 2 files in each DLL being more recently edited
than the build timestamp for the respective DLL.

Data Displays

The various data displays in Coverage Validator change the text colour to the Out Of Date colour.

The source code displays in Coverage Validator change the text colour to the Out Of Date colour, and
display a prominent warning in red text.

Sessions that are exported as HTML also change the text colour to the Out Of Date colour, and display
a prominent warning in red text.

3.13.9 Reset All Statistics

Resetting statistics

It's not uncommon to want to clear all the coverage data gathered during the session so far, and then
continue calculating coverage without restarting the session.

Resetting the statistics does exactly that.

The User Interface 239

Copyright © 2002-2025 Software Verify Limited

 Tools menu Reset All Statistics reset all the collected statistics

Or use the Reset All Statistics icons on the Session toolbar.

The way this works is that a message gets sent to the stub monitoring the target program.

All threads in the target program get suspended whilst the statistics are reset.

Once reset, all the threads are resumed and new values for the statistics are calculated.

3.13.10 Ask stub for coverage data

Real-time updates with NT services

When working with NT services, Coverage Validator can't access the data in the stub due to security
differences between itself (an application) and your service.

To overcome this problem, the stub sends all the coverage data to the user interface when your
application stops (e.g. you stop it from the service manager or the control panel, etc).

This allows the user interface to display the coverage data after your service has completed, but it's not
unreasonable that you might want to see coverage data while the service is running.

Coverage Validator provides an on-demand utility to retrieve updated coverage information when you want
it.

 Tools menu Ask stub for coverage data updates the coverage statistics from the stub

or use the Ask stub for coverage data icon on the Session toolbar.

 There will be a short pause whilst coverage data is sent from the stub to the user interface.

3.14 Software Updates

This topic covers the three items on the Software Updates menu:

Coverage Validator Help240

Copyright © 2002-2025 Software Verify Limited

· checking for software updates
· configuring your update schedule
· renewing your software maintenance
· setting your software update credentials
· setting the software update directory

Software updates

If you've been notified of a new software release to Coverage Validator or just want to see if there's a new
version, this feature makes it easy to update.

 Software Updates menu Check for software updates checks for updates and shows the
software update dialog if any exist

An internet connection is needed to be able to make contact with our servers.

 Before updating the software, close the help manual, and end any active session by closing
target programs.

If no updates are available, you'll just see this message:

 Note that evaluation versions cannot be updated.

Software Update dialog

If a software update is available for Coverage Validator you'll see the software update dialog, unless your
maintenance has expired.

The User Interface 241

Copyright © 2002-2025 Software Verify Limited

· Download and install prompts you for log-in details if not known, and then downloads the
update, showing progress

 You may be asked for your log-in credentials, which you'll have received when you
purchased Coverage Validator.

Once logged in, the download will start:

Once the update has downloaded, Coverage Validator will close, run the installer, and restart.

You can stop the download at any time, if necessary.

· Don't download... Doesn't download, but you'll be prompted for it again next time you start
Coverage Validator

· Skip this version... Doesn't download the update and doesn't bother you again until there's an
even newer update

· Software update options... edit the software update schedule

· Manage software maintenance... opens your browser ready for maintenance renewal

Problems downloading or installing?

If for whatever reason, automatic download and installation fails to complete:

· Log in to https://www.softwareverify.com/authdownload.php with the details provided when you
purchased Coverage Validator

Coverage Validator Help242

Copyright © 2002-2025 Software Verify Limited

· Download the latest installer manually, via one of the .exe, .xyz or .zip files that are available

Make some checks for possible scenarios where files may be locked by Coverage Validator as follows:

· Ensure any open sessions are completed

· Ensure any target programs started by Coverage Validator are closed

· Ensure Coverage Validator and its help manual is also closed

· Ensure any error dialogs from the previous installation are closed

Have your license details handy as you may need to copy information into the license dialog.

You should now be ready to run the new version.

Software maintenance expiry

If the software maintenance period has expired you won't be able to automatically update Coverage
Validator as above.

Instead, you'll see the software update maintenance expiry dialog:

You can manage your software maintenance or choose to stop receiving any more software updates.

Software update schedule

Coverage Validator can automatically check to see if a new version of Coverage Validator is available for
downloading.

 Software Updates menu Configure software updates shows the software update schedule
dialog

The update options are:

· never check for updates
· check daily (the default)
· check weekly
· check monthly

The most recent check for updates is shown at the bottom.

The User Interface 243

Copyright © 2002-2025 Software Verify Limited

Managing software maintenance

 Software Updates menu Renew software updates shows the software update
maintenance renewal dialog

Your maintenance expiry date is shown. If you don't need to do anything just Close the dialog.

· Renew software maintenance Opens your browser, logging you in to our website from which
you can purchase maintenance

Coverage Validator Help244

Copyright © 2002-2025 Software Verify Limited

Managing software update credentials

You can configure your software update credentials within the application.

 Software Updates menu Set software update credentials shows the Software update
login details dialog

The text will be shown in red if the email address looks incorrectly formatted.

Testing the login details checks they're valid:

· Test login details check your entered details are valid (requires an internet connection)

The User Interface 245

Copyright © 2002-2025 Software Verify Limited

Valid details will be confirmed:

Invalid details may mean you entered credentials for another application in the Validator suite,
or they could have been entered incorrectly.

You should have received the correct credentials when you purchased Coverage Validator, or
with any software update emails.

If you experience problems, check with your system administrator or contact Software Verify.

If you need to clear the update credentials, you can do this directly from the menu.

 Software Updates menu Reset software update credentials clears the email and
password details stored in the application

You will be asked to confirm the reset. After resetting the credentials, no software updates will
occur.

If you later need to restore your credentials, you should have received that information when you
purchased Coverage Validator, or with any software update emails.

Coverage Validator Help246

Copyright © 2002-2025 Software Verify Limited

Software update directory

It’s important to be able to specify where software updates are downloaded to because of potential
security risks that may arise from allowing the TMP directory to be executable. For example, to
counteract security threats it's possible that account ownership permissions or antivirus software blocks
program execution directly from the TMP directory.

The TMP directory is the default location but if for whatever reason you're not comfortable with that, you
can specify your preferred download directory. This allows you to set permissions for TMP to deny
execute privileges if you wish.

 Software Updates menu Set software update directory shows the Software update
download directory dialog

An invalid directory will show the path in red and will not be accepted until a valid folder is
entered.

Example reasons for invalid directories include:

· the directory doesn't exist
· the directory doesn't have write privilege (update can't be downloaded)
· the directory doesn't have execute privilege (downloaded update can't be run)

The User Interface 247

Copyright © 2002-2025 Software Verify Limited

 When modifying the download directory, you should ensure the directory will continue to be valid.
Updates may no longer occur if the download location is later invalidated.

· Reset reverts the download location to the user's TMP directory

The default location is c:\users\[username]\AppData\Local\Temp

3.15 Sessions: Load, Save, Export, Close

Working with sessions

Sessions with Coverage Validator can be saved to and loaded from a file so that you can:

· share the session with a colleague

· examine the session at a later date

· compare the session with another session

· create baseline sessions for use in regression tests

Sessions can be even exported in HTML and XML formats.

You can have multiple sessions open at once, necessary for comparing or merging loaded sessions.

Closing a session

When you've finished working with a session, it can be closed.

 File menu Close Session... closes the session, clearing the displays

Closing a session may happen automatically if you start a new session and the session count limit is 1.

If the maximum session count allows, closed sessions still appear in the Session Manager, where they
can be reopened or deleted.

Session Filename

The session filename is displayed as the first line of the diagnostic data on the Diagnostic tab.

Coverage Validator Help248

Copyright © 2002-2025 Software Verify Limited

3.15.1 Loading & Saving Sessions

Loading sessions

Load a session using any of the following options.

 File menu Open Session... open a previously saved session from file (*.cvm)

Or click on the Open Session icon on the standard toolbar.

Or use the shortcut:

 + Open session

If you have a limit of 1 session to be open at a time, any open session will be closed first, otherwise you
can open multiple sessions at a time.

Saving sessions

Save a session using any of the following options.

 File menu Save Session... saves all the session data to a file (*.cvm), prompting for a file
name if necessary

 File menu Save As... saves the session to a new file

The User Interface 249

Copyright © 2002-2025 Software Verify Limited

Or click on the Save Session icon on the standard toolbar.

Or use the shortcut:

 + Save session

Unlike exports, there are no options here, as all session data is saved.

3.15.2 Exporting Sessions

Exporting to HTML or XML

Exporting sessions allows you to use external tools to analyse or view session data for whatever reasons
you might need.

You can export to HTML or XML format:

 File menu Export Session... Choose an HTML or XML Report shows the Export
Session dialog below

Exporting is not saving

You can't import session data.

Use save and load if you want to save session data for loading back into Coverage Validator at a later
date.

The HTML and XML export session dialog

For regular HTML or XML export, the same dialog is used. The Cobertura XML export dialog has
fewer options.

Coverage Validator Help250

Copyright © 2002-2025 Software Verify Limited

Report description

The optional description is included at the top of the exported data in the description field.

· Description enter a meaningful description or just leave blank

If no text is entered the description is omitted from the export.

The User Interface 251

Copyright © 2002-2025 Software Verify Limited

Report Type

· Colour Coded Report generate a colour coded report

Only HTML reports can be colour coded:

Colours used will be those set for use in the various displays.

The exported report can be generated on a per file or class basis, or as a summary of coverage.

· Per file generate a report that lists data by filename

· Per class list data by C++ class

All functions that are not members of a class will be listed together in the "global namespace"
class.

· Per DLL list data by module name (EXE, DLL, BPL, etc)

· Summary report generate a report comprising only of images of the graphs on the summary tab

· Summary report, +coverage... includes the summary images, code coverage and branch
coverage (also unit test coverage if present)

Within the report, you can optionally link source code showing highlighted coverage lines and visit
counts

· Include highlighted source code... check to include marked up source code files in a
sub directory

Report content

When exporting data by file or class, you can optionally include data for visited or unvisited lines and
functions, as well as unhooked functions.

Tick any or all of the following to Include:

· unvisited lines (included by default)
· visited lines

· unvisited functions (included by default)
· visited functions

· unhooked functions

List of merged sessions

If it's important to know what merged sessions were included in the statistics, you can optionally list the
session information at the top or bottom of the report:

Coverage Validator Help252

Copyright © 2002-2025 Software Verify Limited

· Do not include prevent the list of merged sessions being included

· Include at top include the list of merged sessions at the top of the report

· Include at bottom include merged sessions at the bottom of the report

Report style

Some areas of the report can be detailed or terse.

· Detailed Report check box to include more detail (the default)

HTML reports are usually colour coded according to the current colour scheme.

· Colour Coded Report check box to include more detail (the default)

A colour coded view would be essential if including both visited and unvisited lines or functions.

If you want a custom style (e.g. not using tables), export a detailed XML report and process that
to generate the HTML report.

Cascading Style Sheet (CSS)

Cascading style sheets are used to control the formatting of the exported HTML reports.

By default the style sheet svlCoverageValidatorCpp.css is used from the Coverage Validator install
directory.

You can specify your own style sheet in this field:

· Cascading Style Sheet (CSS) enter the full path to the CSS file or Browse to the file

 At the time of export a copy of the CSS file is placed in the same directory as the report.

Line ending

Depending on how you want to use the reports, you may prefer a certain line ending character

· Carriage Return, Line Feed \r\n (e.g. Windows)

· Line Feed \n (e.g. Linux)

· Carriage Return \r (e.g. Macintosh)

File section

The User Interface 253

Copyright © 2002-2025 Software Verify Limited

· Overwrite existing file check if you don't want to be warned about overwrites

· File type the filename or Browse to a location

· Format set whether exporting HTML or XML

Defaults to the original menu option selected, but included here to more easily export one format
and then the other.

· Encoding set whether UTF-16 LE, UTF-8 or ASCII encoding. By default the exported file is saved
in the Windows Unicode format UTF-16 little endian. You can also save in UTF-8 and ASCII. ASCII
has no byte order mark at the start of the file.

Ready to export?

Use the export button at top right when you're ready to go

· Export export the session data

The Cobertura XML export session dialog

Cobertura is a free Java tool that calculates the percentage of code accessed by tests.

Cobertura's coverage output can be used in other systems such as the Jenkins continuous integration
(CI) server.

Coverage Validator can output its own coverage results in the same XML format as Cobertura so that
they can be used in a similar way.

For Cobertura XML export the options are much reduced:

Coverage Validator Help254

Copyright © 2002-2025 Software Verify Limited

The line ending and output file details are as for regular XML output, but the report style options differ.

Report style

The Cobertura XML report lists data by class, which is a problem for functions that aren't in a class, but
in the global namespace.

You to choose how to work around this:

· Numeric The class name is listed as gl obal namespace [N]

N is a unique numeric identifier for each file containing unclassed functions

· Filename The class name is listed as gl obal namespace [f i l ename]

filename is the complete path and filename of the file for the unclassed function

· All The class name is listed as gl obal namespace

3.15.2.1 XML Export Tags

This section describes the XML tags used to export session data from Coverage Validator.

Application and program details

An exported XML file starts with a few details about Coverage Validator and the target program:

The User Interface 255

Copyright © 2002-2025 Software Verify Limited

<XML>

<VALIDATORINFO>Coverage Validator information online</VALIDATORINFO>

<VALIDATOR>Coverage Validator name</VALIDATOR>

<VALIDATORVERSION>Version</VALIDATORVERSION>

<VALIDATORDATE>Build date</VALIDATORDATE>

<VALIDATORTIME>Build time</VALIDATORTIME>

<TITLE>Target program name</TITLE>

<EXITCODE>Program exit status code and description (if collected)</EXITCODE>

<INFO>Information about the report type</INFO>

Code fragments

Code fragments can be included as child tags of several of the tags used for the various types of
exported XML data.

Exporting by class will just list individual codeFragment tags while exporting by file uses the codeFragments tags.

<codeFragments>

<codeFragment>...</codeFragment>

...

</codeFragments>

For example:

<codeFragments>

<codeFragment

function="CAboutDlg::CAboutDlg"

visitCount="0"

numLines="2"

numLinesVisited="0"

firstLine="156"

lastLine="159">

{ }

</codeFragment>

...

</codeFragments>

Source files

When exporting by file, the SOURCEFILE tags details coverage data for a given source code file and will

contain all the code fragments

For example

Coverage Validator Help256

Copyright © 2002-2025 Software Verify Limited

<SOURCEFILE

file="c:\program files (x86)\software verify\c++ coverage validator\examples\nativeexample\nativeexample.cpp"

dll="C:\Program Files (x86)\Software Verify\Coverage Validator\examples\nativeExample\DebugNonLinkANSI9_0\nativeExample.exe"

numLines="32"

numLinesVisited="17"

numLinesUnhooked="0"

numFunctions="10"

numFunctionsVisited="4">

 ...

</SOURCEFILE>

Classes

When exporting by class, the CLASS tags details coverage data for a particular class and will contain all

the code fragment children

For example

<CLASS name="CAboutDlg">

File names

Class information identifies a file using the FILENAME tag:

<FILENAME file="c:\program files (x86)\software verification\c++ coverage validator\examples\nativeexample\nativeexample.cpp"/>

3.16 Starting your target program

Starting options

There are four ways to start a target program and have Coverage Validator collect data from it.

· Launch your program in a specified directory, with as many command line arguments as you want

· Inject Coverage Validator into an already running program

· Wait until a specific program starts to run before attaching to it - e.g. for programs started as an
OLE server

· Link a library (provided) to your program which will cause Coverage Validator to be started whenever
the program is started

The User Interface 257

Copyright © 2002-2025 Software Verify Limited

There are seven ways to start a target program and have Coverage Validator collect data from it.

· Launch your program in a specified directory, with as many command line arguments as you want

· Inject Coverage Validator into an already running program

· Wait until a specific program starts to run before attaching to it - e.g. for programs started as an
OLE server

· Monitor a service

· Monitor IIS and ISAPI

· Use the Native API to start Coverage Validator from code that you control

· Start Coverage Validator from the command line, allowing you to automate your use of Coverage
Validator

Modules without PDB files and without MAP files

For your application to be processed for coverage data, each module to be monitored must have a PDB
file with debug data, or a MAP file with line number data.

Use the Debug DLLs dialog to see whether debug information was not found for any modules, and check
the Diagnostics tab for failure messages.

3.16.1 Launch Chooser

The launch chooser is displayed when you click on the rocket icon on the toolbar.

There are multiple application types and services that you may wish to use. The launch chooser provides
the mechanism for making that choice.

Coverage Validator Help258

Copyright © 2002-2025 Software Verify Limited

Each button will display the launch dialog associated with the instruction displayed on the button.

Applications

· Launch Native and .Net Applications

· Launch .Net Core Applications

Services

· Monitor a Service

Web

· ASP.Net Core Web Application

· ASP.Net with IIS

· ASP.Net with Web Development Server

· ISAPI with IIS

 You can repeat the choice made using the launch chooser by using +

The User Interface 259

Copyright © 2002-2025 Software Verify Limited

3.16.2 Launching the program (native and .Net)

Launching the application

Having Coverage Validator launch your program is the most common way to start up

When you're ready to start running a target program:

 File menu Start Application... Shows the launch program wizard or dialog below

Or click on the launch icon on the session toolbar.

Or use the shortcut:

 Start application

You can easily re-launch the most recently run program.

User interface mode

There are two interface modes used while starting a program

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode has all options contained in a single dialog

All the options are the same - just in different places.

In this section we'll cover the Wizard mode first and the Dialog mode later.

The start application wizard

On first use, the wizard appears with fields cleared, but here's an example with a few fields set:

Coverage Validator Help260

Copyright © 2002-2025 Software Verify Limited

Enter the details for your program, or if you want to run a previous program select it from the application
list to repopulate the details.

After entering the details click Next >> for the next page of the wizard.

Administrator privileges when launching your program

The following applies only if you did not start Coverage Validator in administrator mode.

Anywhere you see the icon indicates that administrator privileges will be required to proceed.

If you started Coverage Validator in administrator mode, you won't see any of these warnings, and
everything will behave as normal.

Page 1: Entering details

The User Interface 261

Copyright © 2002-2025 Software Verify Limited

· Application type or Browse to set the program name to launch

You can also choose a batch file and the first executable started in the batch file will be
launched.

You can also choose a powershell script and the first executable started in the powershell script
will be launched.

Manually typing a path will show red text until a valid path is entered, after which the text
becomes black.

· Application to monitor choose the application that actually gets monitored

This will typically just be the program that you set to start - unless otherwise specified.

Alternatively you can monitor another application which will get launched by the start program.

If the start application has already been added to the Applications to Monitor settings with a
default application then that default will be entered here automatically.

Otherwise, if nothing has been set up yet, you can do it from here:

· Edit... set the child applications that can be monitored for the start program

This uses the Applications to Monitor dialog - which is exactly equivalent to using the
Applications to Monitor settings page.

A fallback option is to start monitoring <<Any application that is launched>>.

 If in doubt, just use the same as the start application.

See also: Application to Monitor settings

· Launch Count when monitoring a child application, set its nth invocation as the one to monitor

If the application to start is the same as the application to monitor then this is set to 1 and
cannot be changed.

This will be reset to 1 every time the Application to Monitor field selection changes.

 If in doubt, leave it set to 1.

See also: Launch Count.

· Command Line Arguments enter program arguments exactly as passed to the target program

· Startup Directory enter or click Dir... to set the directory for the program to start in

When setting your target program, this will default to the location of the executable

Coverage Validator Help262

Copyright © 2002-2025 Software Verify Limited

· Environment Variables click Edit... to set any additional environment variables before your
program starts

These are managed in the Environment Variables Dialog.

· File to supply to stdin optionally enter or Browse to set a file to be read and piped to the
standard input of the application

· File to supply to stdout optionally enter or Browse to set a file to be written with data piped from
the standard output of the application

Page 1: Using details from a previous run

The list at the bottom of the wizard shows previously run programs.

Selecting an item in the list populates all the details above as used on the last run for that program.

You can still edit those details before starting.

· Full path shows the full path to the executable in the list

· Image Name shows the short program name without path

· Delete removes a selected program from the list

· Reset clears all details in the wizard - including the list of previously run applications below

Page 2: Data collection and redirection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much
faster not to collect data until the program has launched.

The User Interface 263

Copyright © 2002-2025 Software Verify Limited

See the section on controlling data collection for how to turn collection on and off after
launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

· Redirect standard output Controls redirection of stdout and stderr

Use this option if you want to collect the output of stdout and stderr for later analysis.

Be aware that if the output of the program under test generates a lot of data via stdout or stderr
that this data will need to be stored in memory and could exhaust Coverage Validator's
memory.

· Display command prompt Shows or hides the launched application.

If you are collecting stdout and stderr you may not be interested in viewing the application (or
the command prompt if it is a console application). This provides you the option to hide the
application when it is running.

Be aware that if you hide a command prompt you will not be able to type anything into the
application.

Coverage Validator Help264

Copyright © 2002-2025 Software Verify Limited

Page 3: Summary and starting your program

The last page is just a summary of the options you have chosen.

 Something missing? The choice of launch method is no longer necessary and has been removed.

If you're happy with the settings, go ahead:

· Start Application... start your program and attach Coverage Validator to it

· Cmd Line... display the command line builder

The User Interface 265

Copyright © 2002-2025 Software Verify Limited

Administrator privileges in wizard mode

If administrator privileges are required you'll be reminded of the need to restart here:

· Start Application... shows the Administrator Privileges Required confirmation dialog before
restarting.

Coverage Validator Help266

Copyright © 2002-2025 Software Verify Limited

Dialog mode

In Dialog mode, all the settings are in one dialog which looks very much like the first page of the launch
wizard above.

The option to start collecting data is at the top.

· Launch start your program and attach Coverage Validator to it

· Cmd Line... display the command line builder

Double clicking a program in the list will also start it immediately.

The User Interface 267

Copyright © 2002-2025 Software Verify Limited

Administrator privileges in dialog mode

If administrator privileges are required, the Launch button will show the privileges icon reminding you of
the need to restart.

· Launch shows the Administrator Privileges Required confirmation dialog before restarting.

If you started Coverage Validator in administrator mode, you won't see any of these warnings, and
everything will behave as normal.

How do I use Application to Monitor and Launch Count?

The three fields Application to Start, Application to Monitor and Launch Count work together to
control which application actually gets monitored by Coverage Validator.

Let's say we have a program P.

In the simplest case, simply:

· start P
· monitor P
· the Launch Count defaults to 1 and cannot be changed.

If P launches an application and you just want to monitor whatever that is:

· start P
· monitor <<Any application that is launched>>
· leave the Launch Count at 1

If P launches an application A and maybe others as well, and you specifically want to monitor only A as
it's launched:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· leave the Launch Count at 1

Coverage Validator Help268

Copyright © 2002-2025 Software Verify Limited

If P launches an application A many times and you specifically want to monitor the third invocation:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· set the Launch Count to 3

3.16.3 Launching the program (.Net Core)

Launching the application

Having Coverage Validator launch your program is the most common way to start up

When you're ready to start running a .Net Core program

 Launch menu Applications Launch .Net Core Application Shows the .Net Core launch
dialog below

Or use the shortcut

 + Launch .Net Core Application

You can easily re-launch the most recently run program.

The User Interface 269

Copyright © 2002-2025 Software Verify Limited

.Net Core Application Type

.Net Core applications can be self contained or framework dependent. This changes how the launch
dialog works.

· .Net Core application type choose which type of .Net Core application you are launching

.Net Core Self Contained Application

· Application to launch (*.exe) type or Browse to set the program name (*.exe) to launch

Coverage Validator Help270

Copyright © 2002-2025 Software Verify Limited

When you set this value the Application to launch DLL field will be automatically populated to have
the same name as the EXE field but with a .DLL extension.

· Application to launch (*.dll) type or Browse to set the program name (*.dll) to launch

· Application to monitor choose the application that actually gets monitored

This will typically just be the program that you set to start - unless otherwise specified.

Alternatively you can monitor another application which will get launched by the start program.

If the start application has already been added to the Applications to Monitor settings with a
default application then that default will be entered here automatically.

Otherwise, if nothing has been set up yet, you can do it from here:

· Edit... set the child applications that can be monitored for the start program

This uses the Applications to Monitor dialog - which is exactly equivalent to using the
Applications to Monitor settings page.

A fallback option is to start monitoring <<Any application that is launched>>.

 If in doubt, just use the same as the start application.

See also: Application to Monitor settings

.Net Core Framework Dependent Application

· Application to launch (*.exe) type or Browse to set the program name (*.exe) to launch

We don't auto-populate this field when you choose the Framework dependent application type. This
because you may have your .Net Core runtime stored in a location that we can't auto-detect.

To accommodate alternate locations for the .Net Core runtime we only auto-populate this field if it is
empty when you choose the application DLL.

· Application to launch (*.dll) type or Browse to set the program name (*.dll) to launch

If you set this when Application to launch EXE field is empty, the EXE field will be automatically
populated with the path to the system .Net Core framework dependent runtime.

This is typically c:\program files\dotnet\dotnet.exe.

· Application to monitor choose the application that actually gets monitored

This will typically just be the program that you set to start - unless otherwise specified.

Alternatively you can monitor another application which will get launched by the start program.

The User Interface 271

Copyright © 2002-2025 Software Verify Limited

If the start application has already been added to the Applications to Monitor settings with a
default application then that default will be entered here automatically.

Otherwise, if nothing has been set up yet, you can do it from here:

· Edit... set the child applications that can be monitored for the start program

This uses the Applications to Monitor dialog - which is exactly equivalent to using the
Applications to Monitor settings page.

A fallback option is to start monitoring <<Any application that is launched>>.

 If in doubt, just use the same as the start application.

See also: Application to Monitor settings

· .Net Core dotnet.exe arguments any arguments that will be passed to the .Net Core runtime to
control how the .Net Core runtime behaves.

· Edit... displays the .Net Core runtime arguments editor

Fields common to all .Net Core applications

· Launch Count when monitoring a child application, set its nth invocation as the one to monitor

If the application to start is the same as the application to monitor then this is set to 1 and
cannot be changed.

This will be reset to 1 every time the Application to Monitor field selection changes.

 If in doubt, leave it set to 1.

See also: Launch Count.

· Command Line Arguments enter program arguments exactly as passed to the target program

· Startup Directory enter or click Dir... to set the directory for the program to start in

When setting your target program, this will default to the location of the executable

· Environment Variables click Edit... to set any additional environment variables before your
program starts

These are managed in the Environment Variables Dialog.

· File to supply to stdin optionally enter or Browse to set a file to be read and piped to the
standard input of the application

· File to supply to stdout optionally enter or Browse to set a file to be written with data piped from
the standard output of the application

Coverage Validator Help272

Copyright © 2002-2025 Software Verify Limited

Using details from a previous run

The list at the bottom of the wizard shows previously run programs.

Selecting an item in the list populates all the details above as used on the last run for that program.

You can still edit those details before starting.

· Full path shows the full path to the executable in the list

· Image Name shows the short program name without path

· Delete removes a selected program from the list

· Reset clears all details in the wizard - including the list of previously run applications below

Data collection and redirection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data immediately, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much
faster not to collect data until the program has launched.

See the section on controlling data collection for how to turn collection on and off after
launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

· Redirect standard output Controls redirection of stdout and stderr

Use this option if you want to collect the output of stdout and stderr for later analysis.

The User Interface 273

Copyright © 2002-2025 Software Verify Limited

Be aware that if the output of the program under test generates a lot of data via stdout or stderr
that this data will need to be stored in memory and could exhaust Coverage Validator's
memory.

· Display command prompt Shows or hides the launched application.

If you are collecting stdout and stderr you may not be interested in viewing the application (or
the command prompt if it is a console application). This provides you the option to hide the
application when it is running.

Be aware that if you hide a command prompt you will not be able to type anything into the
application.

The option to start collecting data is at the top.

· Launch start your program and attach Coverage Validator to it

Double clicking a program in the list will also start it immediately.

· Cmd Line... display the command line builder

Administrator privileges in dialog mode

If administrator privileges are required, the Launch button will show the privileges icon reminding you of
the need to restart.

· Launch shows the Administrator Privileges Required confirmation dialog before restarting

If you started Coverage Validator in administrator mode, you won't see any of these warnings, and
everything will behave as normal.

How do I use Application to Monitor and Launch Count?

Coverage Validator Help274

Copyright © 2002-2025 Software Verify Limited

The three fields Application to Start, Application to Monitor and Launch Count work together to
control which application actually gets monitored by Coverage Validator.

Let's say we have a program P.

In the simplest case, simply:

· start P
· monitor P
· the Launch Count defaults to 1 and cannot be changed.

If P launches an application and you just want to monitor whatever that is:

· start P
· monitor <<Any application that is launched>>
· leave the Launch Count at 1

If P launches an application A and maybe others as well, and you specifically want to monitor only A as
it's launched:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· leave the Launch Count at 1

If P launches an application A many times and you specifically want to monitor the third invocation:

· use the Application to Monitor settings to add a definition for P and child applications A
· start P
· monitor A
· set the Launch Count to 3

3.16.4 Re-launching the program

Re-launching the application

It's very easy to start another session using the most recently run program and settings:

 Launch menu Applications Re-Start Application... starts the most recently launched
program

or click on the re-launch icon on the session toolbar.

or use the shortcut

The User Interface 275

Copyright © 2002-2025 Software Verify Limited

 Re-start application

If the previously launched program was Native, .Net or .Net Core the application will be restarted
immediately. No wizards or dialogs appear.

If the previously launched program was a service the appropriate monitor service dialog will be displayed.

In the general questions see Why might Inject or Launch fail? for troubleshooting launch problems.

There is no difference between wizard and dialog interface mode when re-launching.

3.16.5 Injecting into a running program

Injecting into a running program

Coverage Validator attaches to a running process by injecting the stub into the process so it can start
collecting data.

Choose one of these methods of starting the injection:

 File menu Inject... shows the Attach to Running Process wizard or dialog below

Or click on the Inject icon on the session toolbar.

Or use the shortcut

 Inject into running application

Administrator privileges

The following applies only if you did not start Coverage Validator in administrator mode.

When choosing the inject method, a restart with administrator privileges will be required to proceed.

Coverage Validator Help276

Copyright © 2002-2025 Software Verify Limited

Injecting into a service?

If your process is a service, Coverage Validator won't be able to attach to it.

Services can't have process handles opened by third party applications, even with Administrator
privileges.

In order to work with services, you can use the NT service API and monitor the service

You may see this warning dialog when trying to inject into a service:

User interface mode

There are two interface modes used while starting a program

· Wizard mode guides you through the tasks in a linear fashion

· Dialog mode has all options contained in a single dialog

All the options are the same - just in slightly different places

In this section we'll cover the Wizard mode first and the Dialog mode later.

The attach to running process wizard

The first page of the wizard shows a list of running system and user processes.

The Arch column is not shown when running 32 bit Coverage Validator because only 32 bit processes
are listed.

Any processes that have grayed out .Net values cannot instrument the .Net part of the application (native
components will be instrumented).

The User Interface 277

Copyright © 2002-2025 Software Verify Limited

Choose the process and click Next >> for the next page of the wizard.

Page 1: Choosing the process

· System processes / Services / User processes show any or all of services and system or user
processes in the list

· Full path shows the full path to the process executable in the list

· Image Name shows the short program name without path

· Refresh update the list with currently running processes

Clicking on the headers of the list will sort them by ID or by name using the full name or short name,
depending on what's displayed.

Page 2: Data collection

Depending on your application, and what you want to test, you may want to start collecting data as soon
as injection happens, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster not to
collect data until the program has launched.

If it's the startup procedure you want to test, then obviously start collecting data from launch.

Coverage Validator Help278

Copyright © 2002-2025 Software Verify Limited

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is selected.

Currently we only support attaching to native applications and the native part of mixed mode
applications.

Summary and starting your program

The second page confirms the process you have selected to inject into, and prompts you to attach:

· Attach... injects Coverage Validator into the specified process, showing progress status

In the general questions see Why might Inject or Launch fail? for troubleshooting launch problems.

Dialog mode

In Dialog mode, all the settings are in one dialog but which still looks very much like the first page of the
wizard above.

The option to start collecting data is at the top, as is the Attach... button

The User Interface 279

Copyright © 2002-2025 Software Verify Limited

3.16.6 Waiting for a program

Waiting for a program

Waiting for a program is essentially the same as injection except that instead of injecting into a running
program, Coverage Validator watches for the process starting up and then injects.

If the process is a service, Coverage Validator won't be able to attach to it as services can't have
process handles opened by third party applications, even with Administrator privileges.

Choose one of these methods of waiting:

 Launch menu Applications Wait for Application... shows the Wait for application wizard
or dialog below

or click on the Wait (timer) icon on the session toolbar.

or use the shortcut

 Wait for application

Coverage Validator Help280

Copyright © 2002-2025 Software Verify Limited

Administrator privileges

The following applies only if you did not start Coverage Validator in administrator mode.

If the application you want to wait for is running with Administrator privileges, Coverage Validator will also
need to run with Administrator privileges.

When choosing the 'wait for program' method described in this topic, a restart of Coverage Validator with
administrator privileges will be required to proceed.

Waiting for a service?

If your process is a service, Coverage Validator won't be able to attach to it.

Services can't have process handles opened by third party applications, even with Administrator
privileges.

In order to work with services, you can use the NT service API and monitor the service

The wait for application dialog

The wait for application dialog lets you specify the application or choose one that you've waited for
previously.

The User Interface 281

Copyright © 2002-2025 Software Verify Limited

· Collect data from application do want to collect data from the instant you attach to the
application?

Depending on your application, and what you want to validate, you may want to start collecting data
as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster not
to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data from launch.

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is selected.

· Application Path Policy specify how the specified executable is treated

Coverage Validator Help282

Copyright © 2002-2025 Software Verify Limited

o Path to executable exists the executable will be checked that it exists and is appropriate for

Coverage Validator to work with

o Path to executable is created dynamically most pre-wait checks are not performed - use this if

the path the executable is on does not exist at the time you start waiting for the process to start

· Application type choose the type of application

o Native and .Net

o .Net Core (Framework Dependent)

o .Net Core (Self Contained)

· Application Executable edit or Browse... the application to wait to start.

The name of the executable. For example c:\unitTests\test.exe or test.exe.

If Application Path Policy is Path to executable exists this must be the full path to the executable.
For example c:\unitTests\test.exe.

For native applications this is the application executable.

For .Net Framework applications this is the application executable.

For .Net Core Framework-dependent applications this is most likely going to be c:\program
files\dotnet\dotnet.exe.

For .Net Core Self-contained applications this is the application executable.

· Application DLL edit or Browse... the application DLL to wait to start. This field is only needed
for .Net Core applications.

The name of the DLL. For example c:\unitTests\test.dll or test.dll.

If Application Path Policy is Path to executable exists this must be the full path to the dll. For
example c:\unitTests\test.dll.

For native applications this is not used.

For .Net Framework applications this is not used.

For .Net Core Framework-dependent applications this is the application dll. (the name of the dll that
you would pass to dotnet.exe on the command line).

For .Net Core Self-contained applications this is the dll that has the same name as the application
executable. (for theApp.exe, the dll name is theApp.dll).

· Full path shows the full path to the process executable in the list

· Image Name shows the short program name without path

· Reset clears the list

The User Interface 283

Copyright © 2002-2025 Software Verify Limited

· Wait for Process... starts waiting and then injects Coverage Validator into the specified process,
showing progress status

· Stop Waiting stops the wait

What could go wrong?

The program you're waiting for might already be running, in which case you'll be given the option to
cancel or attach to the existing process:

Timing issues are inherit with native injecting into a program as it starts up.

This could cause the injection to fail in unpredictable ways and you may see dialogs like that below:

One case when this dialog can occur is if the program needs to run at an elevated privilege and is waiting
for the user to give permission via the UAC dialog.

Injection may fail for different reasons and you might see the following information dialog showing:

· messages relating to the specific failure
· a selection of reasons why failure might be occurring
· some possible solutions to the problem

Coverage Validator Help284

Copyright © 2002-2025 Software Verify Limited

Sometimes retrying a few times might catch a better moment for attaching to the process.

In the general questions see Why might Inject or Launch fail? for troubleshooting launch problems.

Example Dialogs

Native

The User Interface 285

Copyright © 2002-2025 Software Verify Limited

Coverage Validator Help286

Copyright © 2002-2025 Software Verify Limited

.Net

The User Interface 287

Copyright © 2002-2025 Software Verify Limited

.Net Core (Framework-dependent)

Coverage Validator Help288

Copyright © 2002-2025 Software Verify Limited

.Net Core (Self-contained)

The User Interface 289

Copyright © 2002-2025 Software Verify Limited

3.16.7 Monitor a service

Monitoring a service

Monitoring a service works for:

· Native services
· .Net services
· Mixed mode services.

Native Services

If you are working with native services you must use the NT Service API in your service as well as
using the Monitor a service method below.

.Net Services

Coverage Validator won't attach until some .Net code is executed.

If there is native code being called prior to the .Net code, Coverage Validator won't monitor that code,
only the native code called after the first .Net code that is called.

To monitor any native code called prior to your .Net code, use the NT Service API.

Mixed Mode .Net Services

You don't need to use the NT Services API.

If you are working with a .Net service that loads native DLLs, or a mixed mode service, Coverage
Validator will recognize the service when the .Net runtime starts executing the .Net service main.

 When working with Coverage Validator and services, you still start the service the way you normally
do - e.g. with the service control manager.

The code that you have embedded into your service then contacts Coverage Validator, which you should
have running before starting the service.

To start monitoring a service:

 Launch menu Services Monitor a service... shows the Monitor a service dialog below

Or use the shortcut

 Monitor a service

The monitor a service dialog

First ensure the service is installed, but not running.

Coverage Validator Help290

Copyright © 2002-2025 Software Verify Limited

Set the service to monitor, choose whether to start collecting data right away, and click OK.

· Service to monitor type or Browse to set the service name to monitor

· OK waits for the service to start before injecting into it

Start the service in the normal manner, e.g. from the control panel, the command line or
programmatically.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data immediately.

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

The User Interface 291

Copyright © 2002-2025 Software Verify Limited

Examples

Example demonstrating how to monitor a service.

Example demonstrating how to monitor an application launched from a service (how to monitor any
application running on a service account).

3.16.8 IIS

Enter topic text here.

3.16.8.1 Monitor IIS and ISAPI

Monitoring ISAPI

Monitoring ISAPI works for:

· Native ISAPI extensions.

· Mixed mode ISAPI extensions (native ISAPI that uses .Net code).

If you are working with native ISAPI you must use the NT Service API in your service as well as using
the Monitor ISAPI method below.

To start monitoring ISAPI:

 Launch menu IIS menu Monitor IIS and ISAPI... shows the Monitor ISAPI dialog below

Or use the shortcut

 Monitor IIS and ISAPI

The monitor ISAPI dialog

Set the dll to monitor, the web root, the IIS process, an optional web browser to use and an optional url
to launch, and click OK.

Coverage Validator Help292

Copyright © 2002-2025 Software Verify Limited

· ISAPI DLL type or Browse to set the ISAPI DLL that we're monitoring

· IIS web type or Browse to set the web root for the IIS website we're working with

· IIS process to monitor select the IIS process we're working with

· Web Browser select the web browser that you're going to use to load the web page

· URL to open in browser type the web page and arguments you want to load to cause the ISAPI
to be loaded in IIS

· OK resets IIS, setups all the variables, copies DLLs and settings into the web root and starts the
web browser to load the specified web page

 IIS is a protected process and can only execute, read and write files in specific directories. That's
why Coverage Validator copies data to the web root so that it can be read, written or executed.

Data collection

The User Interface 293

Copyright © 2002-2025 Software Verify Limited

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data immediately.

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

Slow Startup

The first time you work with Web Development Server and Coverage Validator you may experience a
delay during startup. This is most like because symbols are being downloaded from Microsoft's symbol
servers to match the DLLs and assemblies on your machine.

3.16.8.2 Monitor IIS and ASP.Net

Monitoring ASP.Net Application (IIS)

To start monitoring ASP.Net application running in IIS:

 Launch menu IIS menu Start ASP.Net Application... shows the Start ASP.Net
Application dialog below

Or use the shortcut

 Monitor IIS and ASP.Net

The Start ASP.Net application dialog

Coverage Validator Help294

Copyright © 2002-2025 Software Verify Limited

Set the asp worker process, the web root, an optional web browser to use and an optional url to launch,
and click OK.

· ASP.Net worker process select the IIS process we're working with. This can be any ASP.Net
process or a specific one. The default is Any IIS.

· IIS web type or Browse to set the web root for the IIS website we're working with

· Web Browser select the web browser that you're going to use to load the web page

· URL to open in browser type the web page and arguments you want to load to cause the ISAPI
to be loaded in IIS

· OK resets IIS, setups all the variables, copies DLLs and settings into the web root and starts the
web browser to load the specified web page

 IIS is a protected process and can only execute, read and write files in specific directories. That's
why Coverage Validator copies data to the web root so that it can be read, written or executed.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

The User Interface 295

Copyright © 2002-2025 Software Verify Limited

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data immediately.

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

Slow Startup

The first time you work with IIS and Coverage Validator you may experience a delay during startup. This
is most like because symbols are being downloaded from Microsoft's symbol servers to match the DLLs
and assemblies on your machine.

3.16.8.3 Reset & Stop IIS

Reseting IIS

 Launch menu IIS menu Reset IIS resets Internet Information Server (stops it and starts it
again).

The session is not discarded when IIS is reset.

Stopping IIS

 Launch menu IIS menu Stop IIS stops Internet Information Server.

The session is not discarded when IIS is stopped.

3.16.9 Web Development Server

Enter topic text here.

3.16.9.1 Monitor Web Development Server and ASP.Net

Monitoring ASP.Net Application (WDS)

Coverage Validator Help296

Copyright © 2002-2025 Software Verify Limited

To start monitoring ASP.Net application running in IIS:

 Launch menu Web Development Server menu Start ASP.Net Application... shows the
Start ASP.Net Application dialog below

Or use the shortcut

 Monitor Web Development Server and ASP.Net

The Start ASP.Net application dialog

Set the web development server, the port to use, path to the web application, virtual path, an optional
web browser to use and an optional url to launch, and click OK.

· Web Development Server select the WDS process we're working with. The default is the most
recent version installed on the computer.

· Port select the port that the server will serve pages on. The default is 49158 (the same value that
Visual Studio uses).

· Path type or Browse to set the path to the ASP.Net application.

· Virtual Path type the path on the server that corresponds to the web application. The default is /.

The User Interface 297

Copyright © 2002-2025 Software Verify Limited

· Web Browser select the web browser that you're going to use to load the web page.

· URL to open in browser type the web page and arguments you want to load to cause the ISAPI
to be loaded in IIS.

· OK resets IIS, setups all the variables, copies DLLs and settings into the web root and starts the
web browser to load the specified web page.

 Web Development Server is not a protected process like IIS. This can make working with WDS
much easier than working with IIS.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data immediately.

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

Slow Startup

The first time you work with Web Development Server and Coverage Validator you may experience a
delay during startup. This is most like because symbols are being downloaded from Microsoft's symbol
servers to match the DLLs and assemblies on your machine.

Coverage Validator Help298

Copyright © 2002-2025 Software Verify Limited

3.16.9.2 Stop Web Development Server

Stopping Web Development Server

 Launch menu Web Development Server menu Stop Web Development Server stops
Web Development Server.

The session is not discarded when Web Development Server is stopped.

3.16.10 ASP.Net Core Web Application

Enter topic text here.

3.16.10.1 Start ASP.Net Core Web Application

Monitoring ASP.Net.Core Web Application

To start monitoring ASP.Net application running in IIS:

 Launch menu Web menu ASP.Net Core Web Application... shows the Start ASP.Net
Core Web Application dialog below

Or use the shortcut

 Start ASP.Net Core Web Application

The Start ASP.Net Core application dialog

Set the web development server, the port to use, path to the web application, virtual path, an optional
web browser to use and an optional url to launch, and click OK.

The User Interface 299

Copyright © 2002-2025 Software Verify Limited

· .Net Core Web Application (exe) select your ASP.Net Core web application to launch.

· .Net Core Web Application (dll) select your ASP.Net Core web application to launch.

· Startup Directory type or Dir... to set the path to the ASP.Net application.

This value will be auto-populated based on the path you specify for your application.

· Web Browser select the web browser that you're going to use to load the web page.

· URL to open in browser type the web page, port and arguments you want to load to cause the
ISAPI to be loaded in IIS.

This value will be auto-populated based on the path you specify for your application.

Example: https://localhost:7215

· Start ASP.Net Core starts your ASP.Net web application, then starts the web browser to load
the specified web page.

Data collection

· Type of data collection Are you only interested in Native data, .Net data or both Native data and
.Net data?

· Native Only Ignore all .Net data in the target application.

· .Net Only Ignore all Native data in the target application.

Coverage Validator Help300

Copyright © 2002-2025 Software Verify Limited

· Mixed Mode Collect both Native and .Net data from the target application

This setting cannot be changed after the application is launched

· Collect data from application If it's the startup procedure you want to validate, obviously start
collecting data from launch.

Depending on your application, and what you want to validate, you may want to start collecting
data as soon as injection has happened, or do it later.

If your program has a complex start-up procedure, initialising lots of data, it may be much faster
not to collect data until the program has launched.

If it's the startup procedure you want to validate, obviously start collecting data immediately.

See the section on controlling data collection for how to turn collection on and off after launch.

The data collection option may be disabled because of the instrumentation mode that is
selected.

Slow Startup

The first time you work with ASP.Net Core and Coverage Validator you may experience a delay during
startup. This is most like because symbols are being downloaded from Microsoft's symbol servers to
match the DLLs and assemblies on your machine.

3.16.10.2 Stop ASP.Net Core Web Application

Stopping ASP.Net Core Web Application

 Launch menu Web menu Stop ASP.Net Core Web Application stops ASP.Net Core
web application.

The session is not discarded when the ASP.Net Core web application is stopped.

3.16.11 Linking to a program

Why link Coverage Validator into your program?

There are cases when you might need to link Coverage Validator directly into your program.

Sometimes the normal methods of launching and injecting aren't enough to get the data needed for a
particular debugging task.

For example:

The User Interface 301

Copyright © 2002-2025 Software Verify Limited

· maybe the data to be monitored has already been allocated before the stub was successfully
injected

· maybe there is conflict with DLLs or a timing problem stopping the injection process from work as
well as normal

These situations are rare, but given the variety of different applications, can happen.

Linking to your program

The library that you need to link to is:

· svlCoverageValidatorStubLib.lib for 32 bit
· svlCoverageValidatorStubLib_x64.lib for 64 bit

When linked and started, your program will automatically start Coverage Validator.

The libraries should be linked to your program's .exe, not to a DLL that is loaded into your program.

3.16.12 .Net Core Runtime Arguments Editor

The .Net Core runtime arguments editor allows you to choose which options you pass to the .Net Core
runtime.

Typically no arguments or just "exec" are passed to the runtime, assuming everything that is needed is
in the same directory.

Coverage Validator Help302

Copyright © 2002-2025 Software Verify Limited

Enabling each check box will add the appropriate option to the runtime arguments.

The field can populated using the Browse... button to display a file or folder browser, or edited directly if
you wish to add more than one path.

Some fields change depending on the SDK version chosen.

· --additionalprobingpath path containing probing policy and assemblies to probe

· --additional-deps path to an additional .deps.json file

· --depsfile path to the deps.json file.

· --runtimeconfig path to a runtimeconfig.json file

· --roll-forward how to apply roll forward for .Net Core SDK 3.0 and above

· --roll-forward-on-no-candidate-fx how to apply roll forward for .Net Core SDK 2.x

· --fx-version version of .Net runtime to use to run the application

· exec adds the "exec" keyword at the end of the arguments list

The User Interface 303

Copyright © 2002-2025 Software Verify Limited

If you don't know what these options are you should read the .Net runtime options document shown in
the link below before changing any of them.

We cannot advise you on how to set these values - except to say that if you're not setting them when
using .Net Core outside of this software tool you shouldn't be setting them when using this software tool.

.Net Core Runtime Options

.Net Core provides some options that allow you to control how .Net Core performs.

Detailed information on these options is provided by Microsoft at https://docs.microsoft.com/en-
us/dotnet/core/tools/dotnet#runtime-options.

3.17 Stopping your target program

Stopping the application

You can stop or kill your program at any time using the task manager, or debugger.

You can also stop your program from within Coverage Validator.

 File menu Abandon Application... stop the target program

or click on the red cross icon on the session toolbar.

The target program is ended using ExitProcess() from inside the stub.

Since the session is discarded, using Coverage Validator to stop the target program is usually quicker
and more convenient than external stop methods.

You can easily re-launch the program again using the same settings as before.

3.18 Command Line Builder

The command line builder helps you create command lines with valid options.

The command line builder is a two stage process, the first stage helping your choose how you want to
build the command line, and the second stage actually building the command line based on the choices
in the first stage.

Coverage Validator Help304

Copyright © 2002-2025 Software Verify Limited

There are five options for building your command line:

· I'll build my own you'll build your command line from scratch, with no predefined options

· Use a predefined template choose from a list of predefined command lines that you can
customize

The predefined templates cover a range of tasks you may want to perform from the command
line. These include running sessions, saving sessions, exporting to HTML, XML, Cobertura, and
merging code coverage data.

Examples are provided for both Native and .Net applications, and .Net Core applications.

· Use an existing command line use the command line you use to start the tool you want to
collect code coverage for

Example: e:\dev\paintpot\release\paintpot.exe e:\testimages\venn.png -invert -
mirror -phaseChange

· Use an existing Coverage Validator command line use an existing Coverage Validator
command line and customize that

Example: -program e:\dev\paintpot\release\paintpot.exe -hideUI -exportAsHTML e:
\testResults\gannt.html -allArgs e:\testimages\gantt.png -inflate:3

The User Interface 305

Copyright © 2002-2025 Software Verify Limited

· Use an existing Coverage Validator command file use an existing Coverage Validator
command file and customize that

Example: -commandFile e:\commandFiles\paintpot_gantt.cf

When you have made your choice the Next button moves you to the customization part of the command
line builder.

The image above shows the command line builder populated with one of the predefined template choices.
You can see a few entries refer to directories and files that do not exist on disk (they are red).

These are items you will need to customize to match the program you are testing.

For example, the -centralDirectory will need to created before you run the test.

Any entries that will only exist after they have been created by the test will also be shown in red.

Coverage Validator Help306

Copyright © 2002-2025 Software Verify Limited

Editing

To edit an argument, double click the argument. A combo box will display a list of valid arguments you
can choose.

To edit a value, double the value. If the argument type has a list of known values a combo box will be
provided, directories will display a directory chooser, files will display a file chooser, numbers will only
allow numeric editing. All other values will be edited as text.

· Add add a new argument to the grid

· Remove remove the selected item

· Remove All removes all items in the grid

· Add Hide adds a -hideUI argument which will cause Coverage Validator to hidden when running.
Coverage Validator will close after the target program finishes running

· Add Debug adds various arguments which will cause Coverage Validator to display error
messages if there are problems with the command line.

· Add Export adds export options that will cause Coverage Validator to export html and/or xml
reports after the target program finishes running

· Add Merge adds merge options that will cause Coverage Validator to load a session and and
merge sessions after the target program finishes running

· Import... you can import a command file, the contents of which will replace all the items in the
grid

Command Line Output

There are two command line output styles.

· Command line with arguments generates a command line containing all arguments and values
shown in the grid

· Command line with command file generates a command file containing all arguments and
values shown in the grid, and a command line that references the command file

When this option is chosen the command file edit field and the Browse... and View... buttons
are enabled, allowing you to specify a command file name, and to view it's contents.

If a command file has not been specified when this option is selected you will be prompted to
select a name for the command file.

When the command file name is selected the command file will be created with the arguments
and values shown in the grid.

· Copy copies the command line to the clipboard so that you can paste the command line in cmd
prompts, batch files and automated scripts (Jenkins etc)

The User Interface 307

Copyright © 2002-2025 Software Verify Limited

· Browse... opens a Windows file dialog to allow you to specify the command file location

· View... opens the command file using the Windows shell, this allows you to view the command
file in your favourite editor

Testing

If you wish to test the command line, you have two options:

· Manual test use the Copy button to copy the command line, then paste it into a cmd prompt
and press return.

· Test Command Line a new instance Coverage Validator is started with the specified command
line.

3.19 Data Collection

Collecting data

Once you've launched or injected into a program, you can stop and start data collection whilst the
program is running.

This is a high level switch that controls all data collection, regardless of any other settings.

With data collection off, the target program runs at close to normal speed.

Temporarily turning off collection can be a good idea if you need to take actions to get the program into
the right state for validation.

You can also turn data off from the start and only turn it on when you need it.

Starting and stopping data collection

 File menu Start collecting data... starts collecting data immediately

or click on the green icon on the session toolbar to start collecting.

 File menu Stop collecting data... stops collecting

or click on the red icon on the session toolbar to stop.

Coverage Validator Help308

Copyright © 2002-2025 Software Verify Limited

Collect data from application is disabled. Why?

If the instrumentation detail setting is set to use breakpoints, the collect data from application setting is
disabled - data collection is always on - you can't turn it off.

When the ability to change this setting is disabled both of the above icons will be greyed out, and so will
any "collect data from application" checkboxes on launch dialogs etc.

3.20 Help

The help menu

The help menu provides access to useful help, tips and tutorials.

Each item is covered briefly below, in menu order.

Tips

 Help menu Tips... shows the tip dialog where you can browse tips in random order

Here you can also choose whether to display the tips dialog while launching programs.

The User Interface 309

Copyright © 2002-2025 Software Verify Limited

About box

 Help menu About Coverage Validator... shows contact and copyright information, as well
as details of your license

Overview Video

 Help menu Overview Video... opens a new dialog showing a short video

Coverage Validator Help310

Copyright © 2002-2025 Software Verify Limited

The video has sound and does not play automatically.

The video is also available on the product website. Visit https://www.softwareverify.com/products.php and
find the product link for Coverage Validator.

Read-me and version history

 Help menu Readme... opens the readme.html (from your installation) in your browser.

The readme file contains all the latest information about Coverage Validator including:

· basic information about getting started and where to go for support
· known issues
· version history

To see what's changed since the version you have installed see the latest version history .

Help HTML

 Help menu Help Topics... shows the HTML help dialog

The User Interface 311

Copyright © 2002-2025 Software Verify Limited

You might be reading this right now!.

Or click on the question mark icon on the standard toolbar:

 The key also shows the help, but has the added bonus of jumping directly to the page relevant
for the current view or dialog.

 We occasionally get reports of customers seeing exception errors while viewing the HTML help.
Unfortunately, we don't have a solution for this!

Help PDF

 Help menu Help PDF shows the PDF version of this help

You will need a suitable PDF reader such as Adobe Acrobat Reader , but do beware of unwanted add-
on installs.

PDF help for all our products are online .

Help on softwareverify.com

 Help menu Help on softwareverify.com shows the online version of this help

Blog

 Help menu Blog shows the Software Verify Blog .

Library

 Help menu Library shows the Software Verify Library - all our best articles organised into
related topics for easy access. You will find many articles about getting the most out of Coverage
Validator in here.

Tutorials

The tutorials are intended to guide you through learning how to use aspects of Coverage Validator.

All tutorials are available online in the form of short videos and examples covering popular topics.

Coverage Validator Help312

Copyright © 2002-2025 Software Verify Limited

 Help menu Tutorial... simply selects the Tutorial tab to show a list of the tutorials

Double click on the row of a tutorial in the list to open it in a browser.

 Help menu Tutorials on softwareverify.com... opens the online tutorials in a browser

Contact customer support

 Help menu Contact customer support shows the Contact customer support dialog.

How do I?

 Help menu How do I? shows the How do I? dialog.

Report a crash

The User Interface 313

Copyright © 2002-2025 Software Verify Limited

 Help menu Report a crash displays the options for reporting a crash.

If an exception report for the Coverage Validator user interface, or an exception report for an application
that Coverage Validator was monitoring is available it will be displayed with options to copy it to the
clipboard and contact customer support at Software Verify.

Part

IV

Environment Variables 315

Copyright © 2002-2025 Software Verify Limited

4 Environment Variables

When launching an application, you might want to pass in some environment variables to your program.

The Environment Variables dialog lets you manage name/value pairs, including importing and exporting
for use between programs or sessions.

The Environment Variables dialog

The dialog initially has no entries.

The example below shows the equivalent of set QT_PLUGIN_PATH=%QTDIR%\plugins

· Add... adds a new item to the list enter name in the first column, value in the second

· Delete deletes a selected item in the list

· Delete All clears the list

· Acquire fetches all system environment variables, adding them to the list

· Import... loads variables from a previously exported file, adding them to the list

· Export... saves all entries in the list to a file of your choice

The exported file is a simple ascii file with one entry per line of the form name=value

· OK accepts all changes

Coverage Validator Help316

Copyright © 2002-2025 Software Verify Limited

· Cancel ignores changes

Part

V

Coverage Validator Help318

Copyright © 2002-2025 Software Verify Limited

5 Command Line Interface

Coverage Validator provides a command line interface to allow you to perform automated coverage data
collection.

To run 32 bit coverage validator run C:\Program Files (x86)\Software Verify\Coverage Validator
 x86\coverageValidator.exe

To run 64 bit coverage validator run C:\Program Files (x86)\Software Verify\Coverage Validator
 x64\coverageValidator_x64.exe

Automated coverage data collection

Potential uses for automated code coverage analysis are:

· In the regression test suite to ensure code coverage of a certain level
· In unit testing to ensure code coverage of a certain level
· Quality assurance

Results from coverage data collection sessions can be merged to form an aggregate result.

Typically, command line options allow Coverage Validator to run by specifying:

· the target program to run
· arguments to pass to the target program
· the working directory to run in
· whether to run with or without the user interface
· a baseline session to compare with
· where and how to save results
· what to include or exclude from hooking
· how to merge results

Usually Coverage Validator would exit between automated tests, but it can be made to stay running if
necessary.

See the command line reference for an alphabetical listing all the available commands.

Command line argument usage

There are a few basic rules to remember when using the command line arguments:

· separate arguments by spaces

· quote arguments if they contain spaces

· some arguments are only useful in conjunction with others

· some arguments are incompatible with others

Command Line Interface 319

Copyright © 2002-2025 Software Verify Limited

If your command line is very long, consider using -commandFile to specify a command file for your
arguments.

Unrecognised arguments

Any unrecognised arguments found on the command line are simply ignored, whether or not they are
prefixed with a hyphen.

Arguments intended for your program will not conflict with the Coverage Validator arguments in this
manual as you should use -arg (or -allArgs) to redirect them to your program.

Need some help building the command line?

If you find creating command lines from nothing to be a bit daunting we've created a Command Line
Builder tool to help you build command lines.

You'll still need to complete some details, but the builder will help prevent you making some mistakes.

Command Lines and Floating Licences

Coverage Validator works from the GUI and from the command line with all types of software licence
(floating licences and non-floating licences).

When floating licences are being used Coverage Validator will wait to acquire a floating licence before
proceeding to process the command line options.

There are no options to:
· Checkout a floating licence
· Release a floating licence
· Query for available licences

These options are managed automatically by Coverage Validator, there is no need for such options to be
manually controlled from the command line.

5.1 Example Command Lines

Typical command line examples

The following examples demonstrate a few different scenarios in which you might want to use Coverage
Validator via the command line.

To run 32 bit coverage validator run C:\Program Files (x86)\Software Verify\Coverage Validator
 x86\coverageValidator.exe

To run 64 bit coverage validator run C:\Program Files (x86)\Software Verify\Coverage Validator
 x64\coverageValidator_x64.exe

Coverage Validator Help320

Copyright © 2002-2025 Software Verify Limited

Example 1 - running a session

This example starts the application, showing no progress dialog whilst attaching to the process.

On completion, the resulting session is saved, and some tabs are refreshed.

The last tab refreshed is displayed, resulting in the Functions tab being the current tab.

coverageValidator_x64.exe -program "c:\myProgram.exe" -saveSession "c:
\myResults\session1.cvm_x64" -displayUI -refreshResults -refreshCoverage -refreshFunctions -
refreshFilesAndLines

A brief explanation of each argument:

Option Argument Description

-program "c:\myProgram.exe" The target program to launch

-saveSession "c:
\myResults\session1
.cvm_x64"

After the application finishes, the session should be
saved in this file

-displayUI Show the user interface during the coverage test

-refreshResults The current directory for the application to work in

-
refreshCoverage

All main data tabs should be refreshed when the test
completes, including the Summary Results

-
refreshFunctions

-
refreshFilesAndL
ines

Example 2 - running a session and exiting when the session is complete

This example starts the application, showing no progress dialog whilst attaching to the process.

On completion, the resulting session is saved, and Coverage Validator exits.

coverageValidator_x64.exe -program "c:\myProgram.exe" -saveSession "c:
\myResults\session2.cvm_x64" -hideUI

A brief explanation of each argument:

Option Argument Description

Command Line Interface 321

Copyright © 2002-2025 Software Verify Limited

-program "c:\myProgram.exe" The target program to launch

-saveSession "c:
\myResults\session2
.cvm_x64"

After the application finishes, the session should be
saved in this file

-hideUI Hide the user interface during the coverage test.
Coverage Validator closes when the test application
finishes.

Example 3 - running a session (.Net Core, Self Contained)

This example starts a .Net Core application, showing no progress dialog whilst attaching to the process.

On completion, the resulting session is saved, and some tabs are refreshed.

The last tab refreshed is displayed, resulting in the Functions tab being the current tab.

coverageValidator_x64.exe -program "c:\myDotNetCoreApp.exe" -dotNetCoreLaunchType
SelfContained -saveSession "c:\myResults\session3.cvm_x64" -displayUI -refreshCoverage -
refreshFunctions -refreshResults

A brief explanation of each argument:

Option Argument Description

-program "c:
\myDotNetCoreApp.e
xe"

The target program to launch

-
dotNetCoreLaun
chType

SelfContained The .Net Core program is self contained

-saveSession "c:
\myResults\session3
.cvm_x64"

After the application finishes, the session should be
saved in this file

-displayUI Show the user interface during the performance test

-
refreshCoverage

Main data tabs should be refreshed when the test
completes, including the Summary Results

-
refreshFunctions

-refreshResults Coverage Validator will be left open at the Summary
Results

Example 4 - running a session (.Net Core, Framework Dependent)

Coverage Validator Help322

Copyright © 2002-2025 Software Verify Limited

This example starts a .Net Core application, showing no progress dialog whilst attaching to the process.

On completion, the resulting session is saved, and some tabs are refreshed.

The last tab refreshed is displayed, resulting in the Functions tab being the current tab.

coverageValidator_x64.exe -program "c:\dotNetCoreApp.dll" -dotNetCoreLaunchType
FrameworkDependent -saveSession "c:\myResults\session4.cvm_x64" -displayUI -
refreshCoverage -refreshFunctions -refreshResults

A brief explanation of each argument:

Option Argument Description

-program "c:
\dotNetCoreApp.dll"

The target program to launch with the .Net runtime

-
dotNetCoreLaun
chType

FrameworkDependen
t

The .Net Core program is framework dependent

-saveSession "c:
\myResults\session4
.cvm_x64"

After the application finishes, the session should be
saved in this file

-displayUI Show the user interface during the performance test

-
refreshCoverage

Main data tabs should be refreshed when the test
completes, including the Summary Results

-
refreshFunctions

-refreshResults Coverage Validator will be left open at the Summary
Results

Example 5 - running and merging a session

Add the following to the first example to load a previous session, and after the application has finished
and this session saved, merge in the loaded session, and save the combined results:

coverageValidator_x64.exe -program "c:\myProgram.exe" -directory "c:\testarea" -loadSession
"c:\myResults\session1.cvm_x64" -mergeSessions -saveMergeResult "c:
\myResults\session5.cvm_x64"

Option Argument Description

-program "c:
\myProgram.exe"

The target program to launch

Command Line Interface 323

Copyright © 2002-2025 Software Verify Limited

-directory "c:\testarea" Set the working directory in which the program is
executed

-loadSession "c:
\myResults\session1
.cvm_x64"

Loads this previously saved session into the session
manager

-mergeSessions The loaded session is to be merged with the newly
recorded session recorded after the application has
terminated

-
saveMergeResult

"c:
\myResults\session5
.cvm_x64"

The merged session should be saved here

Example 6 - merging previous results

This example loads two previously saved sessions and merges them without any user intervention,
saving the merged session as a new session.

coverageValidator_x64.exe -hideUI -loadSession "c:\myResults\session1.cvm" -loadSession2 "c:
\myResults\session2.cvm_x64" -mergeSessions -saveMergeResult "c:
\myResults\session1+2.cvm_x64"

Option Argument Description

-hideUI The user interface should not be shown during the test

-loadSession "c:
\myResults\session1
.cvm_x64"

Loads this previously saved session into the session
manager

-loadSession2 "c:
\myResults\session2
.cvm_x64"

Also loads this session

-mergeSessions The loaded session is to be merged with the newly
recorded session recorded after the application has
terminated

-
saveMergeResult

"c:
\myResults\session1
+2.cvm_x64"

The merged session should be saved here

Example 7 - merging multiple previous results

This example loads two previously saved sessions and merges them without any user intervention,
saving the merged session as a new session.

Coverage Validator Help324

Copyright © 2002-2025 Software Verify Limited

coverageValidator_x64.exe -hideUI -mergeSessions -mergeMultiple e:\cv_merge_multiple.txt -
saveMergeResult e:\cv_merge_result.cvm_x64

Option Argument Description

-hideUI The user interface should not be shown during the test

-mergeSessions Merge all sessions

-mergeMultiple e:
\cv_merge_multiple.t
xt

Loads all sessions identified by the filenames listed in
this file, one filename per line.

-
saveMergeResult

e:
\cv_merge_result.cv
m_x64

Save the merged sessions in this new session

Example 8 - merging runs into a central session

This example profiles two different applications (each of which is a unit test) merging them into a central
session.

It demonstrates the use of -mergeClearNone, -mergeUsingSymbol and relative file specifications
(rather than explicit full path file specifications).

Because the two applications are different we must prevent the merge from resetting its data when the
application changes and when the application timestamp changes. We do this with the -
mergeClearNone option.

There is also a very real chance that symbols from each application will use conflicting addresses, thus
we must merge using symbol names, not addresses. We do this using the -mergeUsingSymbol
option.

First unit test:

coverageValidator_x64.exe -resetSettings -showErrorsWithMessageBox -mergeUsingSymbol -
mergeClearNone -numSessions 2 -hideUI -program .\bin\tstdate.exe -
mergeToCentralSession:On -centralFileName .\temp\cvmerge.cvm_x64 -saveSession .
\temp\libdate.cvm_x64 -sourceFileFilterHookFile .\cv\libdate.srchook -dllHookFile .
\cv\libdate.dllHook

Second unit test, with identical arguments in grey:

coverageValidator_x64.exe -resetSettings -showErrorsWithMessageBox -mergeUsingSymbol -
mergeClearNone -numSessions 2 -hideUI -program .\bin\tsttime.exe -
mergeToCentralSession:On -centralFileName .\temp\cvmerge.cvm -saveSession .
\temp\libtime.cvm_x64 -sourceFileFilterHookFile .\cv\libdate.srchook -dllHookFile .
\cv\libdate.dllHook

Command Line Interface 325

Copyright © 2002-2025 Software Verify Limited

Each command line is essentially the same, but runs a different application and saves a different
session.

You can add more unit tests by running more command lines.

Because of the repeatable nature of the command line this is easily scriptable.

A brief explanation of the arguments not already covered above:

Option Argument Description

-resetSettings Resets the settings to the default state, providing a
known starting point to modify the settings from. An
alternative would be to use -loadSettings to load a
known set of settings

-
showErrorsWith
MessageBox

A message box is displayed if any errors are
encountered when processing options such as -
dllHookFile and -sourceFileFilterHookFile

-
mergeUsingSym
bol

Merges sessions by symbol, rather than by address

-
mergeClearNon
e

Prevents merged data in the central session from
being reset, e.g. because the application has changed
or because the timestamp has changed

-numSessions Allows the session manager to load 2 sessions,
ensuring there is enough workspace to hold the
sessions in use

-
mergeToCentral
Session

:On Indicates that code coverage sessions should be
merged into a central session

-
centralFileName

.
\temp\cvmerge.cvm_
x64

The central session location in the temp sub directory
of the current directory

-
sourceFileFilter
HookFile

.\cv\libdate.srchook A file listing source files that should be processed for
code coverage

-dllHookFile .\cv\libdate.dllHook A file listing the DLLs that should be processed for
code coverage

Example 9 - using command files

Functionally this example does the same as the previous example, but uses command files to achieve
the same result

Coverage Validator Help326

Copyright © 2002-2025 Software Verify Limited

The following code would be placed in a .bat or .cmd file:

@echo off
del /Q .\temp*.*
"C:\Program Files (x86)\Software Verify\Coverage Validator\coverageValidator.exe" -commandFile .\cv\libtime.cf
"C:\Program Files (x86)\Software Verify\Coverage Validator\coverageValidator.exe" -commandFile .\cv\libdate.cf
"C:\Program Files (x86)\Software Verify\Coverage Validator\coverageValidator.exe" -commandFile .\cv\export.cf

The code empties the local results 'temp' directory and then runs two tests as above, before finally
running CoverageValidator once more to create some HTML reports.

The batch file assumes it will be run from the directory that has the bin, cv, and temp sub-directories
with the appropriate data in them.

The contents of the .cf files in this example would be as follows:

libdate.cf

-resetSettings
-showErrorsWithMessageBox
-mergeUsingSymbol
-mergeClearNone
-numSessions 2
-hideUI
-program .\bin\tstdate.exe
-dllHookFile .\cv\libdate.dllhook
-sourceFileFilterHookFile .\cv\libdate.srchook
-mergeToCentralSession:On
-centralFileName .\temp\cvmerge.cvm_x64
-saveSession .\temp\libdate.cvm_x64

libtime.cf

-resetSettings
-showErrorsWithMessageBox
-mergeUsingSymbol
-mergeClearNone
-numSessions 2
-hideUI
-program .\bin\tsttime.exe
-dllHookFile .\cv\libtime.dllhook
-sourceFileFilterHookFile .\cv\libtime.srchook
-mergeToCentralSession:On
-centralFileName .\temp\cvmerge.cvm_x64
-saveSession .\temp\libtime.cvm_x64

export.cf

Command Line Interface 327

Copyright © 2002-2025 Software Verify Limited

-resetSettings
-loadSession .\temp\cvmerge.cvm_x64
-hideUI
-exportAsHTML .\temp\cvreport.html
-exportDescription "Time and date tests"
-exportDetailedReport:On
-exportDoColourCode:On
-exportSourceCode:On
-exportType SummaryAndCoverage
-exportUnhooked:On
-exportUnvisitedFunctions:On
-exportUnvisitedLines:On
-exportVisitedFunctions:On
-exportVisitedLines:On
-showMergeWithReport none

Example 10 - monitoring a process that restarts itself

This example shows you how to collect code coverage data for a process that restarts itself. Because it
restarts itself it will create multiple coverage sessions - to deal with this we use the central session to
collect all the different coverage data into one session.

coverageValidator_x64.exe -waitName "E:\test\myProgram.exe" -hideUI -monitorAllRestarts -
maxNumRestarts 3 -mergeUsingSymbol -mergeClearNone -mergeToCentralSession:On -
centralFileName e:\cvmerge.cvm_x64

Option Argument Description

-waitName "E:
\test\myProgram
.exe"

Wait for this program to start

-hideUI The user interface should not be shown during the test

-
monitorAllRestar
ts

Monitor this program when it restarts as well as the first
time it starts.

-
maxNumRestarts

3 When the program has been restarted 3 times and then
shutdown, close Coverage Validator.

-
mergeUsingSym
bol

Merges sessions by symbol, rather than by address

-
mergeClearNone

Prevents merged data in the central session from being
reset, e.g. because the application has changed or
because the timestamp has changed

-
mergeToCentral
Session

:On Indicates that code coverage sessions should be merged
into a central session

Coverage Validator Help328

Copyright © 2002-2025 Software Verify Limited

-
centralFileName

e:
\cvmerge.cvm_x
64

The central session location in the root directory of e:
drive.

5.2 Environment variables

Environment variables can be referenced on the command line.

This allows you to set an environment variable outside of Coverage Validator (cmd prompt, batch file, etc)
and then reference it on the command line.

For example:

-program %BUILD_DIR%\testProgram.exe

If the BUILD_DIR environment variable is set to e:\dev\debug the above would evaluate to -
program e:\dev\debug\testProgram.exe

What if I can't set an environment variable?

There are situations where it isn't desirable, or possible to set the environment variable value prior to
starting Coverage Validator.

In those situations you can set the environment variable on the command line using -setenvironment.

-setenvironment BUILD_DIR=e:\dev\debug -program %BUILD_DIR%\testProgram.exe

Problems with environment variable substitution

If you are running from a command prompt, or batch file, or any process that will handle environment
variable substitution using %ENV_VAR% you will find that referencing the environment variable on the
command line won't work when using -setenvironment, because by the time Coverage Validator sees the
command line the %ENV_VAR% values have already been substituted.

To get around this, using ENV_VAR instead of %ENV_VAR%.

-setenvironment BUILD_DIR=e:\dev\debug -program $BUILD_DIR$\testProgram.exe

-setenvironment

Set environment variables for Coverage Validator, as a series of name/value pairs.

Use this option once for each environment variable you wish to set.

Usage of -setenvironment for any environment variable must appear on the command line prior to
any reference to that environment variable on the command line.

Command Line Interface 329

Copyright © 2002-2025 Software Verify Limited

 To pass quotes along with the string, escape a pair of inner quotes like the example below

Examples:

-setenvironment APP_FLAG=ON;
-setenvironment "APP_FAG=ON;"
-setenvironment "APP_COMMS=ON; APP_DEBUG=OFF;"
-setenvironment "APP_MSG=\"A quoted string with spaces\";"
-setenvironment BUILD_DIR=e:\dev\debug

Note that this is not the same as -environment, which allows you to specify environment values that
you can pass to the program being launched.

5.3 Development environment

The following options allow you to specify the development environment you used to build the application
being tested.

-devIDE

Specifies the development environment or compiler used to build the application being tested.

These values correspond to the values on the Symbol Lookup part of the settings dialog.

· clang
· codeWarrior
· cppBuilder
· delphi
· devC++
· mingw
· other
· rust
· salfordFortran
· visualBasic6
· visualStudio. If you specify this you also need to specify -devVisualStudioVersion or -

devVisualStudioYear
· visualStudioCustomDLL
· visualStudioDontSet

Examples:

-devIDE visualStudio
-devIDE delphi

-devVisualStudioVersion

If -devIDE has been specified as visualStudio then -devVisualStudioVersion can be used to
specify the version of Visual Studio.

Coverage Validator Help330

Copyright © 2002-2025 Software Verify Limited

The version of Visual Studio needs to be installed on the machine for this to work.

The following versions are valid:

· 6
· 7
· 7.1
· 8
· 9
· 10
· 11
· 12
· 14
· 15
· 16
· 17

Examples:

-devVisualStudioVersion 6
-devVisualStudioVersion 10
-devVisualStudioVersion 17

If you use -devVisualStudioVersion then you don't need to use -devVisualStudioYear.

-devVisualStudioYear

If -devIDE has been specified as visualStudio then -devVisualStudioYear can be used to specify
the version of Visual Studio.

The version of Visual Studio needs to be installed on the machine for this to work.

The following years are valid:

· 1996
· 2002
· 2003
· 2005
· 2008
· 2010
· 2012
· 2013
· 2015
· 2017
· 2019
· 2022

Examples:

-devVisualStudioYear 1996
-devVisualStudioYear 2010
-devVisualStudioYear 2022

Command Line Interface 331

Copyright © 2002-2025 Software Verify Limited

If you use -devVisualStudioYear then you don't need to use -devVisualStudioVersion.

5.4 Target Program & Start Modes

Resetting global settings

-resetSettings

Forces Coverage Validator to reset all settings to the default state, except for any configured colours
and the UI Global Hook settings which must be reset manually.

 If using this option, it's recommended that you list this first on your command line or in your
command file.

Specifying the target application

The following options let you launch a program (with various start-up modes), inject into a running
program or wait for a program to start before attaching.

Launching a program

-program

Specifies the full file system path of the executable target program to be started by Coverage
Validator, including any extension.

Not compatible with -injectName, -injectID, -waitName or -monitorAService.

See -arg below to pass arguments to your program, and -directory to set where it runs.

See -programToMonitor to monitor a different program than the one you initially launch.

Examples:

-program c:\testbed.exe
-program "c:\new compiler\version2\testbed.exe"

If you specify the file without a path then:

· If you used -directory to set a startup directory then the filename in that directory is used if it
exists

· Otherwise, the directories in the PATH environment variable are used to look for the filename

-programToMonitorEXE
 -programToMonitor

Coverage Validator Help332

Copyright © 2002-2025 Software Verify Limited

-programToMonitor has been replaced by -programToMonitorEXE. -programToMonitor will be
honoured to provided backward compatibility.

Specifies the full path of the program from which the data is collected, but does not change which
process is initially launched. Include the extension.

This program will be monitored by Coverage Validator only when the program specified using -
program starts it.

If no path is specified, the first child process that has the same name will be monitored.

To monitor any program that is launched specify <<Any>> as the program argument. In batch files
and powershell scripts you will need to quote this to get it accepted by the file parser.

See -programToMonitorLaunchCount to change which instance of the program is monitored.

Only valid in conjunction with -program.

Examples:

-programToMonitorEXE c:\testbed-child-process.exe
-programToMonitorEXE "c:\new compiler\version2\testbedChildProcess.exe"
-programToMonitorEXE testbed-child-process.exe
-programToMonitorEXE "<<Any>>"

-program c:\testbed.exe -programToMonitorEXE c:\testbed-child-process.exe

In this last example c:\testbed.exe is launched but not monitored. Only when testbed.exe
launches a child process c:\testbed-child-process.exe is that child process monitored.

-programToMonitorDLL

This option provides a qualifying DLL to identify different .Net Core processes, which are typically
launched using the same .Net Core runtime. Include the dll extension.

Only valid in conjunction with -program and -programToMonitorEXE.

Examples:

-programToMonitorDLL c:\test\dotNetCoreApp.dll

-program c:\testbed.exe -programToMonitorEXE "c:\program files\dotnet\dotnet.exe" -
programToMonitorDLL c:\test\dotNetCoreApp.dll

In this last example c:\testbed.exe is launched but not monitored. Only when testbed.exe
launches a child process c:\program files\dotnet\dotnet.exe to run the application c:
\test\dotNetCoreApp.dll is that child process monitored.

-programToMonitorLaunchCount

Command Line Interface 333

Copyright © 2002-2025 Software Verify Limited

Specify the nth invocation of the program specified by -programToMonitor which is to have its data
collected.

Any value which is invalid (including anything less than 1) will default to 1.

Only valid in conjunction with -programToMonitor and consequently also -program.

Examples:

-programToMonitorLaunchCount 1
-programToMonitorLaunchCount 34

-program c:\testbed.exe -programToMonitor c:\testbed-child-process.exe -
programToMonitorLaunchCount 1

In the above example c:\testbed.exe is launched but not monitored. As soon as
testbed.exe launches a child process c:\testbed-child-process.exe then that child
process monitored.

If the value 1 was changed to a 2, then only the second invocation of c:\testbed-child-
process.exe would get monitored, with the first invocation being ignored.

-arg

Passes the following element on the command line to the target program.

-arg can be used multiple times, or you can use -allArgs

 To pass quotes along with the string, escape a pair of inner quotes like the example below

Only valid with: -program

Examples:

-arg myProgram.exe
-arg "c:\Program Files\myApp\myProgram.exe"
-arg "-in infile -out outfile"
-arg "\"a quoted string\""

-allArgs

Passes the remainder of the command line (after -allArgs) to the program being launched.

Unlike -arg above, there is no need to escape the quotes as the content is passed verbatim.

Only valid with: -program

Example:

-allArgs anything put here is passed to the target program "even stuff in quotes" is passed

Coverage Validator Help334

Copyright © 2002-2025 Software Verify Limited

-directory

Sets the working directory in which the program is executed. If -directory is not specified the
program is run in its current directory.

Only valid with: -program

Examples:

-directory c:\development\
-directory "c:\research and development\"

-environment

Environment variables for program, as a series of name/value pairs. Not to be confused with -
setenvironment.

Use this option once for each environment variable you wish to set.

 To pass quotes along with the string, escape a pair of inner quotes like the example below

Only valid with: -program

Examples:

-environment APP_FLAG=ON;
-environment "APP_FAG=ON;"
-environment "APP_COMMS=ON; APP_DEBUG=OFF;"
-environment "APP_MSG=\"A quoted string with spaces\";"

-dataCollectType

Specifies the type of data collection that you want. Native, .Net or mixed mode (both native and .Net).

Valid with -program and -monitorAService.

Examples:

-dataCollectType native
-dataCollectType dotNet
-dataCollectType mixedMode

-stdin

Specifies a file to be read and piped to the standard input of the application being tested.

If the filename contains spaces, the filename should be quoted.

An error occurs if the file does not exist. See -ignoreMissingStdin to avoid this error.

Command Line Interface 335

Copyright © 2002-2025 Software Verify Limited

Examples:

-stdin c:\settings\input.txt
-stdin "c:\reg tests settings\input.txt"

-stdout

Specifies a file to be written with data piped from the standard output of the application being tested.

If the filename contains spaces, the filename should be quoted.

An error occurs if the file does not exist. See -ignoreMissingStdout to avoid this error.

Examples:

-stdout c:\settings\output.txt
-stdout "c:\reg tests results\output.txt"

-ignoreMissingStdin

If this flag is specified and the file specified by -stdin does not exist, no error is reported.

-ignoreMissingStdout

If this flag is specified and the file specified by -stdout does not exist, no error is reported.

Target program startup modes

-createProcessStartupThread
-normalStartupThread
-idleStartupThread
-suspendStartupThread
-pauseStartupThread
-noSuspendInStubDuringAttach

All these options are obsolete and will be ignored if present on command lines or in command files.

Injecting into a program

-injectName

Sets the name of the process for Coverage Validator to attach to.

Not compatible with -program, -injectID, -waitName or -monitorAService.

Coverage Validator Help336

Copyright © 2002-2025 Software Verify Limited

Examples:

-injectName c:\testbed.exe
-injectName "c:\new compiler\version2\testbed.exe"

-injectID

Sets the numeric (decimal) id of a process for Coverage Validator to attach to.

Not compatible with -program, -injectName, -waitName or -monitorAService.

Example:

-injectID 1032

Waiting for a program

-waitNameEXE
 -waitName

-waitName has been replaced by -waitNameEXE. -waitName will be honoured to provided
backwards compatibility.

Sets the name of a process that Coverage Validator will wait for.

When the named process starts Coverage Validator will attach to the process.

Not compatible with -program, -injectName, -injectID or -monitorAService.

Examples:

-waitNameEXE c:\testbed.exe
-waitNameEXE "c:\new compiler\version2\testbed.exe"

-waitNameDLL

Sets the name of a process DLL that Coverage Validator will wait for.

When the named process starts Coverage Validator will attach to the process.

Examples:

-waitNameDLL c:\dotNetApp.dll
-waitNameDLL "c:\new compiler\version2\dotNetApp.dll"

For use with -waitNameEXE when you want to wait for .Net Core applications.

Command Line Interface 337

Copyright © 2002-2025 Software Verify Limited

-waitNameEXE "c:\program files\dotnet\dotnet.exe" -waitNameDLL "c:
\testApps\dotNetCoreApp\release\dotNetCoreApp.dll"

-maxNumRestarts

Set the number of times a process monitored using -waitName can be restarted before Coverage
Validator will exit.

To use this option you must use -waitName and -monitorAllRestarts.

Not compatible with -program, -injectName, -injectID or -monitorAService.

Examples:

-maxNumRestarts 1
-maxNumRestarts 5
-maxNumRestarts 600

-monitorAllRestarts

Allow Coverage Validator to monitor a process starting multiple times.

To use this option you must use -waitName.

If you use this option without specifying -maxNumRestarts the restart count is set to 1.

Not compatible with -program, -injectName, -injectID or -monitorAService.

Examples:

-monitorAllRestarts

Monitoring a service

-monitorAService

Sets the full file system path of a service including any extension.

Coverage Validator will wait for the service to start and attach to it.

Not compatible with -program, -injectName, -injectID or -waitName.

Examples:

-monitorAService c:\service.exe
-monitorAService "c:\new compiler\version2\service.exe"

.Net Core specific arguments

-dotNetCoreArg

Coverage Validator Help338

Copyright © 2002-2025 Software Verify Limited

Specifies and argument to pass to the .Net Core runtime. You can specify -dotNetCoreArg as many
times as you need to pass as many arguments as you need.

See this Microsoft document for the list of .Net Core runtime configuration options
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet#runtime-options.

Use this argument with -program.

Examples:

-dotNetCoreArg "--roll-forward LatestPatch"
-dotNetCoreArg "--runtimeconfig ./configUnitTest.json"

-dotNetCoreLaunchType

Specifies the type of program being launched by the .Net Core runtime. You can specify -
dotNetCoreLaunchType once. If specified more than once, the last definition is used.

Use this argument with -program.

Examples:

-dotNetCoreLaunchType SelfContained
-dotNetCoreLaunchType FrameworkDependent

Data Collection

-collectData

Enables or disables the collection of flow tracing data

Examples:

-collectData:On
-collectData:Off

The data collection option may be ignored because of the instrumentation mode that is selected.

-collectStdout

Enables or disables the collection of standard output (stdout)

Examples:

-collectStdout:On
-collectStdout:Off

Command Line Interface 339

Copyright © 2002-2025 Software Verify Limited

5.5 User interface visibility

User interface visibility

You can choose to hide or show Coverage Validator during the test, as well as the window of the target
application.

-displayUI

Forces the Coverage Validator user interface to be displayed during the test.

This is useful for debugging a command line session that is not working, for example inspecting the
Diagnostic tab for messages related to the test.

You wouldn't normally use this option when running unattended coverage tests.

-doNotInteractWithUser

Never display dialog boxes in the target application that is being profiled.

 This applies even for warning and error dialog boxes.

The intended use for this option is for when you are running command line sessions on unattended
computers and you have automated processes that may kill the Coverage Validator user interface if
something goes wrong. Actions such as this then cause the stub to recognise the user interface has
gone away and display an error warning.

-hideUI

Hides the Coverage Validator user interface during the test.

-launchAppHide

Hides the target application during the test.

Depending on your application, this may not work and may not even be suitable.

This is equivalent to setting the wShowWindow member of the STARTUPINFO struct to SW_HIDE when
using the Win32 CreateProcess() function.

It's useful if you're testing console applications that have no user interaction, as it prevents the
console/command prompt from being displayed.

For GUI applications this option very much depends on how your application works.

For interactive applications, it's clearly has no use, but for some, hiding the GUI may help prevent
various windows messages from being processed.

Coverage Validator Help340

Copyright © 2002-2025 Software Verify Limited

Typically, for complex applications, it's better to design this capability into your application and
control it via a command line, which can be passed in from Coverage Validator via the -arg option.

-launchAppShow

Shows the target application during the test.

This is equivalent to setting the wShowWindow member of the STARTUPINFO struct to SW_SHOW when
using the Win32 CreateProcess() function.

-launchAppShowMaximized
-launchAppShowMinimized
-launchAppShowMinNoActive
-launchAppShowNA
-launchAppShowNoActivate
-launchAppShowNormal

As well as the previous two options to show or hide the target application during the test there are other
options equivalent to values that can be used in the STARTUPINFO struct.

The options are equivalent to the setting the wShowWindow member to the following values

Option wShowWindow
member

Launched application is shown...

-
launchAppShowMaximi
zed

SW_SHOWMAXIMIZED Maximized and activated

-
launchAppShowMinimi
zed

SW_SHOWMINIMIZED Minimized and activated

-
launchAppShowMinNo
Active

SW_SHOWMINNOACTIVE Minimized and not active

-launchAppShowNA
SW_SHOWNA

Shown at current size and position but not
activated

-
launchAppShowNoActiv
ate

SW_SHOWNOACTIVATE
Show at most recent size and position but
not activated

-
launchAppShowNormal

SW_SHOWNORMAL
Show at original size and position and
activated

-showCommandPrompt
-hideCommandPrompt

Command Line Interface 341

Copyright © 2002-2025 Software Verify Limited

Causes any launched console window to be shown or hidden during the test.

Refreshing the interface after test completion

You can run automated tests that leave the user interface open after completion,

The following options are used to automatically refresh the main data tabs in Coverage Validator once a
test is complete.

-refreshResults (Summary tab)
-refreshCoverage
-refreshFunctions
-refreshFilesAndLines

Error reporting user interface visibility

-dontShowWindowsErrorReportingUI

Does not show the Windows Error Reporting dialog during tests if any test crashes the target
program.

-showWindowsErrorReportingUI

Does show the Windows Error Reporting dialog during tests if any test crashes the target program.

5.6 Session Management

Session management

The following options let you control the sessions during testing

-numSessions

Sets the number of sessions that can be loaded at once.

This is equivalent to the same setting in the session manage and can't be less than 1.

Example:

-numSessions 2

-saveSession

Saves the session data when all data has finished being collecting from the target program.

Coverage Validator 32 and 64 bit use the file extension .cvm and .cvm_64 respectively.

Coverage Validator Help342

Copyright © 2002-2025 Software Verify Limited

A missing or incorrect filename extension will be corrected automatically

Examples:

-saveSession c:\results\testMacro1.cvm
-saveSession "c:\test results\testMacro1.cvm_x64"
-saveSession c:\results\testMacro1

-loadSession
-loadSession2

-loadSession loads a previously created session to be merged with the data from the session being
recorded.

-loadSession2 loads a session to be merged with the session loaded via -loadSession.

These options might be used when a series of tests have already been performed and their sessions
saved.

Coverage Validator 32 and 64 bit use the file extension .cvm and .cvm_64 respectively.

A missing or incorrect filename extension will be corrected automatically

Examples:

-loadSession c:\results\testMacro1.cvm
-loadSession "c:\test results\testMacro1.cvm"
-loadSession c:\results\testMacro1

 Ensure your session manager is configured to hold at least 2 or 3 sessions or use -
numSessions to specify how many sessions to use.

5.7 Merging sessions

Merging sessions

-mergeSessions

Merge a previously loaded session (using -loadSession) with the current session just recorded (by
the command line arguments to -program, etc).

The resulting merged session is placed as the current session.

-saveMergeResult

Results of a session merge are saved to a file.

Command Line Interface 343

Copyright © 2002-2025 Software Verify Limited

If the name contains spaces, it should be quoted.

Examples:

-saveMergeResult c:\results\testMacro1.cvm
-saveMergeResult "c:\test results\testMacro1.cvm"

See also -showMergeWithReport for whether a list of merged files is included in exported data.

-mergeUsingAddress

Merge coverage data based on symbol addresses.

Typically this is used when merging coverage data from tests on the same build of software (same
executable modules etc).

See also -mergeUsingSymbol

-mergeUsingSymbol

Merge coverage data based on symbol names and symbol filenames.

Typically this is used when merging coverage data from tests on the different builds of software (e.g.
different executable modules using the same source code).

See also -mergeUsingAddress

-mergeMultiple

Merge coverage data from multiple sessions that are listed in file.

The contents of the file list one session file per line. Lines that identify files that don't exist or that are
not sessions are ignored

Example merge multiple file:

e:\cv_help.cvm
e:\cv_red.cvm
e:\cv_green.cvm
e:\cv_blue.cvm
e:\cv_magenta.cvm
e:\cv_cyan.cvm
e:\this_file_doesnt_exist.cvm

Examples:

-mergeMultiple c:\results\merge_multiple.txt
-mergeMultiple "c:\test results\merge_multiple.txt"

Coverage Validator Help344

Copyright © 2002-2025 Software Verify Limited

Example command line:

This command line merges every session listed in c:\cv_merge_multiple.txt, then saves the
result in e:\cv_merge_result.cvm. Finally Coverage Validator is closed.

-mergeMultiple e:\cv_merge_multiple.txt -mergeSessions -saveMergeResult e:
\cv_merge_result.cvm -hideUI

Merging central sessions

The following options let you control the merging of sessions into a central.

Options here are equivalent to the settings on the Auto Merge page (below) of the Data Collection
Settings.

-mergeToCentralSession

Switch the auto merge feature on or off.

This option overrides the Merge session results of individual runs into central session check box.

 If you're using this to merge coverage data from different applications (e.g. running unit tests) we
recommend also using -mergeClearNone and -mergeUsingSymbol.

Examples:

-mergeToCentralSession:On
-mergeToCentralSession:Off

Command Line Interface 345

Copyright © 2002-2025 Software Verify Limited

-disableMergeIntoCurrentSession
-enableMergeIntoCurrentSession

When the regression test is complete, set whether the merged session results are then merged into
the current session or not.

These options override the Merge central session into current session when finished... option which
will prevail if neither of these options are present.

-centralDirectory

Names the central directory used for performing an auto merge.

Use the full directory path, or to reset the central directory use <<None>>.

 If you're merging coverage data from different applications (e.g. running unit tests) we
recommend also using -mergeClearNone and -mergeUsingSymbol.

Examples:

-centralDirectory e:\unitTestResults\test1
-centralDirectory <<None>>

-centralFileName

Names the full path to the central file used for performing an auto merge.

 If you're merging coverage data from different applications (e.g. running unit tests) we
recommend also using -mergeClearNone and -mergeUsingSymbol.

Example:

-centralFileName e:\unitTestResults\test1\unitTest1.cvm

Resetting merge results

The next four options are exactly equivalent to the reset options on the Auto Merge page of the Data
Collection Settings.

The four triggers for clearing the merged session results are:

· -mergeClearRebuild Clear all merged session results when any source file is modified (the
application changes its timestamp)

· -mergeClearEditedFilesOnly Clears only merged session results for source files that have been
edited

· -mergeClearChangeApplication When the application being tested changes from that used to
create the merged session data

Coverage Validator Help346

Copyright © 2002-2025 Software Verify Limited

· -mergeClearNone No clearing of merged session results occurs under any circumstance

5.8 Session Export Options

Session export format - HTML or XML

-exportAsHTML
-exportAsXML

Export the session data as an HTML or XML file when Coverage Validator has finished collecting
data from the target program.

If you merge the current session with another session, the exported HTML will be for the merged
session.

If you disable merging with the current session the export will be for the unmerged session.

Example:

-exportAsHTML c:\results\html\testMacro1.html
-exportAsXML "c:\test results\xml\testMacro1.html"

-exportMergedAsHTML
-exportMergedAsXML

Export the merged session data as an HTML or XML file when Coverage Validator has finished
collecting data from the target program.

Example:

-exportMergedAsHTML c:\results\testMacro1Merged.html
-exportMergedAsXML "c:\xml results\testMacro1Merged.xml"

-exportAsXMLCobertura

Export the session data as a Cobertura XML file when Coverage Validator has finished collecting
data from the target program.

If you merge the current session with another session, the exported HTML will be for the merged
session.

If you disable merging with the current session the export will be for the unmerged session.

Example:

-exportAsXMLCobertua "c:\test results\xm -cobertura\testMacro1.html"

Command Line Interface 347

Copyright © 2002-2025 Software Verify Limited

-exportMergedAsXMLCobertura

Export the merged session data as a Cobertura XML file when Coverage Validator has finished
collecting data from the target program.

Example:

-exportMergedAsXMLCobertura "c:\cobertura xml results\testMacro1Merged.xml"

-showMergeWithReport

Specify whether a list of merged files is included in the exported data when an export is performed,
and if so, whether to include them at the top or bottom.

Examples:

-showMergeWithReport none Do not include in the report
-showMergeWithReport top Include at the top of the report
-showMergeWithReport bottom Include at the bottom of the report

Session export encoding - HTML or XML

These options allow you to export the session data as UTF-16, UTF8 or ASCII. UTF-16 and UTF-8 will
add a byte order mark (BOM) to the start of the exported file.

-exportAsHTML_BOM

The exported HTML will be exported with the appropriate format.

-exportAsHTML_BOM ASCII
-exportAsHTML_BOM UTF8
-exportAsHTML_BOM UTF16

-exportAsXML_BOM

The exported XML will be exported with the appropriate format.

-exportAsXML_BOM ASCII
-exportAsXML_BOM UTF8
-exportAsXML_BOM UTF16

-exportAsXMLCobertura_BOM

The exported XML will be exported with the appropriate format.

-exportAsXMLCobertura_BOM ASCII
-exportAsXMLCobertura_BOM UTF8
-exportAsXMLCobertura_BOM UTF16

-exportMergedAsHTML_BOM

Coverage Validator Help348

Copyright © 2002-2025 Software Verify Limited

The exported HTML will be exported with the appropriate format.

-exportMergedAsHTML_BOM ASCII
-exportMergedAsHTML_BOM UTF8
-exportMergedAsHTML_BOM UTF16

-exportMergedAsXML_BOM

The exported XML will be exported with the appropriate format.

-exportMergedAsXML_BOM ASCII
-exportMergedAsXML_BOM UTF8
-exportMergedAsXML_BOM UTF16

-exportMergedAsXMLCobertura_BOM

The exported XML will be exported with the appropriate format.

-exportMergedAsXMLCobertura_BOM ASCII
-exportMergedAsXMLCobertura_BOM UTF8
-exportMergedAsXMLCobertura_BOM UTF16

HTML and XML export options

The following options control settings for HTML and XML export of the recorded session results

Many of the export settings take the form option:On or Option:Off

Example:

-exportUnvisitedLines:On
-exportVisitedLines:Off

Most of these options are equivalent to the corresponding settings used in the Export Session dialog.

-exportDescription Sets the description to be included the exported HTML/XML.
Quotes should be used if spaces are present.

-exportDescription "Quality control test 2a"

-exportDetailedReport:On/Off Specifies that a detailed report is produced

-exportDoColourCode:On/Off Make the HTML export colour coded (not relevant for XML
export)

-exportFileFormatCR
-exportFileFormatCRLF
-exportFileFormatLF

The line ending in the output file will be one of the following:

· Carriage Return: \r (e.g. Macintosh)
· Carriage Return, Line Feed: \r\n (e.g. Windows)

Command Line Interface 349

Copyright © 2002-2025 Software Verify Limited

· Line Feed: \n (e.g. Linux)

-exportIncludeArgs:On/Off

-exportSourceCode:On/Off

Choose if program arguments are included in exported data.

Set whether source code is exported - only used when -
exportType is set to SummaryAndCoverage or DLL

-exportType Specify the format of the exported data:

· File
· Class
· DLL
· SummaryAndCoverage

-exportType SummaryAndCoverage

-exportUnhooked:On/Off Include information about functions that could not be hooked

-
exportUnvisitedFunctions:On/
Off

Include information about unvisited functions

-exportUnvisitedLines:On/Off Include information about unvisited lines

-exportVisitedFunctions:On/Off Include information about visited functions

-exportVisitedLines:On/Off Include information about visited lines

5.9 Filter and Hook options

File extension hooking

-fileExt

Specify a file extension to be instrumented.

This is the same as listing a file extension on the Hooked Source File Types page in the Filters
section of the settings dialog.

Example:

-fileExt cpp

Source code exclusion

Source code exclusion lets you control sections of a source file to be excluded by using pragmas
(keyword directives) to mark the a region of code.

Coverage Validator Help350

Copyright © 2002-2025 Software Verify Limited

The pragmas can surround complete classes, functions or just single lines of code.

-codeExcludeDisable
-codeExcludeEnable

Disables or enables source code exclusion.

-startPragma

Sets the start pragma for use with multi-line code exclusion.

Example:

-startPragma CVPragmaMultiLineStart

-endPragma

Sets the end pragma for use with multi-line code exclusion.

Example:

-endPragma CVPragmaMultiLineEnd

-linePragma

Sets the line pragma for use with single line code exclusion.

Example:

-linePragma CVPragmaSingleLineIgnore

Source statistics per-DLL

Depending on how you build your software it's possible that some of your source files are present in
more than one module (DLL / EXE) in your application.

These settings are equivalent to those for multiple source code file inclusion on the Statistics tab in the

Data Collection section of the settings dialog for more details.

The options are:

-statisticsConsiderDLLForSource

Code coverage data is collected for each source on a per-DLL basis.

Command Line Interface 351

Copyright © 2002-2025 Software Verify Limited

-statisticsIgnoreDLLForSource

Code coverage data is collected for each source regardless of which DLL the source code is
compiled into.

Class and function hooks

You can indicate class and function names that are to be hooked or not hooked.

This is done either directly on the command line or from a file via -classAndFunctionFile

-classAndFunction

Specify classes and methods to be hooked or not hooked, depending on the use of the next two
options.

Examples:

-classAndFunction MyClass::MyMethod
-classAndFunction MyClass::
-classAndFunction MyFunction

-classAndFunctionHook

Only the classes and methods specified by -classAndFunction will be hooked.

-classAndFunctionDoNotHook

The classes and methods specified by -classAndFunction will not be hooked.

-classAndFunctionAll

All classes and methods will be hooked.

-classAndFunctionNone

Discard any previous command line options specified for the class and method filter.

-classAndFunctionFile

Points to a file specifying the class and function to be hooked for the test.

If the filename contains spaces, the filename should be quoted.

Coverage Validator Help352

Copyright © 2002-2025 Software Verify Limited

 The settings dialog Class and Function Filter tab provides options for creating a ready made
class and function hook file by using the Export... button on the dialog.

Examples:

-classAndFunctionFile c:\settings\testMacroClassAndMethods.cvxc
-classAndFunctionFile "c:\reg tests settings\testMacroClassAndMethods.cvxc"

Class and function file format

The first line of text in the DLL hooks file is one of the following:

· Rule:DoNotHookSpecificClasses DLLs marked as enabled will not be hooked. All
other DLLs will be hooked

· Rule:HookSpecificClasses DLLs marked as enabled will be hooked. All other
DLLs will not be hooked

· Rule:HookAllClasses All DLLs will be hooked regardless of the settings in
the list

 Capitalization is important.

The remaining lines list one class and method per line.

Class and method are separated by :: or omit the method name if all methods in the class are
wanted..

To name a method and no class, use :: to prefix the method.

Example:

Two methods in the pageMemoryUsageTracker class should be hooked, along with all methods
in the class rightMenuAnalysis, and all methods and functions named resizeData.

Rule:HookSpecificClasses
pagedMemoryUsageTracker::setPage
pagedMemoryUsageTracker::reset
resizeData
rightMenuAnalysis::

Example:

Two methods in the pageMemoryUsageTracker class are not to be hooked.

Rule:DoNotHookSpecificClasses
pagedMemoryUsageTracker::setPage
pagedMemoryUsageTracker::reset

Example:

All classes and methods will be hooked.

Command Line Interface 353

Copyright © 2002-2025 Software Verify Limited

Rule:HookAllClasses

The file can be ANSI or UNICODE text and paths with spaces do not need quotes.

Source file hooks

-sourceFileFilterHookFile

Points to a file specifying the source files to be hooked for the test.

If the filename contains spaces, the filename should be quoted.

 The settings dialog Source Files Filter tab provides options for creating a ready made source file
filter hook file by using the Export... button on the dialog.

Examples:

-sourceFileFilterHookFile c:\settings\testMacroFiles.cvxft
-sourceFileFilterHookFile "c:\reg tests settings\testMacroFiles.cvxft"

Source file filter format

The first line of text in the DLL hooks file is one of the following:

· Rule:DoNotHook Source files that follow will not be hooked. All other files will be hooked
· Rule:DoHook Source files that follow will be hooked. All other files will not be hooked

 Capitalization is important.

The remaining lines list one source file (or source directory) per line.

The file is named with a path or without a path, i.e. the same way that Coverage Validator discovers
the path.

Example:

Most files are listed with a full path but constituent files of MFC might be listed without a path.

Rule:DoNotHook
"c:\program files\software verification\coverage validator\examples\nativeExample\nativeExample.cpp"
appmodule.cpp

Example:

Using paths with and without spaces:

Rule:DoHook
"E:\OM\C\coverage Validator\examples\nativeExample"

Coverage Validator Help354

Copyright © 2002-2025 Software Verify Limited

Rule:DoHook
E:\OM\C\coverageValidator\examples\nativeExample

Example:

Using environment variables.

Rule:DoHook
%ENV_VAR%\examples\nativeExample

Using wildcards.

Rule:DoHook
c:\test*\nativeExample

The file can be ANSI or UNICODE text and paths with spaces do not need quotes.

5.10 File Locations

File Locations

When using the command line it's convenient to store settings and options in files that can be easily
referenced.

Those files include:

· Global settings files

· File locations for source, PDB or MAP files

· DLL hook files

Each of these file types can be saved or exported from Coverage Validator.

The -settings option is used to specify the settings to be used for the test. If the filename contains
spaces, the filename should be quoted. This option is the same as -loadSettings and is provided for
backwards compatibility.

Loading global settings from a file

Global settings are usually stored in the registry, but you can save a specific set of settings for use in
coverage tests:

· Settings menu Save settings...

Command Line Interface 355

Copyright © 2002-2025 Software Verify Limited

-loadSettings
-settings

Points to a previously saved settings file to be used for the test.

Examples:

-loadSettings c:\settings\testMacro1.cvs
-loadSettings "c:\coverage test settings\testMacro1.cvs"

 The -settings option is identical to -loadSettings and is provided for backwards compatibility

File locations for source, PDB or MAP files

File location files can be easily generated by exporting file locations from the File Locations page of the
settings dialog.

-fileLocations

Specify a plain text file listing file locations to be used during testing. See the format of the file
below.

Each set of file types (one per line) is preceded by a header line in the file.

· [Files] Source files
· [Third] Third party source files
· [PDB] PDB files
· [MAP] MAP files

Example:

-fileLocations c:\coverageTests\testFileLocations1.cvxfl

Example file:

[Files]

c:\work\project1\

[Third]

d:\VisualStudio\VC98\Include

[PDB]

c:\work\project3\debug

c:\work\project3\release

[MAP]

c:\work\project3\debug

c:\work\project3\release

Files listing classes and functions to hook

Set class and function names that are to be hooked or not hooked using -classAndFunctionFile in
the Filter and Hook options.

Coverage Validator Help356

Copyright © 2002-2025 Software Verify Limited

Files listing DLLs to hook

DLL hook files can be easily generated by exporting DLL hooks from the Hooked DLLs page in the
Filters section of the settings dialog.

-dllHookFile

Points to a file listing the DLLs to be hooked for the test.

Examples:

-dllHookFile c:\settings\testMacroDLLs.cvx
-dllHookFile "c:\coverage tests settings\testMacroDLLs.cvx"

The first line of text in the DLL hooks file is one of the following:

· Rul e: DoNot Hook DLLs marked as enabled will not be hooked. All other DLLs will be
hooked

· Rul e: DoHook DLLs marked as enabled will be hooked. All other DLLs will not be
hooked

· Rul e: HookAl l All DLLs will be hooked regardless of the settings in the list

 Capitalization is important.

The remaining lines list one DLL filename or folder path and an enabled state on each line.

Example:

Rule:DoNotHook
nativeExample.exe enable=FALSE
MFC42D.DLL enable=TRUE
MSVCRTD.dll enable=TRUE
KERNEL32.dll enable=TRUE
ole32.dll enable=TRUE

Example:

Rule:DoHook
E:\OM\C\coverageValidator\examples\nativeExample\DebugNonLink
enable=TRUE

Example:

Rule:DoHook
"E:\OM\C\coverageValidator\examples\nativeExample with
spaces\DebugNonLink" enable=TRUE

Example:

Rule:DoHook
%ENV_VAR%\DebugNonLink enable=TRUE

Command Line Interface 357

Copyright © 2002-2025 Software Verify Limited

Here, the environment variable ENV_VAR is used to replace the text %ENV_VAR% in the path
definition.

For example, if ENV_VAR was set to e:\dev\ the resulting value would be e:
\dev\DebugNonLink

The file can be ANSI or UNICODE text and paths with spaces do not need quotes.

5.11 Command Files

Using a command file

If your command line is very long, consider using -commandFile to specify a command file for your
arguments.

-commandFile

Specify a file from which to read the command line arguments.

Useful when command lines become unwieldy or longer than the windows command limits.

Use -- to insert comments into the file, including when commenting out option.

Examples:

-commandFile c:\coveragetests\testMacro1.cf
-commandFile "c:\coverage tests\testMacro1.cf"

Example command file

-hideUI

-program c:\testbed\testApp.exe

-- arguments for application

-arg argumentOne

-arg argumentTwo

-arg "-s wobble"

-directory c:\testbed\test1

-settings c:\testbed\settings_test1.cvs

-- do export and save of the results

-exportAsHTML c:\testbed\results\test1.html

-saveSession c:\testbed\results\test1.cvm

For any argument that can be supplied to a command in a command file, you can also specify an
environment variable substitution.

Coverage Validator Help358

Copyright © 2002-2025 Software Verify Limited

-directory %DIR%
-program %DIR%\testProgram.exe

The environment variables must have been set prior to starting Coverage Validator.

You cannot specify a command with an environment variable substitution.

5.12 Help, Errors & Return Codes

The following options may help with using and debugging the command line driven automated regression
testing.

Command line help

-help
-?

Command line help is printed on the standard output.

Debugging command driven testing

If you're having problems with using the command line, check the following, try displaying error
messages using the option below, and look at the exit return codes.
.

· separate command line arguments with spaces

· all command line options that include spaces need to have quotes around them

· some arguments are only useful in conjunction with others - check notes against each option

· some arguments are incompatible with others - check notes against each option

-showErrorsWithMessageBox

Forces errors to be displayed using a message box when running from the command line.

This can be very useful when debugging a command line that does not appear to work correctly.

Checking for a heartbeat

-pulseToStdout

Coverage Validator will output '.' characters to the standard output on a regular basis.

Use this option if you want some activity on the standard output that can be monitored for signs of a
non-responsive program.

Command Line Interface 359

Copyright © 2002-2025 Software Verify Limited

Pipe warnings

-suppressPipeWarnings

Prevent Coverage Validator from displaying an error message box when the stub injected into the
launched application cannot find the user interface.

This error condition rarely occurs, but for these situations this facility can be useful.

Do not use with -terminatePipeWarnings below.

-terminatePipeWarnings

Forces Coverage Validator to shutdown the launched application (using TerminateProcess) when the
stub injected into the launched application cannot find the user interface.

This error condition rarely occurs, but for these situations this facility can be useful.

Do not use with the -suppressPipeWarnings option.

Exit return codes

Coverage Validator returns the following status codes when running from the command line.

· 0 All ok
· -1 Unknown error. An unexpected error occurred starting the runtime
· -2 Application started ok. You should not see this code returned
· -3 Application failed to start. E.g. runtime not present, not an executable or injection dll not

present,
· -4 Target application is not an application
· -5 Don't know what format the executable is, cannot process it
· -6 Not a 32 bit application
· -7 Not a 64 bit application
· -8 Using incorrect MSVCR(8|9).DLL that links to CoreDLL.dll (incorrect DLL is from WinCE)
· -9 Win16 app cannot start these because we can't inject into them
· -10 Win32 app - not used
· -11 Win64 app - not used
· -12 .Net application
· -13 User bailed out because app not linked to MSVCRT dynamically
· -14 Not found in launch history
· -15 DLL to inject was not found
· -16 Startup directory does not exist
· -17 Symbol server directory does not exist
· -18 Could not build a command line
· -19 No runtime specified, cannot execute script (or Java) (obsolete)
· -20 Java arguments are OK - not an error (obsolete)
· -21 Java agentlib supplied that is not allowed because Java Coverage Validator uses it (obsolete)
· -22 Java xrun supplied that is not allowed because Java Coverage Validator uses it (obsolete)

Coverage Validator Help360

Copyright © 2002-2025 Software Verify Limited

· -23 Java cp supplied that is not allowed because Java Coverage Validator uses it (obsolete)
· -24 Java classpath supplied that is not allowed because Java Coverage Validator uses it

(obsolete)
· -25 Firefox is already running, please close it (obsolete)
· -26 Lua runtime DLL version is not known (obsolete)
· -27 Not compatible software
· -28 InjectUsingCreateProcess, no DLL name supplied
· -29 InjectUsingCreateProcess, Unable to open PE File when inspecting DLL
· -30 InjectUsingCreateProcess, Invalid PE File when inspecting DLL
· -31 InjectUsingCreateProcess, No Kernel32 DLL
· -32 InjectUsingCreateProcess, NULL VirtualFree() from GetProcAddress
· -33 InjectUsingCreateProcess, NULL GetModuleHandleW() from GetModuleHandleW
· -34 InjectUsingCreateProcess, NULL LoadLibraryW() from LoadLibraryW
· -35 InjectUsingCreateProcess, NULL FreeLibrary() from FreeLibrary
· -36 InjectUsingCreateProcess, NULL VirtualProtect() from GetProcAddress
· -37 InjectUsingCreateProcess, NULL VirtualFree() from GetProcAddress
· -38 InjectUsingCreateProcess, unable to find DLL load address
· -39 InjectUsingCreateProcess, unable to write to remote process's memory
· -40 InjectUsingCreateProcess, unable to read remote process's memory
· -41 InjectUsingCreateProcess, unable to resume a thread
· -42 UPX compressed - cannot process such executables
· -43 Java class not found in CLASSPATH
· -44 Failed to launch the 32 bit svlGetProcAddressHelperUtil.exe
· -45 Uknown error with svlGetProcAddressHelperUtil.exe
· -46 Couldn't load specified DLL into svlGetProcAddressHelperUtil.exe
· -47 Couldn't find function in the DLL svlGetProcAddressHelperUtil.exe
· -48 Missing DLL argument svlGetProcAddressHelperUtil.exe
· -49 Missing function argument svlGetProcAddressHelperUtil.exe
· -50 Missing svlGetProcAddressHelperUtil.exe
· -51 Target process has a manifest that requires elevation
· -52 svlInjectIntoProcessHelper_x64.exe not found
· -53 svlInjectIntoProcessHelper_x64.exe failed to start
· -54 svlInjectIntoProcessHelper_x64.exe failed to return error code
· -55 getImageBase() worked ok
· -56 ReadFile() failed in getImageBase()
· -57 NULL pointer when trying to allocate memory
· -58 CreateFile() failed in getImageBase()
· -59 ReadProcessMemory() failed in getImageBase()
· -60 VirtualQueryEx() failed in getImageBase()
· -61 Bad /appName argument in svlInjectIntoProcessHelper_x64.exe
· -62 Bad /dllName argument in svlInjectIntoProcessHelper_x64.exe
· -63 Bad /procId argument in svlInjectIntoProcessHelper_x64.exe
· -64 Failed to OpenProcess in svlInjectIntoProcessHelper_x64.exe
· -65 A DLL that the .exe depends upon cannot be found
· -66 A stdin file was specified, but Validator could not open it
· -67 A stdout file was specified, but Validator could not open it
· -68 Failed to create the child output pipe
· -69 Failed to create a duplicate of the output write handle for the std error write handle. This is

necessary in case the child application closes one of its std output handles
· -70 Failed to create the child input pipe
· -71 Failed to create a duplicate output read temporary file
· -72 Failed to create a duplicate input write temporary file

Command Line Interface 361

Copyright © 2002-2025 Software Verify Limited

· -73 User was trying to launch a service as an application that was linked to CV APIs. User
cancelled when informed of this fact

· -74 Returned by Coverage Validator if user performs a baseline comparison and memory leaks
are detected

· -75 Shutdown and restart as 32 bit Coverage Validator
· -76 Shutdown and restart as 64 bit Coverage Validator
· -77 Entry point in executable is NULL.
· -78 Application is .Net Core.
· -79 Entry point is for a .Net application.

· -80 VirtualAllocEx() returned NULL
· -81 InjectUsingCreateProcess, NULL GetLastError() from GetProcAddress

5.13 Command Line Reference

Command line reference

The following alphabetical list provides a convenient look-up for all the command line arguments used in
automated regression testing.

Option Description

-? Print command line help on the standard output.

-allArgs Pass the remainder of the command line to the program being
launched.

-arg Pass command line arguments to the target program. Can be
used multiple times.

-centralDirectory Name a central directory used for performing an auto merge.

-centralFileName Name the full path to the central file used for performing an auto
merge.

-classAndFunction Specify classes and methods to be hooked or not hooked.

-classAndFunctionAll All classes and methods will be hooked.

-classAndFunctionDoNotHook Classes and methods specified by -classAndFunction will not
be hooked.

-classAndFunctionFile Points to a file specifying the class and function to be hooked
for the test.

-classAndFunctionHook Only the classes and methods specified by -classAndFunction
will be hooked.

-classAndFunctionNone Discard any previous command line options specified for the
class and method filter.

-codeExcludeDisable
-codeExcludeEnable

Disable or enable source code exclusion.

-collectData Turn data collection on or off

-collectStdout Turn collection of stdout on or off

-commandFile Specify a file from which to read the command line arguments.

Coverage Validator Help362

Copyright © 2002-2025 Software Verify Limited

-createProcessStartupThread This option is obsolete.

-devIDE Specify the development environment used to be the target
program.

-devVisualStudioVersion Specify which version of Visual Studio by year.

-devVisualStudioYear Specify which version of Visual Studio by version number.

-directory Set the working directory in which the program is executed.

-
disableMergeIntoCurrentSessi
on

When the regression test is complete, the merged session
results will not be merged into the current session.

-displayUI Force the Coverage Validator user interface to be displayed
during the test.

-dllHookFile Points to a file listing the DLLs to be hooked for the test.

-doNotInteractWithUser Never display dialog boxes in the target application that is being
profiled.

-dotNetCoreArg Specify a runtime configuration option to the .Net runtime.

-dotNetCoreLaunchType Specify if you are launching a self contained or framework
dependent .Net Core application.

-
dontShowWindowsErrorReport
ingUI

Never display the Windows Error Reporting dialog if the target
program crashes.

-
enableMergeIntoCurrentSessio
n

When the regression test is complete, set the merged session
results to be merged into the current session.

-endPragma Set the end pragma for use with multi-line code exclusion.

-environment Environment variables for program, as a series of name/value
pairs

-exportAsHTML
-exportAsXML

Export the session data as an HTML or XML file when Coverage
Validator has finished collecting data from the target program.

-exportAsXMLCobertura Export the session data as a Cobertura XML file when Coverage
Validator has finished collecting data.

-exportAsHTML_BOM
-exportAsXML_BOM
-exportAsXMLCobertura_BOM
-exportMergedAsHTML_BOM
-exportMergedAsXML_BOM
-
exportMergedAsXMLCobertura
_BOM

Specify the file encoding for the exported file

-exportDescription Set the description to be included the exported HTML/XML.

-exportDetailedReport Produce a detailed export report.

-exportDoColourCode Make the HTML export colour coded (not relevant for XML
export).

Command Line Interface 363

Copyright © 2002-2025 Software Verify Limited

-exportFileFormatCR
-exportFileFormatCRLF
-exportFileFormatLF

Set the line ending format in the output file.

-exportMergedAsHTML
-exportMergedAsXML

Export the merged session data as an HTML or XML file when
Coverage Validator has finished collecting data from the target
program.

-exportSourceCode Set whether source code is exported when -exportType is set
to. SummaryAndCoverage

-exportType Specify the format of the exported data (file, class, summary &
coverage).

-exportUnhooked Export information about functions that could not be hooked.

-exportUnvisitedFunctions Export information about unvisited functions.

-exportUnvisitedLines Export information about unvisited lines.

-exportVisitedFunctions Export information about visited functions.

-exportVisitedLines Export information about visited lines.

-fileExt Specify a file extension to be instrumented.

-fileLocations Specify a plain text file listing file locations to be used during
testing. See the format of the file below.

-help Print command line help on the standard output.

-hideCommandPrompt Any launched console window will be hidden during the test.

-hideUI Hide the Coverage Validator user interface during the test.

-idleStartupThread This option is obsolete.

-ignoreMissingStdin Allows you to specify stdin files that don't exist without getting
an error.

-ignoreMissingStdout Allows you to specify stdout files that don't exist without getting
an error.

-injectID Set the numeric (decimal) id of a process for Coverage Validator
to attach to.

-injectName Set the name of the process for Coverage Validator to attach to.

-launchAppHide Hide the target application during the test.

-launchAppShow Show the target application during the test.

-launchAppShowMaximized Show the target application maximized and activated.

-launchAppShowMinNoActive Show the target application minimized and activated.

-launchAppShowMinimized Show the target application minimized and not active.

-launchAppShowNA Show the target application at current size and position but not
activated.

-launchAppShowNoActivate Show the target application at most recent size and position
but not activated.

Coverage Validator Help364

Copyright © 2002-2025 Software Verify Limited

-launchAppShowNormal Show the target application at original size and position and
activated.

-linePragma Set the line pragma for use with single line code exclusion.

-loadSession Load a previously created session to be merged with the data
from the session being recorded.

-loadSession2 Load a session to be merged with the session that was loaded
via -loadSession.

-loadSettings Points to a previously saved settings file to be used for the test.

-maxNumRestarts Sets the maximum number of times a process can restart itself
to be monitor by -waitName.

-
mergeClearChangeApplication

Reset merge results when the application being tested changes
from that used to create the merged session data

-mergeClearEditedFilesOnly Reset merge results only for source files that have been edited

-mergeClearNone No clearing of merged session results occurs under any
circumstance.

-mergeClearRebuild Clear all merged session results when any source file is
modified (the application changes its timestamp)

-mergeSessions Merge a previously loaded session (using -loadSession) with
the current session just recorded (by the command line
arguments to -program, etc).

-mergeToCentralSession Switch the auto merge feature on or off.

-mergeUsingAddress Merge coverage data based on symbol addresses

-mergeUsingSymbol Merge coverage data based on symbol names and symbol
filenames

-monitorAllRestarts Enables the ability to monitor additional runs of the applicaton
monitored by -waitName.

-monitorAService Specify the full file system path to the service to monitor with
Coverage Validator, including any extension. The service is not
started by Coverage Validator but my an external means.

-normalStartupThread This option is obsolete.

-
noSuspendInStubDuringAttach

This option is obsolete.

-numSessions Set the number of sessions that can be loaded at once.

-pauseStartupThread This option is obsolete.

-program Specify the full file system path of the executable target
program to be started by Coverage Validator, including any
extension.

-programToMonitorDLL Specify the .Net Core DLL that identifies the program being
monitored. Use in conjunction with -programToMonitorEXE.

-programToMonitorEXE
-programToMonitor

Specify the program to monitor if monitoring a different
application than the launched application.

Command Line Interface 365

Copyright © 2002-2025 Software Verify Limited

-
programToMonitorLaunchCou
nt

Specify the nth invocation of the programToMonitor which is to
have its
data collected.

-pulseToStdout Output '.' characters to the standard output on a regular basis.

-refreshCoverage Automatically refresh the Coverage tab once a test is complete.

-refreshFilesAndLines Automatically refresh the File and Lines tab once a test is
complete.

-refreshFunctions Automatically refresh the Functions tab once a test is
complete.

-refreshResults Automatically refresh the Summary tab once a test is
complete.

-resetSettings Forces Coverage Validator to reset (nearly) all settings to the
default state.

-saveMergeResult Results of a session merge are saved to a file.

-saveSession Save the session data when all data has finished being
collecting from the target program.

-setenvironment Environment variables for Coverage Validator, as a series of
name/value pairs

-settings Points to a previously saved settings file to be used for the test.

-showCommandPrompt Any launched console window will be shown during the test.

-showErrorsWithMessageBox Force errors to be displayed using a message box when
running from the command line.

-showMergeWithReport Specify whether a list of merged files is included in the exported
data when an export is performed, and if so, whether to include
them at the top or bottom.

-
showWindowsErrorReportingUI

Show the Windows Error Reporting user interface if the target
program crashes.

-sourceFileFilterHookFile Points to a file specifying the source files to be hooked for the
test.

-startPragma Set the start pragma for use with multi-line code exclusion.

-
statisticsConsiderDLLForSourc
e

Code coverage data is collected for each source on a per-DLL
basis.

-statisticsIgnoreDLLForSource Code coverage data is collected for each source regardless of
which DLL the source code is compiled into.

-stdin Name a file to be read and piped to the standard input of the
application being tested.

-stdout Name a file to be written with data piped from the standard
output of the application being tested.

-suppressPipeWarnings Prevent Coverage Validator from displaying an error message
box when the stub injected into the launched application cannot
find the user interface.

Coverage Validator Help366

Copyright © 2002-2025 Software Verify Limited

-suspendStartupThread This option is obsolete.

-terminatePipeWarnings Force Coverage Validator to shutdown the launched application
when the stub injected into the launched application cannot find
the user interface.

-waitNameDLL Name a .Net Core dll that identifies the process to wait for. Use
in conjunction with -waitNameEXE.

-waitNameEXE
-waitName

Name a process that Coverage Validator will wait for.

To run 32 bit coverage validator run C:\Program Files (x86)\Software Verify\Coverage Validator
 x86\coverageValidator.exe

To run 64 bit coverage validator run C:\Program Files (x86)\Software Verify\Coverage Validator
 x64\coverageValidator_x64.exe

5.14 Troubleshooting

Running from the command line can cause some problems, often because you can't be sure that what
you put on the command line did what you thought would do.

Ensure the arguments supplied are what you expected.

-echoArgsToUser

If you are testing a console application, make sure you can see it.

-showCommandPrompt

If an errors occur when processing the command line, make sure you can see those.

-showErrorsOnCommandPrompt

-showErrorsWithMessageBox

Look on the diagnostic tab to ensure the diagnostic data collected makes sense.

If you've got -hideUI in your command line, comment it out temporarily (make it -xhideUI so that it's not
recognised).

What if the tool hangs?

If you're running from the command line, most likely you'll be running from a cmd prompt, or possibly
powershell.

We've only ever had one customer report a hang with any of our tools when running from the command
line.

We eventually found the problem, and it wasn't with the software tool.

Command Line Interface 367

Copyright © 2002-2025 Software Verify Limited

The problem was that they were running the tool in hidden mode (-hideUI) from a command prompt and
for unknown reasons the tool would never exit.

When they added a simple change to their command the problem went away.

They added cmd /c to the start of their command line. This opens a new command prompt and instructs
it to launch the command line and wait for it to exit.

Problem command line:

"c:\program files (x86)\Software Verify\Coverage Validator x64\coverageValidator_x64.exe" -program c:\testProgram.exe -hideUI

Working command line:

cmd /c "c:\program files (x86)\Software Verify\Coverage Validator x64\coverageValidator_x64.exe" -program c:\testProgram.exe -hideUI

Part

VI

API 369

Copyright © 2002-2025 Software Verify Limited

6 API

The Coverage Validator API

There are some features of Coverage Validator that are useful to call directly from your program.

Working with services?

If you are working with services you to attach Coverage Validator to a service and to start Coverage
Validator, you should use the NT Service API, not the functions in this API.

All the other functions in this API can be used with applications and with services.

Deploying on a customer machine

You can use the API without incurring any dependency on Coverage Validator.

If Coverage Validator is not installed on the machine the software runs on, nothing will happen.

This allows you to add the Coverage Validator API to your software without need to have a separate build
for use with Coverage Validator.

Convenience functions

One convenience function is provided that will start the Coverage Validator GUI (if it is not already
running), then load the Coverage Validator code coverage collector into your process and start collecting
code coverage.

extern "C"
int loadValidatorIntoApplication();

Returns:
TRUE Successfully loaded CV DLL into target application and successfully
started the profiler.
FALSE Failed to load the CV DLL or failed to start the profiler.

To use this function #include loadValidatorIntoApplication.h into your code.

The source files can be found in the API directory in the Coverage Validator install directory.

loadValidatorIntoApplication.h

loadValidatorIntoApplication.c

Just add these files to your project and build.

Coverage Validator Help370

Copyright © 2002-2025 Software Verify Limited

6.1 Native API Reference

Unicode or ANSI?

All the API functions are declared as extern "C", so they can be used by C users and C++ users.

To use these functions #include svlCVAPI.h into your code.

cvLoadProfiler

Loads the profiler DLL into memory, but does not start the profiler.

Use this for:
32 bit applications with a 32 bit Coverage Validator GUI
64 bit applications with a 64 bit Coverage Validator GUI

For most use cases won't need to load the profiler, as the profiler will have been loaded when your
launched your program from Coverage Validator, or when you injected into your program using Inject or
Wait For Application.

However if you're running your program from outside of Coverage Validator and want to load the profiler
from inside your program you can use cvLoadProfiler() to do that. You'll then need to call
cvStartProfiler() to start it.

extern "C"

int cvLoadProfiler();

Returns:
TRUE Successfully loaded PV DLL into target application.
FALSE Failed to load the PV DLL.into target application.

 Check that the PATH environment variable points to the Coverage Validator
install directory contains svlCoverageValidatorStub*.dll.

Do not use this function if you are working with services, use the NT Service API.

cvLoadProfiler6432

Loads the profiler DLL into memory, but does not start the profiler.

Use this for:
32 bit applications with a 64 bit Coverage Validator GUI

For most use cases won't need to load the profiler, as the profiler will have been loaded when your
launched your program from Coverage Validator, or when you injected into your program using Inject or
Wait For Application.

However if you're running your program from outside of Coverage Validator and want to load the profiler
from inside your program you can use cvLoadProfiler6432() to do that. You'll then need to call
cvStartProfiler() to start it.

API 371

Copyright © 2002-2025 Software Verify Limited

extern "C"

int cvLoadProfiler6432();

Returns:
TRUE Successfully loaded PV DLL into target application.
FALSE Failed to load the PV DLL.into target application.

 Check that the PATH environment variable points to the Coverage Validator
install directory contains svlCoverageValidatorStub*.dll.

Do not use this function if you are working with services, use the NT Service API.

cvStartProfiler

To start the profiler from your API code you need to call the function cvStartProfiler() from your code
before you call any API functions. Ideally you should call this function as early in your program as
possible.

extern "C"

int cvStartProfiler();

Returns:
TRUE Successfully started PV profiler.
FALSE Failed to start the PV profiler.

If you prefer to start the profiler from the user interface or command line you can omit the
cvStartProfiler() call. You can leave it present if you wish to start Coverage Validator from your
program.

Do not use this function if you are working with services, use the NT Service API.

cvSetCollect()

Enables or disables data collection - i.e. whether data is sent to Coverage Validator from your target
application.

extern "C"

void cvSetCollect(int enable); // TRUE to enable, FALSE to disable

cvGetCollect()

Returns whether data collection is on.

extern "C"

int cvGetCollect(); // Returns TRUE or FALSE

Coverage Validator Help372

Copyright © 2002-2025 Software Verify Limited

6.2 C# API

The C# API is a wrapper around the native API.

For all of these APIs see the native API for more details.

Adding the API to your application

The C# API is provided as a source code svlCVAPI.cs file that you add to your application. The source
file is in the API directory in the Coverage Validator install directory.

The C# API does not add any dependencies to your application - if Coverage Validator is present the API
functions work, if Coverage Validator is not present the API functions do nothing.

The C# API

The C# API is implemented by the CoverageValidator class in the SoftwareVerify namespace.

collectOn()

Turn data collection on.

public static void collectOn();

collectOff()

Turn data collection off.

public static void collectOff();

setCollect()

Turn data collection on or off.

public static void setCollect(bool enable);

getCollect()

Determine if data collection is turned on or off.

public static bool getCollect();

API 373

Copyright © 2002-2025 Software Verify Limited

6.3 Calling the API via GetProcAddress

Calling API functions using GetProcAddress

If you don't want to use the svlCVAPI.c/h files you can use GetProcAddress() to find the interface
functions in the Coverage Validator DLL.

The interface functions have different names and do not use C++ name mangling, but have identical
parameters to the API functions.

To determine the function name take any native API name, replace the leading cv with api. For example
cvGetCollect() becomes apiGetCollect();

Example usage

typedef int (__cdecl *apiGetCollect_FUNC)();

HMODULE getValidatorModule()
{
 HMODULE hModule;

 hModule = GetModuleHandle(_T("svlCoverageThreadValidatorStub6432.dll")); // 32 bit DLL with 64 bit Coverage Validator GUI

 if (hModule == NULL)

 hModule = GetModuleHandle(_T("svlCoverageValidatorStub_x64.dll")); // 64 bit DLL with 64 bit Coverage Validator GUI

 if (hModule == NULL)

 hModule = GetModuleHandle(_T("svlCoverageValidatorStub.dll")); // 32 bit DLL with 32 bit Coverage Validator GUI

 return hModule;

}

HMODULE hMod;

// get module, will only succeed if Coverage Validator launched this app or is injected into this app

hMod = getValidatorModule();
if (hMod != NULL)

{
 // CV is present, lookup the function and call it to get the data collection status

 apiGetCollect_FUNC theFunc;

 theFunc = (apiGetCollect_FUNC)getFunctionFromValidatorModule("apiGetCollect");
 if (theFunc != NULL)

 return (*theFunc)();

}

API functions and their GetProcAddress names

Coverage Validator Help374

Copyright © 2002-2025 Software Verify Limited

For any API functions not listed, try looking up the name in svlCoverageValidatorStub.dll using
depends.exe or PE File Browser.

Show API functions and GetProcAddress names

API Name GetProcAddress() Name

cvLoadProfiler

cvIsValidatorPresent

cvStartProfiler

cvSetCollect

cvGetCollect

cvShutdownCoverageValidator

apiSetCollect

apiGetCollect

apiShutdownCoverageValidator

Other exported functions

You may see some other functions exported from svlPerformanceValidatorStub.dll(_x64).dll.

 These other functions are for Performance Validator's use. Using them may damage memory
locations and/or crash your code. Best not to use them!

6.4 Convenience functions

Convenience functions

One convenience function is provided that will start the Coverage Validator GUI (if it is not already
running), then load the Coverage Validator coverage profiler into your process and start profiling it.

extern "C"
int loadValidatorIntoApplication();

Returns:
TRUE Successfully loaded CV DLL into target application and successfully
started the profiler.
FALSE Failed to load the CV DLL or failed to start the profiler.

To use this function #include loadValidatorIntoApplication.h into your code.

The source files can be found in the API directory in the Coverage Validator install directory.

loadValidatorIntoApplication.h

loadValidatorIntoApplication.c

Just add these files to your project and build.

Part

VII

Coverage Validator Help376

Copyright © 2002-2025 Software Verify Limited

7 Working with IIS and Services

 When working with NT services your account must have the appropriate privileges described in the
User Permissions topic.

Attaching to your service

To use Coverage Validator with NT Services you need to link a small library to your application and call
two functions in the library.

The NT Service API

The NT Service API is provided to enable Coverage Validator to work with services.

The API works just as well with normal applications, and the same considerations outlined here also
apply generally.

When the NT Service API is used, source code symbols are acquired in the stub and sent to the
Coverage Validator user interface.

Monitoring the service

When working with Coverage Validator and services using the NT Service API you don't start the service
using Coverage Validator.

Instead, you start the service the way you normally start the service - e.g. with the service control
manager.

The code that you have embedded into your service then contacts Coverage Validator, which you should
have running before starting the service.

Once you've exercised your service and stopped it, Coverage Validator will show the usual coverage
information, although you can manually request an update while the session is running

Examples and help

We provide some Example Service Source Code to demonstrate how to embed the service code into
your service.

If you have problems using Coverage Validator with services, please contact us at
support@softwareverify.com.

Working with IIS and Services 377

Copyright © 2002-2025 Software Verify Limited

7.1 NT Service API

The Coverage Validator stub service libraries

The NT Service API is very simple, consisting of functions to load and unload the Coverage Validator
DLL.

We have also provided some debugging functions to help you debug the implementation of the NT
Service API because getting data into and out of services is not always straightforward.

The stub service libraries used for this are shown in the following table:

32 bit Coverage Validator 64 bit Coverage Validator
32 bit service svlCVStubService.lib

svlCVStubServiceMD.lib
svlCVStubServiceMT.lib

svlCVStubService6432.lib

64 bit service N/A svlCVStubService_x64.lib
svlCVStubServiceMD_x64.lib
svlCVStubServiceMT_x64.lib

All the functions exported from these libraries are exported as extern "C" so that C and C++ users can
use them.

Library name suffixes

The MD suffix indicates the library was built with the /MD compiler switch.
The MT suffix indicates the library was built with the /MT compiler switch.

Directory Name: 2010 or 2012?

Visual Studio 6 to Visual Studio 2010
If you are using Visual Studio 2010 or earlier, use libraries from a directory with 2010 in the directory
name.

Visual Studio 2010 to Visual Studio 2022
If you are using Visual Studio 2012 or later, use libraries from a directory with 2012 in the directory
name.

Header files

The header files can be found in the svlCVStubService directory in the Coverage Validator install
directory.

The headers file provide an error enumeration and the NT Service API functions.

svlCVStubService.h

svlServiceError.h

Coverage Validator Help378

Copyright © 2002-2025 Software Verify Limited

Linker Problems

Some linkers cannot link the stub service library file. If you have this problem see What do I do if I
cannot use svlCVStubService.lib?

Loading the Coverage Validator DLL into your service

To load the Coverage Validator stub dll svlCoverageValidatorStub(_x64).dll into your service, call
svlCVStub_LoadCoverageValidator(), not LoadLibrary().

If you are monitoring a 32 bit service with the 64 bit Coverage Validator user interface you should use
svlCVStub_LoadCoverageValidator6432().

Shutting down the Coverage Validator DLL from your service.

To shutdown Coverage Validator's monitoring of the service , call
svlCVStub_ShutdownCoverageValidator().

This sends the shutting down notification and removes any hooks for your process.

Calling this function is optional. You can stop your service without calling this function.

Unloading the Coverage Validator DLL from your service.

To unload the Coverage Validator stub dll, call svlCVStub_UnloadCoverageValidator(), not
FreeLibrary().

Calling this function is optional. You can stop your service without calling this function.

Setting a service notification callback

Once you have successfully loaded the Coverage Validator DLL you can setup a service callback so that
the service control manager can be kept updated during the process of starting the validator.

When a service is starting, Windows requires the service to inform the Service Control Manager (SCM)
that is starting at least every ten seconds.

Failure to do so results in Windows concluding that the service has failed to start, and the service is
terminated.

Instrumenting your service may well take more than 10 seconds, depending on the complexity and size
of your service.

The solution is for Coverage Validator to periodically call a user supplied callback from which you can
regularly inform the SCM of the appropriate status.

You can set the service callback with svlCVStub_SetServiceCallback(callback, userParam).

Working with IIS and Services 379

Copyright © 2002-2025 Software Verify Limited

Usage

Here is an example callback which ignores the userParam.

 void serviceCallback(void *userParam)

 {
 static DWORD dwCheckPoint = 1;

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 ssStatus.dwControlsAccepted = 0;

 ssStatus.dwCurrentState = dwCurrentState;
 ssStatus.dwWin32ExitCode = dwWin32ExitCode;
 ssStatus.dwWaitHint = dwWaitHint;

 ssStatus.dwCheckPoint = dwCheckPoint++;

 // Report the status of the service to the service control manager.

 return SetServiceStatus(sshStatusHandle, &ssStatus);

 }

Once your service is running (rather than starting) your service callback should set the appropriate
running status SERVICE_RUNNING rather than SERVICE_START_PENDING.

 if (!ReportStatusToSCMgr(SERVICE_RUNNING, // service state

 NO_ERROR, // exit code

 0)) // wait hint

 {
 dwErr = GetLastError();
 if (bLogging)

 svlCVStub_writeToLogFileW(L"ReportStatusToSCMgr:5\r\n");
 goto cleanup;

 }

An alternative solution is to prevent the service callback from being called once the
service status has been set to running.

 svlCVStub_SetServiceCallback(NULL, NULL);.

Starting Coverage Validator DLL in your service

To start Coverage Validator inspecting your service call svlCVStub_StartCoverageValidator().

Starting Coverage Validator DLL in IIS

To start Coverage Validator inspecting IIS call svlCVStub_StartCoverageValidatorForIIS().

Setting a filename for all logging data to be written to

Coverage Validator Help380

Copyright © 2002-2025 Software Verify Limited

To set the filename for all debugging/logging information to be written to call
svlCVStub_setLogFileName().

Deleting the logfile

To delete the log file call svlCVStub_deleteLogFile().

Writing text to the logfile

To write a standard ANSI character string to the log file call svlCVStub_writeToLogFileA(text). The
ANSI string will be converted to Unicode prior to writing to the log file.

To write a Unicode character string to the log file call svlCVStub_writeToLogFileW(text).

Writing error code descriptions to the logfile

To write a human readable description of the SVL_SERVICE_ERROR error code to the log file call
svlCVStub_writeToLogFile(errCode).

Writing LastError code descriptions to the logfile

To write a human readable description of the Windows error code to the log file call
svlCVStub_writeToLogFileLastError(errCode).

Dumping the PATH environment to the logfile

To write the contents of the PATH environment variable to the log file call
svlCVStub_dumpPathToLogFile().

This can be useful if you want to know what the search path is when trying to debug why a DLL wasn't
found during an attempt to load the Validator DLL.

7.1.1 Changes to the NT Service API

API changes - February 2018

To make the API easier to use with services we made the following changes:

· Changed the API by adding many debugging functions to allow you to easily log information.

· We also extended the error enumeration to provide additional error status values.

· We also split the function of loading and starting Coverage Validator into two functions - a load
function and a start function.

Working with IIS and Services 381

Copyright © 2002-2025 Software Verify Limited

· We split the functionality so that you could setup a service callback prior to calling the start
function.

The service callback allows the service control manager to be informed that the service is still active
during time consuming operations, such as starting the Coverage Validator when the service is non-
trivial in scope.

Failure to inform the service control manager results in the service being killed by the service control
manager because it thinks the service has hung.

This change in the API is to ensure you get better results from using our software.

What do you need to do to move from the old API to the new API?

Change all SVL_ERROR declarations to SVL_SERVICE_ERROR.

Your previous startup code probably looked like this:

 SVL_ERROR errCode;

 errCode = svlCVStub_LoadCoverageValidator();

Change it to this:

 SVL_SERVICE_ERROR errCode;

 errCode = svlCVStub_LoadCoverageValidator();

 errCode = svlCVStub_SetServiceCallback(serviceCallback, NULL);

 errCode = svlCVStub_StartCoverageValidator();

The serviceCallback would look something like this:

 void serviceCallback(void *userParam)

 {
 static DWORD dwCheckPoint = 1;

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 ssStatus.dwControlsAccepted = 0;

 ssStatus.dwCurrentState = dwCurrentState;
 ssStatus.dwWin32ExitCode = dwWin32ExitCode;
 ssStatus.dwWaitHint = dwWaitHint;
 ssStatus.dwCheckPoint = dwCheckPoint++;

 // Report the status of the service to the service control manager.

 return SetServiceStatus(sshStatusHandle, &ssStatus);

 }

Coverage Validator Help382

Copyright © 2002-2025 Software Verify Limited

In the code above we have omitted error handling. To see how to use the new logging function with error handling please examine the source code service.cpp in the example service project.

Important.

Once your service is running (rather than starting) your service callback should set the appropriate
running status SERVICE_RUNNING rather than SERVICE_START_PENDING.

 if (!ReportStatusToSCMgr(SERVICE_RUNNING, // service state

 NO_ERROR, // exit code

 0)) // wait hint

 {
 dwErr = GetLastError();
 if (bLogging)

 svlCVStub_writeToLogFileW(L"ReportStatusToSCMgr:5\r\n");
 goto cleanup;

 }

An alternative solution is to prevent the service callback from being called once the
service status has been set to running.

 svlCVStub_SetServiceCallback(NULL, NULL);.

7.1.2 NT Service API Reference

The API consists of the following functions.

SVL_SERVICE_ERROR Enumeration

typedef enum _svlServiceError
{
 SVL_OK, // Normal behaviour
 SVL_ALREADY_LOADED, // Stub DLL already loaded into service
 SVL_LOAD_FAILED, // Failed to load stub DLL into service
 SVL_FAILED_TO_ENABLE_STUB_SYMBOLS, // Loaded DLL, but failed to enable stub symbols because couldn't find function
 SVL_NOT_LOADED, // Couldn't unload DLL because DLL not loaded
 SVL_FAIL_UNLOAD, // Couldn't unload DLL because couldn't find function
 SVL_FAIL_TO_CLEANUP_INTERNAL_HEAP, // Couldn't get the internal stub heap and thus couldn't clean it up
 SVL_FAIL_MODULE_HANDLE // Couldn't get the stub DLL handle so couldn't continue
 SVL_FAIL_SETSERVICECALLBACK, // Couldn't call the set service callback
 SVL_FAIL_COULD_NOT_FIND_ENTRY_POINT, // Couldn't find the DLL entry point to start the validator
 SVL_FAIL_TO_START, // Failed to start the Validator
 SVL_FAIL_SETSERVICECALLBACKTHRESHOLD, // Couldn't call the set service callback threshold
 SVL_FAIL_PATHS_DO_NOT_MATCH, // Path to service in env vars doesn't match the service being run
 SVL_FAIL_INCORRECT_PRODUCT_PREFIX, // Wrong validator
 SVL_FAIL_X86_VALIDATOR_FOUND_EXPECTED_X64_VALIDATOR, // Found wrong bit depth validator
 SVL_FAIL_X64_VALIDATOR_FOUND_EXPECTED_X86_VALIDATOR, // Found wrong bit depth validator
 SVL_FAIL_DID_YOU_MONITOR_A_SERVICE_FROM_VALIDATOR, // Looks like Monitor A Service wasn't used
 SVL_FAIL_ENV_VAR_NOT_FOUND, // Env Var not found
 SVL_FAIL_VALIDATOR_ENV_VAR_NOT_FOUND, // Env Var identifying validator not found
 SVL_FAIL_VALIDATOR_ID_NOT_SPECIFIED, // Validator process not specified
 SVL_FAIL_VALIDATOR_ID_NOT_A_PROCESS, // Validator process identified doesn't exist
 SVL_FAIL_VALIDATOR_NOT_FOUND, // Validator process identified doesn't exist

Working with IIS and Services 383

Copyright © 2002-2025 Software Verify Limited

} SVL_SERVICE_ERROR;

svlCVStub_LoadCoverageValidator

extern "C"

SVL_SERVICE_ERROR svlCVStub_LoadCoverageValidator();

To load the Coverage Validator stub svlCoverageValidatorStub.dll into your service, use
svlCVStub_LoadCoverageValidator(), not LoadLibrary().

This loads the DLL and sets up a few internal variables in the DLL to ensure that symbols are sent
from the stub to the Coverage Validator user interface.

This is necessary because the Coverage Validator user interface can't open a process handle to a
service and so is unable to get symbols from the process.

To solve this, symbols are sent from the stub to the user interface as needed.

If you just call LoadLibrary() on the DLL, symbols will not be sent to the Coverage Validator user
interface and you won't get meaningful function names in your stack traces.

This function can be used when monitoring:

· 32 bit services or applications with Coverage Validator

· 64 bit services or applications with Coverage Validator x64

If you are monitoring 32 bit applications with Coverage Validator x64 you should use
svlCVStub_LoadCoverageValidator6432().

Which function you should call is shown in the table below.

32 bit Coverage Validator 64 bit Coverage Validator
32 bit service svlCVStub_LoadCoverageValidator(

)
svlCVStub_LoadCoverageValidator6432()

64 bit service N/A svlCVStub_LoadCoverageValidator()

svlCVStub_LoadCoverageValidator6432

extern "C"

SVL_SERVICE_ERROR svlCVStub_LoadCoverageValidator6432();

To load the Coverage Validator stub svlCoverageValidatorStub6432.dll into your service, use
svlCVStub_LoadCoverageValidator6432(), not LoadLibrary().

This loads the DLL and sets up a few internal variables in the DLL to ensure that symbols are sent
from the stub to the Coverage Validator user interface.

This is necessary because the Coverage Validator user interface can't open a process handle to a
service and so is unable to get symbols from the process.

Coverage Validator Help384

Copyright © 2002-2025 Software Verify Limited

To solve this, symbols are sent from the stub to the user interface as needed.

If you just call LoadLibrary() on the DLL, symbols will not be sent to the Coverage Validator user
interface and you won't get meaningful function names in your stack traces.

This function should only be used when monitoring 32 bit services or applications with
Coverage Validator x64.

svlCVStub_StartCoverageValidator

extern "C"

SVL_SERVICE_ERROR svlCVStub_StartCoverageValidator();

To start Coverage Validator inspecting the service call svlCVStub_StartCoverageValidator().

svlCVStub_StartCoverageValidatorForIIS

extern "C"

SVL_SERVICE_ERROR svlCVStub_StartCoverageValidatorForIIS();

To start Coverage Validator inspecting IIS call svlCVStub_StartCoverageValidatorForIIS().

Example usage.

svlCVStub_ShutdownCoverageValidator

extern "C"

SVL_SERVICE_ERROR svlCVStub_ShutdownCoverageValidator();

To stop Coverage Validator inspecing the service call svlCVStub_ShutdownCoverageValidator().

This sends the shutting down notification and removes any hooks for your process.

Calling this function is optional. You can stop your service without calling this function.

svlCVStub_UnloadCoverageValidator

extern "C"

SVL_SERVICE_ERROR svlCVStub_UnloadCoverageValidator();

To unload Coverage Validator call svlCVStub_UnloadCoverageValidator(), do not call
FreeLibrary().

Calling this function is optional. You can stop your service without calling this function.

svlCVStub_SetServiceCallback

extern "C"

Working with IIS and Services 385

Copyright © 2002-2025 Software Verify Limited

SVL_SERVICE_ERROR svlCVStub_SetServiceCallback(serviceCallback_FUNC callback,
 void* userParam);

svlCVStub_SetServiceCallback is used to setup a service callback that is used to inform the Windows service control manager that the service is alive.

userParam is a value you can supply which will then be passed to the callback every time the callback
is called during instrumentation.

Why is a service callback needed?

When a service is starting, Windows requires the service to inform the Service Control Manager (SCM)
that is starting at least every ten seconds.

Failure to do so results in Windows concluding that the service has failed to start, and the service is
terminated.

Instrumenting your service may well take more than 10 seconds, depending on the complexity and
size of your service.

The solution is for Coverage Validator to periodically call a user supplied callback from which you can
regularly inform the SCM of the appropriate status.

We strongly recommend that you setup a service callback. Not setting a service callback can result in failure of your service to run because Windows kills it during startup and Coverage Validator's instrumentation phase.

Debugging functions

The following functions are provided to help you log information about the progress, success or failure of
the NT Service API attaching Coverage Validator to your service.

We strongly recommend that you use these logging functions so that you can understand why Coverage
Validator might fail to connect to a service.

To see example usage of these debugging functions please look in service.cpp in the
examples\service directory in the Coverage Validator install directory.

svlCVStub_setLogFileName

extern "C"

void svlCVStub_setLogFileName(const wchar_t* fileName);

Call svlCVStub_setLogFileName to set the name of the filename used for logging.

This function must be called before you can use any of the other debugging functions.

Setting this filename also sets the filename used by some of these API functions - you will find
additional logging data from those functions that will help debug any issues with the service.

Coverage Validator Help386

Copyright © 2002-2025 Software Verify Limited

svlCVStub_deleteLogFile

extern "C"

void svlCVStub_deleteLogFile();

This function deletes the log file.

svlCVStub_writeToLogFileA

extern "C"

void svlCVStub_writeToLogFileA(const char* text);

This function writes a standard ANSI character string to the log file.

The ANSI string will be converted to Unicode prior to writing to the log file.

svlCVStub_writeToLogFileW

extern "C"

void svlCVStub_writeToLogFileW(const wchar_t* text);

This function writes a Unicode character string to the log file.

svlCVStub_writeToLogFile

extern "C"

void svlCVStub_writeToLogFile(SVL_SERVICE_ERROR errCode);

This function writes a human readable description of the SVL_SERVICE_ERROR error code to the log
file.

svlCVStub_writeToLogFileLastError

extern "C"

void svlCVStub_writeToLogFileLastError(DWORD errCode);

This function writes a human readable description of the Windows error code to the log file.

The errCode parameter is the error code returned from GetLastError().

svlCVStub_dumpPathToLogFile

extern "C"

void svlCVStub_dumpPathToLogFile();

This function writes the contents of the PATH environment variable to the log file.

Working with IIS and Services 387

Copyright © 2002-2025 Software Verify Limited

This can be useful if you want to know what the search path is when trying to debug why a DLL wasn't
found during an attempt to load the Validator DLL.

7.1.3 Troubleshooting

Troubleshooting - Service fails to start

If a service takes too long to start the service control manager kills the service.

The way to stop this is for a service to call ReportStatusToSCMgr() to tell the service control manager
that the service is still OK.

Coverage Validator can't do this for you as the call requires some data from any earlier call you have
made.

The solution is that you provide a callback using svlCVStub_SetServiceCallback() that Coverage
Validator can call during the process of attaching to the service, and you can call the appropriate
function.

Example code to set the callback:

errCode = svlCVStub_SetServiceCallback(serviceCallback, // the
callback

 NULL); // some
user data (we don't have any, so set NULL)

if (bLogging)

{

if (errCode != SVL_OK)

{

svlCVStub_writeToLogFileW(L"Setting service callback failed.
\r\n");

svlCVStub_writeToLogFile(errCode);

}

svlCVStub_writeToLogFileW(L"Starting Coverage Validator\r\n");

}

Example callback:

static void serviceCallback(void *userParam)
{

// just tell the Service Control Manager that we are still busy

// in this example userParam is not used

//

// note that prior to the Validator loading it's DLL ssStatus.dwCurrentState
must have been initialised, most likely to SERVICE_START_PENDING

// you could pass a fixed value here, but it would need to change once the
service has finished starting up so that you don't unintentionally change the service
state

Coverage Validator Help388

Copyright © 2002-2025 Software Verify Limited

// when this callback is called. This callback is called whenever
instrumentation happens (when a DLL is loaded). Thus you can't assume this is only
called during service startup,

// it may also get called later in the service lifetime.

ReportStatusToSCMgr(ssStatus.dwCurrentState, // service state

NO_ERROR, // exit code

3000); // wait hint
}

We strongly recommend that you set a service callback. It won't harm your program and it will
remove any likelihood of your service being killed by the service control manager.

Troubleshooting - Service starts, Coverage Validator gets no data

If you have problems getting Coverage Validator to monitor your service you'll need to find out what's
failing.

Until Coverage Validator loads correctly and successfully connects to the graphical user interface you
have no way of knowing what is happening.

The solution is to set a log file that Coverage Validator can write status messages to. You can also write
your own status messages to this log file.

Set the log file using svlCVStub_setLogFileName. Write to it using svlCVStub_writeToLogFile(),
svlCVStub_writeToLogFileA(), svlCVStub_writeToLogFileW().

Then when things are not working as expected take a look at the log file to see the errors. The Coverage
Validator will often suggest what the problem is.

We strongly recommend that you configure the log file and use it when working with services. It
has saved us a lot of time.

7.2 Working with IIS

Configuring IIS for use with ISAPI

We assume that you are familiar with IIS. This is not a topic we can provide advice for.

That said, we wrote a blog article about configuring IIS for use with ISAPI.

Example ISAPI

We have provided an example ISAPI extension configured for use with Coverage Validator.

This example is provided as source code and project files. You will need to build it yourself, you may
need to change an include path to find the appropriate headers. The resulting ISAPI will need to be
copied to your website for testing and the website configured to allow the ISAPI to execute (please see
the above mentioned blog article for details on that).

Working with IIS and Services 389

Copyright © 2002-2025 Software Verify Limited

You can find the example ISAPI in the isapiExample folder in the Coverage Validator installation
directory.

Using Coverage Validator with IIS

IIS is a service application. It runs as one of the more restricted applications on Microsoft Windows.

Coverage mapped files created by IIS cannot be opened by user mode programs (Coverage Validator, for
example). DLLs, executables and files cannot be opened by IIS except if they are in directories which IIS
has access to. These are security measures intended to make your computer secure from attack.

These security measures make it hard for tools like Coverage Validator to work.

· We have to communicate settings information to Coverage Validator via text file
· All DLLs and helper programs we want to use need to be copied to the web root (or a subdirectory

within the web root) so that they can be used.
· We need to have our own data transport because our usual high speed memory mapped data transport

is not available.

It's also not possible to launch IIS or inject into a running IIS instance.

The only way to work with IIS is by using the NT Service API, and using the
svlCVStub_StartCoverageValidatorForIIS() function instead of
svlCVStub_StartCoverageValidator().

We've provide some example code to show you how to attach and detach from your ISAPI extension.

Workflow

1) Start monitoring your ISAPI by using the Monitor ISAPI dialog.

 Launch menu IIS menu Monitor ISAPI...

2) When you have finished interacting with the web pages that use the ISAPI component shutdown IIS,
wait for Coverage Validator's status to indicate "Ready" and examine the results.

 Launch menu IIS menu Stop IIS

7.3 Example Source Code

Service Example

Example demonstrating how to monitor a service.

Coverage Validator Help390

Copyright © 2002-2025 Software Verify Limited

Also see the example service that ships with Coverage Validator.

You can find this in the \examples\service directory in the Coverage Validator install directory.

Also see the example service and child process that ships with Coverage Validator.

You can find this in the \examples\serviceWithAChildProcess directory in the Coverage Validator
install directory.

IIS Example

Example demonstrating how to monitor an ISAPI DLL.

Also see the example ISAPI DLL that ships with Coverage Validator.

You can find this in the \examples\isapiExample directory in the Coverage Validator install directory.

7.3.1 Example Service Source Code

Where to put your code

When you use the functions to load and unload Coverage Validator from your service, it is important that
you put the function calls in the correct place in your software.

The correct place to put them is in a 'balanced' location, such that you would expect no memory leaks to
occur between the load and the unload function call, assuming the service was working correctly.

Typically, this means that Coverage Validator is:

· loaded as the first action in the service_main() function

· unloaded just before the service control manager is informed of the stopped status

The source code shown below shows an example service_main() function used in a service,
demonstrating where to load and unload Coverage Validator.

The long comment covers problems with the way services are stopped and what may be displayed in a
debugger if this happens.

The code is extracted from service\service.cpp, part of the full example of an NT service, client
and a utility for controlling whether the service uses Coverage Validator.

Show the C++ example service_main() function

Working with IIS and Services 391

Copyright © 2002-2025 Software Verify Limited

void serviceCallback(void *userParam)

{
 // just tell the Service Control Manager that we are still busy

 // in this example userParam is not used

 static DWORD dwCheckPoint = 1;

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 ssStatus.dwControlsAccepted = 0;

 ssStatus.dwCurrentState = dwCurrentState;
 ssStatus.dwWin32ExitCode = dwWin32ExitCode;
 ssStatus.dwWaitHint = dwWaitHint;
 ssStatus.dwCheckPoint = dwCheckPoint++;

 // Report the status of the service to the service control manager.

 return SetServiceStatus(sshStatusHandle, &ssStatus);
}

Coverage Validator Help392

Copyright © 2002-2025 Software Verify Limited

void WINAPI service_main(DWORD dwArgc,

 LPTSTR *lpszArgv)
{
 if (bLogging)

 {
 svlCVStub_setLogFileName(SZLOGFILENAME);
 svlCVStub_deleteLogFile();
 }

 // register our service control handler:

 sshStatusHandle = RegisterServiceCtrlHandler(TEXT(SZSERVICENAME), service_ctrl);
 if (sshStatusHandle != 0)

 {
 DWORD dwErr = 0;

 // **CV_EXAMPLE** start

 if (bCoverageValidator)

 {
 // load Coverage Validator (but if monitoring a 32 bit service with Coverage Validator x64 use svlCVStub_LoadCoverageValidator6432())

 if (bLogging)

 {
 svlCVStub_writeToLogFileW(_T("About to load Coverage Validator\r\n"));
 }

 SVL_SERVICE_ERROR errCode;

#ifdef IS6432
 // x86 with x64 GUI

 errCode = svlCVStub_LoadCoverageValidator6432();
#else //#ifdef IS6432

 // x86 with x86 GUI

 // x64 with x64 GUI

 errCode = svlCVStub_LoadCoverageValidator();
#endif //#ifdef IS6432

 if (bLogging)

 {
 if (errCode != SVL_OK)

 {
 DWORD lastError;

 lastError = GetLastError();
 svlCVStub_writeToLogFileW(_T("Coverage Validator load failed. \r\n"));
 svlCVStub_writeToLogFileLastError(lastError);
 svlCVStub_writeToLogFile(errCode);

 svlCVStub_dumpPathToLogFile();
 }
 else
 {
 svlCVStub_writeToLogFileW(_T("Coverage Validator load success. \r\n"));
 }

Working with IIS and Services 393

Copyright © 2002-2025 Software Verify Limited

 }

 // setup a service callback so that the Service Control Manager knows the service

 // is starting up even if instrumentation takes longer than 10 seconds (which it will

 // for a non-trivial application)

 if (bLogging)
 svlCVStub_writeToLogFileW(_T("Setting service callback Coverage Validator\r\n"));

 errCode = svlCVStub_SetServiceCallback(serviceCallback, // the callback

 NULL); // some user data

(we don't have any, so set NULL)

 if (bLogging)
 {
 if (errCode != SVL_OK)
 {
 svlCVStub_writeToLogFileW(_T("Setting service callback failed. \r\n"));
 svlCVStub_writeToLogFile(errCode);
 }

 svlCVStub_writeToLogFileW(_T("Starting Coverage Validator\r\n"));
 }

 errCode = svlCVStub_StartCoverageValidator();
 if (bLogging)
 {
 if (errCode != SVL_OK)
 {
 DWORD lastError;

 lastError = GetLastError();
 svlCVStub_writeToLogFileW(_T("Starting Coverage Validator failed.
\r\n"));
 svlCVStub_writeToLogFileLastError(lastError);
 svlCVStub_writeToLogFile(errCode);
 }

 svlCVStub_writeToLogFileW(_T("Finished loading Coverage Validator\r\n"));
 }
 }
 else
 {
 if (bLogging)
 svlCVStub_writeToLogFileW(_T("Not using Coverage Validator, DLL will not
be loaded\r\n"));
 }

 // **CV_EXAMPLE** end

 // SERVICE_STATUS members that don't change in example

 ssStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS;
 ssStatus.dwServiceSpecificExitCode = 0;

 // report the status to the service control manager.

Coverage Validator Help394

Copyright © 2002-2025 Software Verify Limited

 if (ReportStatusToSCMgr(SERVICE_START_PENDING, // service state

 NO_ERROR, // exit code

 3000)) // wait hint

 {
 // do work

 dwErr = ServiceStart(dwArgc, lpszArgv);

 // finished doing work

 }

 // **CV_EXAMPLE** start

 if (bCoverageValidator)

 {
 // unload Coverage Validator here

 // IMPORTANT.

 // Because of the way services work, you can find that this thread which is

trying to gracefully unload

 // Coverage Validator is ripped from under you by the operating system. This

prevents Coverage Validator from

 // removing all its hooks successfully. If Coverage Validator does not remove

all of its hooks successfully

 // because this happens, then you may get a crash when the service stops.

 //

 // An alternative fix is to spawn another thread which then unloads Coverage

Validator.

 // See the code for ServiceStop() for comments relating to this.

 //

 // A callstack for such a crash is shown below. If you see this type of crash

you need to put you code to

 // unload Coverage Validator somewhere else. The stack trace may be

different, but a fundamental point is the

 // code calling through doexit(), exit() and ExitProcess()

 //

 //NTDLL! 77f64e70()

 //SVLPERFORMANCEVALIDATORSTUB!

 //MSVCRT! 78001436()

 //MSVCRT! 7800578c()

 //DBGHELP! 6d55da25()

 //DBGHELP! 6d55de83()

 //DBGHELP! 6d53705d()

 //DBGHELP! 6d51cc69()

 //DBGHELP! 6d51f6e8()

 //DBGHELP! 6d524ebf()

 //DBGHELP! 6d52a7b0()

 //DBGHELP! 6d52b00a()

 //DBGHELP! 6d526487()

 //DBGHELP! 6d5264d7()

 //DBGHELP! 6d5264f7()

 //SVLPERFORMANCEVALIDATORSTUB!

 //SVLPERFORMANCEVALIDATORSTUB!

 //SVLPERFORMANCEVALIDATORSTUB!

Working with IIS and Services 395

Copyright © 2002-2025 Software Verify Limited

 //SVLPERFORMANCEVALIDATORSTUB!

 //SVLPERFORMANCEVALIDATORSTUB!

 //SVLPERFORMANCEVALIDATORSTUB!

 //SVLPERFORMANCEVALIDATORSTUB!

 //SVLPERFORMANCEVALIDATORSTUB!

 //MSVCRT! 78001436()

 //MSVCRT! 780057db()

 //KERNEL32! 77f19fdb()

 //SVLPERFORMANCEVALIDATORSTUB! ExitProcess hook

 //doexit(int 0x00000000, int 0x00000000, int 0x00000000) line 392

 //exit(int 0x00000000) line 279 + 13 bytes

 //mainCRTStartup() line 345

 //KERNEL32! 77f1b9ea()

 svlCVStub_UnloadCoverageValidator();
 }

 // **CV_EXAMPLE** end

 // try to report the stopped status to the service control manager.

 (VOID)ReportStatusToSCMgr(SERVICE_STOPPED, dwErr, 0);
 }

 return;

}

7.3.2 Example ISAPI Source Code

Where to put your code

When you use the functions to load and unload Coverage Validator from your service, it is important that
you put the function calls in the correct place in your ISAPI extension.

Typically, this means that Coverage Validator is:

· loaded as the first action in the GetExtensionVersion() function of your ISAPI extension.

· unloaded in the TerminateExtension() function of your ISAPI extension.

Example source code

The source code shown below shows an example GetExtensionVersion() and an example
TerminateExtension() used in an ISAPI, demonstrating where to load and unload Coverage Validator.

This example code logs errors. We strongly recommend that you do this in your example. Because IIS
is a protected process that can't communicate to the outside world except via HTTP/HTTPS when
anything fails during the loading and start of Coverage Validator the only means we have of

Coverage Validator Help396

Copyright © 2002-2025 Software Verify Limited

communicating that failure to you is via the log file. Please use the log file, it will make debugging any
mistakes very much easier, simpler and quicker than any other method.

This process is almost identical to working with a regular service, except that
svlCVStub_StartCoverageValidator() is replaced with
svlCVStub_StartCoverageValidatorForIIS().

This example assumes the web root is located C:\\testISAPIWebsite

Show the C++ example ISAPI functions
#include "svlCVStubService.h"
#include "svlServiceError.h"

BOOL WINAPI GetExtensionVersion(HSE_VERSION_INFO *pVer)
{

// some setup work to define what the extension is

pVer->dwExtensionVersion = HSE_VERSION;

strncpy(pVer->lpszExtensionDesc, "Validate ISAPI Extension",
HSE_MAX_EXT_DLL_NAME_LEN);

// load Validator here

svlCVStub_setLogFileName(L"C:\\testISAPIWebsite\\svl_CV_log.txt");

svlCVStub_deleteLogFile();

SVL_SERVICE_ERROR errCode;
#ifdef IS6432

// x86 with x64 GUI

errCode = svlCVStub_LoadCoverageValidator6432();
#else //#ifdef IS6432

// x86 with x86 GUI

// x64 with x64 GUI

errCode = svlCVStub_LoadCoverageValidator();
#endif //#ifdef IS6432

if (errCode != SVL_OK)

{
 DWORD lastError;

 lastError = GetLastError();
 svlCVStub_writeToLogFileW(L"Coverage Validator load failed. \r\n");
 svlCVStub_writeToLogFileLastError(lastError);
 svlCVStub_writeToLogFile(errCode);

 svlCVStub_dumpPathToLogFile();

}

else

{
 svlCVStub_writeToLogFileW(L"Coverage Validator load success. \r\n");

errCode = svlCVStub_StartCoverageValidatorForIIS();

if (errCode != SVL_OK)

{

DWORD lastError;

Working with IIS and Services 397

Copyright © 2002-2025 Software Verify Limited

lastError = GetLastError();

svlCVStub_writeToLogFileW(L"Starting Coverage Validator failed.
\r\n");

svlCVStub_writeToLogFileLastError(lastError);

svlCVStub_writeToLogFile(errCode);

}

svlCVStub_writeToLogFileW(L"Finished starting Coverage Validator\r\n");

}

return TRUE;
}

BOOL WINAPI TerminateExtension(DWORD dwFlags)
{

// unload Validator here

svlCVStub_UnloadCoverageValidator();

return TRUE;
}

Part

VIII

Working With VBUnit 399

Copyright © 2002-2025 Software Verify Limited

8 Working With VBUnit

 This page gives information about using Coverage Validator with programs that use VBUnit.

About VBUnit

VBUnit works by spawning a worker service process, vbUnitTestServer.exe which works in
conjunction with the main process RunVBUnit.exe.

Because vbUnitTestServer.exe is a service and is not launched directly using CreateProcess from
RunVBUnit.exe we can't monitor and hook this process.

This means that to get the Coverage Validator stub dll into your Visual Basic process you'll have to load
the stub dll yourself.

 At the time of writing, the current VBUnit is VBUnit3.

Using Coverage Validator with VBunit

There are two steps: preparing the executable and running the test.

Step 1: Modifying the VB DLL/EXE

To load the Coverage Validator stub dll into your Visual Basic process do the following steps:

1) Copy svlCoverageValidatorStub.dll to the same directory (or any directory on the $PATH) as the

Visual Basic executable (or DLL) you wish to test.

2) Copy DbgHelp.dll from the Coverage Validator install directory to the same directory (or any

directory on the $PATH) as the Visual Basic executable (or DLL) you wish to test.

Don't copy the DbgHelp.dll from elsewhere as you may get an earlier version of the DbgHelp.dll

and not be able to read symbols as a result.

3) Modify the start of your test DLL or exe so that the first thing it does is load the Coverage Validator
stub DLL.

Do this as follows:

a) Add these lines to the start of your Visual Basic code.

 Private Declare Function FreeLibrary Lib "kernel32" (ByVal hLibModule As Long)
As Long
 Private Declare Function LoadLibrary Lib "kernel32" Alias "LoadLibraryA" (ByVal
lpLibFileName As String) As Long

Coverage Validator Help400

Copyright © 2002-2025 Software Verify Limited

b) Add these lines where you wish to load the Coverage Validator DLL.

 Dim lbCVStub As Long

 lbCVStub = LoadLibrary("svlCoverageValidatorStub")

c) Add this line where you wish to unload the Coverage Validator DLL.

 FreeLibrary lbCVStub

This step is optional, but do it as close to the end of the execution of your DLL or EXE as
possible.

4) Ensure each VB exe or DLL has been built with debug symbols. Debug symbols are required so that
Coverage Validator can monitor each line visit.

Do this as follows:

a) Open the Visual Studio properties dialog for the project. Project Menu Properties...

b) Go to the Compile tab.

c) Select the Compile to Native Code radio box.

d) Check the Create Symbol Debug Info check box. Click OK.

e) Make the project. File Menu Make [name of project].

Working With VBUnit 401

Copyright © 2002-2025 Software Verify Limited

Step 2: Setting up Coverage Validator

1) Setup where the Visual Basic PDB files are stored

Do this as follows:

a) Open the settings dialog.

b) Go to "File Locations".

c) Choose "Program Database (PDB) Files" in the combo box.

d) Click Add. Enter the directory name where the PDB files are located.

e) Click OK.

2) Setup Visual Basic file associations.

Do this as follows:

a) Open the settings dialog.

b) Go to "Hooked File Extensions".

Coverage Validator Help402

Copyright © 2002-2025 Software Verify Limited

d) Check if the file extensions "cls" and "bas" are present, or remove all file types, If no file types are
present every type of file will be instrumented.

e) For any file extension that is not present click Add then enter the extension.

e) Click OK.

Step 3: Running the test

To run the test do the following:

1) Start Coverage Validator.

2) Start your Unit tests from your command line or batch file.

When the Coverage Validator DLL loads into your DLL/EXE it will instrument your DLL/EXE.

It will then contact the Coverage Validator UI and proceed as if you had launched the unit tests from
Coverage Validator.

Part

IX

Coverage Validator Help404

Copyright © 2002-2025 Software Verify Limited

9 Working with Visual Basic 6 (VB6)

To work with VB6 you need to make two simple changes to your VB6 way of working.

Enable debug information

Debug information needs to be generated to enable Coverage Validator to be able to report function
names, filename and line numbers.

To do this, in Visual Basic 6, go to the Project menu, choose Project Properties....

Then go to the Compile tab and select Create Symbolic Debug Info. Click OK.

Compile your program into an executable

The next step is to build your program as an executable.

From the File menu, choose Make <name-of-program.exe>.

Your program will be compiled as an executable. Another file will be created with the same name, but
instead of .exe (or .dll) as an extension, the extension will be .pdb. This file contains the debugging
information.

Working with Visual Basic 6 (VB6) 405

Copyright © 2002-2025 Software Verify Limited

For example test.exe will create a debugging information file called test.pdb.

If you always keep the pdb file in the same directory as the .exe Coverage Validator will be able to find
the debugging symbols.

Part

X

Examples 407

Copyright © 2002-2025 Software Verify Limited

10 Examples

The need for examples

We know Coverage Validator is a complex product, but the programs that need to be tested are often
even more complex, and are certainly all different.

For this reason, it's important to be able to test and demonstrate the features of Coverage Validator in an
easy and repeatable way.

Having said that, Coverage Validator provides coverage information and doesn't detect error conditions,
so the example program is quite simplistic.

The example application provides a safe test demonstration:

· It lets you trigger events in your own time so you can observe coverage changes

· It provides source code to demonstrate usage, correctly or otherwise!

This section has help for the example application followed by some examples of using it in conjunction
with Coverage Validator.

Some additional projects provide examples of using NT Services.

All example projects are supplied as source code and projects. You'll need to build the example or
services before you can use them.

10.1 Example application

The example application

The example application is a great way to explore the capabilities of Coverage Validator.

The source and projects are included in the installation, but you'll need to build the example application
yourself.

You can then use nativeExample.exe in conjunction with Coverage Validator to monitor the coverage of
the application as you use it.

Coverage Validator Help408

Copyright © 2002-2025 Software Verify Limited

How to use these examples

The best way to understand how Coverage Validator works is by example.

We recommend launching the example application from Coverage Validator and observing how the menu
actions affect coverage information.

Examining the source code is the best way to see what's going on in the example application.

Resetting the statistics before and between using the menu items is a good way to easily see exactly
what new code was executed and marked as included in the coverage.

For convenience, below we have provided the source locations where each menu action runs a test.

Most test locations are in the CTeststakView class of nativeExample\TESTSVW.CPP

File menu

 File menu Exit closes the example application, which itself increases the code coverage.

Test menu

 Test menu ...

 Test OnTestPerformtest()

Calls a small number of test functions

 Test2 OnTestTest2()

Calls a small number of other test functions

 LoadLibrary Test... OnCommandLoadLibrary()

Opens a file browser for you to choose a test dll to load but doesn't call any other functions

 FreeLibrary Test OnCommandFreeLibrary()

Frees up any previously loaded library above

Colour menu

 Colour menu ...

Examples 409

Copyright © 2002-2025 Software Verify Limited

 Red, Green, Blue,
 Cyan, Magenta, Yellow

OnColourRed(), OnColourGreen(), etc

Sets the background colour of the main window and repaints the
window

 Reset OnColourReset()

Calls the same method that accesses two more different methods

 Use if() statements OnColourUseifstatements()

Affects the code path used when applying the background colours above

 Use switch() statements OnColourUseswitchstatements()

Affects the code path used when applying background colours

Help menu

 Help menu ...

 About Coverage Validator
Tester...

CTeststakApp::OnAppAbout(), etc

Shows a simple help dialog using code in nativeExample.cpp

10.1.1 Building the example application

Where to find the example application

The example project is in the examples\nativeExample sub-directory of the Coverage Validator
installation directory.

If the directory is not present, reinstall your software and choose custom or full installation to include the
examples.

Solutions and projects

There are a variety of solutions and projects for different versions:

· nativeExample_VSx_x.sln for Microsoft® Visual Studio / .net

· nativeExample.dsp for Microsoft® Developer Studio® 6.0

Configurations

There are a small number of configurations in each project:

· Debug Non Link / Release Non Link with the wWinMainCRTStartup unicode entry point

· Debug Non Link ANSI / Release Non Link ANSI without the unicode entry point

Coverage Validator Help410

Copyright © 2002-2025 Software Verify Limited

Using Visual Studio Express?

You might find you can't build the example application with Express versions of Visual Studio because it
doesn't provide all the necessary libraries.

If that's the case, try searching for the missing libraries in one of the freely available Windows SDKs
from the Microsoft website.

 If you use Visual Studio Express to build your own application, Coverage Validator will still work with
it just fine.

10.2 Example NT Service

The example NT Service

As well as the example application, an example service is provided along with details about building it.

There's also an example client.

The example service demonstrates how to use the NT Service API to call the two functions required to
use Coverage Validator with NT Services.

The following tasks are performed when the service is started:

· Loads the Coverage Validator stub DLL into the service

· Performs the normal work of the service until it's stopped

· Unloads the Coverage Validator stub DLL from the service

· Informs the service control manager that a stop is pending

Read more about working with NT Services.

10.2.1 Building the example service

Example service project files

The example project can be found in the service sub-directory in the directory where Coverage Validator
was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

Examples 411

Copyright © 2002-2025 Software Verify Limited

· service.dsp for Microsoft® Developer Studio® 6.0

· service.vcproj for Microsoft® Visual Studio / .net

Configurations

There are just two simple configurations in each project:

· Debug / Release dynamically links to the svlCVStubService(_x64).lib demonstrating use
with the NT Service API

Using the service

The service is named CV Simple Service in the control panel services dialog, and provides the following
command line options:

· -install Install the service

· -remove Uninstall the service

· -start Start the service

· -stop Stop the service

· -debug Run as a console application for debugging

· -? Display the help message

· -help Display the help message

Open a cmd prompt in administrator mode, navigate to the location of the service executable, and use
one of these commands to install, remove, start, stop the service.

Examples:
serviceCV.exe -install

serviceCV.exe -start

serviceCV.exe -stop

serviceCV.exe -remove

10.2.2 Building the example client

If you've already built the sample service, the process is very similar

Project files

Coverage Validator Help412

Copyright © 2002-2025 Software Verify Limited

The example project can be found in the serviceClient sub-directory in the directory where Coverage
Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

· serviceClient.dsp for Microsoft® Developer Studio® 6.0

· serviceClient.vcproj for Microsoft® Visual Studio / .net

Configurations

There are a small number of configurations in each project:

· Debug / Release dynamically links to the svlCVStubService(_x64).lib demonstrating use
with the NT Service API

Using serviceClient

The service is named CV Simple Service in the control panel services dialog, and provides the following
command line options:

· -string Sends the following (optionally quoted) text to the service. If the service is running the
service will return the string in reverse order

For example: serviceClient.exe -string "The quick brown fox" returns "xof nworb
kciuq ehT"

· -help Display the help message

10.2.3 Building the example service utility

The serviceMutex project demonstrates a way of controlling whether Coverage Validator is used without
having to rebuild your service.

Project files

The example project can be found in the serviceMutex sub-directory in the directory where Coverage
Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

There are two project files in the directory:

Examples 413

Copyright © 2002-2025 Software Verify Limited

· serviceMutex.dsp for Microsoft® Developer Studio® 6.0

· serviceMutex.vcproj for Microsoft® Visual Studio / .net

Configurations

There are just two configurations in each project:

· Debug / Release dynamically links to the svlCVStubService(_x64).lib demonstrating use
with the NT Service API

Using the service utility

The utility provides a dialog box interface to allow the control over the creation of a mutex object with the
name specified in the service.h header file.

Only if the service is started with the mutex created, does the service load Coverage Validator.

If you don't like using mutexes in this way, you could change the code in the service and the utility to
communicate through shared memory, a registry setting or another method of your choice.

10.2.4 Monitoring the service

Once the example service and example client has been built, the next step is to test them using
Coverage Validator.

Installing the service

If you haven't installed the service, do the following:

· open an administrator mode cmd prompt

· navigate to the directory containing the serviceCV.exe to install

· serviceCV.exe -install

Coverage Validator Help414

Copyright © 2002-2025 Software Verify Limited

Monitoring the service

Prerequisites

· example service has been installed, but not started (if service has been started, stop the service)

· example service and example client have been built

The following process is used to monitor the application launched by the service:

· From the Launch menu choose Services > Monitor a Service...

· The Monitor a service dialog is displayed

· Use Browse... to open the file chooser dialog and choose the service that will be monitored by
Coverage Validator.

Examples 415

Copyright © 2002-2025 Software Verify Limited

· Click OK

· Coverage Validator sets up a variety of parameters then displays a dialog box asking you to start
you service. Click OK to dismiss the dialog

· Start your service. For the example serviceCV.exe do the following
o open an administrator mode cmd prompt

o navigate to the directory containing the serviceCV.exe to start

o serviceCV.exe -start

o serviceCV.exe starts will be monitored by Coverage Validator

· The target application contacts Coverage Validator

· Data is collected until the service finishes executing

· Coverage Validator displays the results

10.3 Example Application Launched from a Service

The example Application launched from a Service

This pair of projects create an application that is launched from a service.

Coverage Validator Help416

Copyright © 2002-2025 Software Verify Limited

The purpose of this example is to show how to monitor the application that is launched from the service.
This is also the same process for monitoring an application launched by an application launched from a
service.

This process is subtly different to the method for working with services (see the example service for that).

Service

The service project is serviceWithAChildProcess.vcxproj

The following tasks are performed when the service is started:

· the test application is launched from the service

Application

The application project is serviceChildProcess.vcxproj

The application's first task is to load Coverage Validator into the application.

· Loads the Coverage Validator stub DLL into the application

· Configures the NT Service API to communicate to Coverage Validator

· Does some work that can be monitored by Coverage Validator

· Exits

Implementation Details

For implementation details see attachToCoverageValidator(); in serviceChildProcess.cpp.

The application will need to link to the NT Service API, for example ..\..\..
\svlCVStubService\release_2010_x64\svlCVStubService_x64.lib (for a release x64 EXE/DLL).

Important. Call attachToCoverageValidator() as close to the start of your application as
possible, before any threads have been created.

Read more about working with NT Services.

10.3.1 Building the service and application

Example solution files

Examples 417

Copyright © 2002-2025 Software Verify Limited

The example solution can be found in the examples\serviceWithAChildProcess subdirectory in the
directory where Coverage Validator was installed.

If the directory is not present, reinstall your software and choose custom or full installation.

Example project files

The example projects can be found in the subdirectories in the directory where Coverage Validator was
installed.

examples\serviceWithAChildProcess\serviceWithAChildProcess

· serviceWithAChildProcess.vcproj for Microsoft® Visual Studio / .net

examples\serviceWithAChildProcess\serviceChildProcess

· serviceChildProcess.vcproj for Microsoft® Visual Studio / .net

Configurations

There are a small number of configurations in each project:

· Debug / Release dynamically links to the svlCVStubService(_x64).lib demonstrating use
with the NT Service API

Using the service

The service is named SVL *** CV Child Process in the control panel services dialog (*** changes
depending on the build configuration), and provides the following command line options:

· -install Install the service

· -remove Uninstall the service

· -start Start the service

· -stop Stop the service

· -debug Run as a console application for debugging

· -? Display the help message

· -help Display the help message

Open a cmd prompt in administrator mode, navigate to the location of the service executable, and use
one of these commands to install, remove, start, stop the service.

Examples:

Coverage Validator Help418

Copyright © 2002-2025 Software Verify Limited

serviceWithAChildProcess.exe -install

serviceWithAChildProcess.exe -start

serviceWithAChildProcess.exe -stop

serviceWithAChildProcess.exe -remove

10.3.2 Monitoring the application launched from the service

Once the example service and example application are built, the next step is to test them using
Coverage Validator.

Installing the service

If you haven't installed the service, do the following:

· open an administrator mode cmd prompt

· navigate to the directory containing the serviceWithAProcess.exe to install

· serviceWithAProcess.exe -install

Monitoring the application launched by the service

Prerequisites

· example service has been installed, but not started (if service has been started, stop the service)

· example service and example application have been built (application must use the NT Service API
as demonstrated in attachToCoverageValidator())

· example application executable is in the same directory as the example service (this is only a
requirement for the example)

The following process is used to monitor the application launched by the service:

· From the Launch menu choose Services > Monitor a Service...

Examples 419

Copyright © 2002-2025 Software Verify Limited

· The Monitor a service dialog is displayed

· Use Browse... to open the file chooser dialog and choose the application that will be monitored by
Coverage Validator. This is the application that is launched by the service. Do not choose the service

· Click OK

· Coverage Validator sets up a variety of parameters then displays a dialog box asking you to start
you service. Click OK to dismiss the dialog

Coverage Validator Help420

Copyright © 2002-2025 Software Verify Limited

· Start your service. For the example serviceWithAChildProcess.exe do the following
o open an administrator mode cmd prompt

o navigate to the directory containing the serviceWithAProcess.exe to start

o serviceWithAProcess.exe -start

o serviceWithAProcess.exe starts and launches the child process serviceChildProcess.exe

that will be monitored

· The target application contacts Coverage Validator

· Data is collected until the target process finishes executing

· Coverage Validator displays the results

Part

XI

Coverage Validator Help422

Copyright © 2002-2025 Software Verify Limited

11 Debug Information, Symbols, Filenames, Line Numbers

Depending on which IDE or compiler/linker combination the process to create debug information to
ensure that you have symbols, filenames and line numbers is different.

This section shows you what to do to ensure you have symbols for your compiler and linker.

11.1 Visual Studio

Enabling debug information in Visual Studio has changed over the years depending on the version of
Visual Studio you are using.

It's generally the same, but there have been some changes in recent versions that can cause confusion.

By default debug configurations create debug information, but for some versions of Visual Studio, release
configurations do not create debug information.

You need to set both compiler and linker settings to get debug information. Setting just one or the
other will not give you debug information you can use.

Configurations

In the help below we show you how to modify one configuration, for example Release | Win32.

You need to modify all configurations appropriately. Release, Debug, Win32, Win64 and any other
configurations you are using.

Visual Studio 2017 - 2021

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 423

Copyright © 2002-2025 Software Verify Limited

Linker Settings

If you're building on a different machine to the machine you're working on (for example a build server), you
should choose /DEBUG:FULL, not /DEBUG or /DEBUG:FASTLINK.

Coverage Validator Help424

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Visual Studio 2010 - 2015

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 425

Copyright © 2002-2025 Software Verify Limited

Linker Settings

Coverage Validator Help426

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Visual Studio 2002 - 2008

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 427

Copyright © 2002-2025 Software Verify Limited

Linker Settings

Coverage Validator Help428

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Visual Studio 6.0

Compiler Settings

Debug Information, Symbols, Filenames, Line Numbers 429

Copyright © 2002-2025 Software Verify Limited

Linker Settings

Coverage Validator Help430

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

11.2 C++ Builder

Debug information can be provided using two methods.

· Debugging information (TDS or DWARF format)

· MAP files

Debugging Information

Debug configurations of C++ Builder projects automatically generate debug information that provides
symbols, filenames and line numbers.

However the release configurations of C++ Builder projects do not automatically generate debug
information. You need to configure that yourself.

Here's how you do that. It's slightly different if you're building 32 bit applications rather 64 bit applications.

You need to set both compiler and linker settings to get debug information. Setting just one or the other
will not give you debug information you can use.

32 bit C++ Builder

Project Configuration

Change your project settings to target 32 bit builds.

Debug Information, Symbols, Filenames, Line Numbers 431

Copyright © 2002-2025 Software Verify Limited

Compiler Settings

Linker Settings

Coverage Validator Help432

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

64 bit C++ Builder

Project Configuration

Change your project settings to target 64 bit builds.

Debug Information, Symbols, Filenames, Line Numbers 433

Copyright © 2002-2025 Software Verify Limited

Compiler Settings

Linker Settings

Coverage Validator Help434

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

MAP files

MAP files are not generated by default. You need to enable the option to generate a detailed map file.

The method is the same for 32 bit and 64 bit C++ Builder.

Select the project configuration as shown in the Debugging Information section above, then modify the
C++ Linker, Output settings.

Linker Settings

Debug Information, Symbols, Filenames, Line Numbers 435

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Debugging Information or MAP files?

If you can create both debugging information and MAP files which should I use?

Coverage Validator uses this information to provide symbols, filenames and line numbers.

For the purposes of instrumenting your modules (EXE / DLL / etc) this information is used to identify
functions and to identify line numbers.

For this purpose it does matter whether you use Debugging Information or MAP files.

Debugging Information

TDS format and DWARF format debugging information both appear to be accurate, in that they reflect the
correct location of functions and line numbers in the module they represent.

Some additional data is present in the last symbol in any given source file. Our symbol reader handles
this and removes the unwanted information.

Coverage Validator Help436

Copyright © 2002-2025 Software Verify Limited

MAP files

MAP file information does not appear accurate. It is good enough for resolving addresses into symbols,
filenames and line numbers for creating callstacks and crash addresses, but it is not good enough for
placing hooks at the correct place for every line in the module. Some modules get instrumented
perfectly, while others fail for no apparent reason. Given the lack of information in a MAP file we can only
assume that some of the data identified as lines indicating code are in fact lines indicating data in the
code segment. Instrumenting data is not going to work - you're corrupting the data. This would explain
why instrumenting these modules with MAP file information doesn't work.

Our recommendation

Although in some circumstances working with MAP file data from C++ Builder will work, we strongly
recommend that you use TDS debugging information (32 bit builds) and DWARF debugging information
(64 bit builds).

11.3 Delphi

Debug information can be provided using two methods.

· Debugging information (TDS or DWARF format)

· MAP files

Debugging Information

Debug configurations of Delphi projects automatically generate debug information that provides symbols,
filenames and line numbers.

However the release configurations of Delphi projects do not automatically generate debug information.
You need to configure that yourself.

Here's how you do that. It's slightly different if you're building 32 bit applications rather 64 bit applications.

You need to set both compiler and linker settings to get debug information. Setting just one or the other
will not give you debug information you can use.

32 bit Delphi

Project Configuration

Change your project settings to target 32 bit builds.

Debug Information, Symbols, Filenames, Line Numbers 437

Copyright © 2002-2025 Software Verify Limited

Compiler Settings

Coverage Validator Help438

Copyright © 2002-2025 Software Verify Limited

Linker Settings

Debug Information, Symbols, Filenames, Line Numbers 439

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

64 bit Delphi

Project Configuration

Change your project settings to target 64 bit builds.

Coverage Validator Help440

Copyright © 2002-2025 Software Verify Limited

Compiler Settings

Linker Settings

Debug Information, Symbols, Filenames, Line Numbers 441

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

MAP files

MAP files are not generated by default. You need to enable the option to generate a detailed map file.

The method is the same for 32 bit and 64 bit Delphi.

Select the project configuration as shown in the Debugging Information section above, then modify the
Delphi Compiler, Linking settings.

Linker Settings

Coverage Validator Help442

Copyright © 2002-2025 Software Verify Limited

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Debugging Information or MAP files?

If you can create both debugging information and MAP files which should I use?

Coverage Validator uses this information to provide symbols, filenames and line numbers.

For the purposes of instrumenting your modules (EXE / DLL / etc) this information is used to identify
functions and to identify line numbers.

For this purpose it does matter whether you use Debugging Information or MAP files.

Debugging Information

TDS debugging information appears to be accurate, in that they reflect the correct location of functions
and line numbers in the module they represent.

Some additional data is present in the last symbol in any given source file. Our symbol reader handles
this and removes the unwanted information.

Debug Information, Symbols, Filenames, Line Numbers 443

Copyright © 2002-2025 Software Verify Limited

MAP files

MAP file information does not appear accurate. It is good enough for resolving addresses into symbols,
filenames and line numbers for creating callstacks and crash addresses, but it is not good enough for
placing hooks at the correct place for every line in the module. Some modules get instrumented
perfectly, while others fail for no apparent reason. Given the lack of information in a MAP file we can only
assume that some of the data identified as lines indicating code are in fact lines indicating data in the
code segment. Instrumenting data is not going to work - you're corrupting the data. This would explain
why instrumenting these modules with MAP file information doesn't work.

Our recommendation

Although in some circumstances working with MAP file data from Delphi will work, we strongly
recommend that you use TDS debugging information.

11.4 MingW, gcc, g++

The following compiler options are available if you are using MingW, gcc or g++.

-g
This is the default debug format. This will normally choose the DWARF symbol format.

-gdwarf
The DWARF symbol format.

-gstabs
The STABS symbol format.

-gCoff
The COFF symbol format. This does create a lot of unnecessary symbols, making symbol parsing
slower.

11.5 Dev C++

Dev C++ uses the gcc and g++ compilers.

The following compiler options are available if you are using gcc or g++.

-g
This is the default debug format. This will normally choose the DWARF symbol format.

-gdwarf
The DWARF symbol format.

-gstabs
The STABS symbol format.

-gCoff

Coverage Validator Help444

Copyright © 2002-2025 Software Verify Limited

The COFF symbol format. This does create a lot of unnecessary symbols, making symbol parsing
slower.

You can edit the compiler and linker options by choosing Project Options... from the Project menu.

Compiler and Linker options

When you have edited the project options you need to rebuild the software for the options to take effect
and create the debug information.

Debug Information, Symbols, Filenames, Line Numbers 445

Copyright © 2002-2025 Software Verify Limited

11.6 Salford Software FORTRAN 95

Salford FORTRAN95 symbolic information is embedded in the .exe/.dll as COFF (Common Object File
Format) information, with some proprietary extensions to Salford Software (which they have kindly shared
with us).

Please consult the documentation for Salford FORTRAN95 to include debug information (including
filenames and line numbers) in the COFF information.

Add the /DEBUG option to the compiler options.

If you still have problems, please contact us giving as much detail as possible, including what you've
tried.

11.7 Metrowerks

Metrowerks symbolic information is embedded in the .exe/.dll as CodeView information.

Please consult the documentation for CodeWarrior in order to include debug information (including
filenames and line numbers) in the CodeView information.

If you still have problems, please contact us giving as much detail as possible, including what you've
tried.

11.8 Visual Basic 6

To get debug symbols for Visual Basic you need to open the Properties dialog box from the Project
menu (you'll find it at the bottom of the menu).

Coverage Validator Help446

Copyright © 2002-2025 Software Verify Limited

When you have changed your project properties you need to build the application.

Go to the File menu and choose Make <projectname.exe>.

Part

XII

Coverage Validator Help448

Copyright © 2002-2025 Software Verify Limited

12 Frequently Asked Questions

Here's a brief description about the type of question included in each of the following sections:

· General questions

How Coverage Validator works and how to do a few of the more common tasks.

· Unexpected results

Missing or unhooked data and not finding the data you expected.

· Crashes and error reports

Your program crashes with Coverage Validator or Coverage Validator itself has a problem.

· Debug symbols and DbgHelp

Symbols not loading, troubleshooting search paths for DbgHelp.dll, and finding or installing
different versions.

· System and environment

Setting up power users, and file extensions used by Coverage Validator.

12.1 General Questions

Does Coverage Validator work with NT Services?

Absolutely. There is a help section on working with NT Services.

Why might Inject or Launch fail?

Not using CreateProcess

If you are launching your application with any option other than CreateProcess you are effectively
using CreateRemoteThread to inject into the application you have just started running using
CreateProcess.

The Inject and Wait for Application to Start functionality also use CreateRemoteThread to inject into
an application.

For the reasons below, injection using CreateRemoteThread does not always work.

Common reasons for injection failure

· A missing DLL in your application

Frequently Asked Questions 449

Copyright © 2002-2025 Software Verify Limited

Check your application is complete.

· The target application is a .NET application or .NET service

Check your application or service is not written using .NET technology.

· A missing DLL in Coverage Validator

Check Coverage Validator is installed correctly.

· The application may have started and finished before the DLL could be injected

This only applies if you are launching the application.

· The application security settings do not allow process handles to be opened

· The application is a service and is running with different privileges than Coverage Validator

If the application being injected into is a service it is recommended that the service and
Coverage Validator are both run on the same user account. See the topic on working with
NT services.

Application Specific Reasons for Failure

A small percentage of applications/services will not allow any DLL to be injected into them.

The reasons for this are unknown, but our testing shows that the reason for failure to inject is a
combination of application, operating system and hardware that causes an inconsistency during
injection (we think it is a timing issue) that causes a failure.

Our tests show that on NT 4 about 1% of all applications fail to inject, 2% on Windows 2000 rising to
5% with Windows XP.

We expect that subsequent operating systems (Windows 2003 and Windows Vista) will have higher
failure rates.

How do I clear the symbol cache?

Flush the symbol cache files:

· Settings Menu Edit Settings Hook safety Clean Instrumentation Cache Scan
and delete symbol cache files Close OK

You may also want to disable the on-disk cache of PDB file symbols:

· Settings Menu Edit Settings Hook safety deselect Cache instrumentation data
 OK

I have an idea for a feature, can it be added to Coverage Validator?

Coverage Validator Help450

Copyright © 2002-2025 Software Verify Limited

We have tried to add as many features to Coverage Validator that we thought would be useful to our
users.

In fact, every feature in Coverage Validator has been used to solve problems and bugs for clients who
consult us, and in our own business, so we know the features we have are useful.

However, maybe we overlooked a feature that you would find very useful.

We'll happily consider most ideas for new features to Coverage Validator. But no Quake, FlightSim
or Flappy Bird Easter eggs though, sorry!

Please contact us to let us know your thoughts.

12.2 Unexpected results

Some lines are not coloured, why?

You may notice in the source code views that some lines are not coloured to indicate visited, not
visited or hook failure. There's a couple of possible reasons for this:

· The source code has not been compiled due to conditional compilation using compiler
pragmas or #if, #ifdef, #ifndef statements

Or, if using map files with line information:

· The compiler map file did not include object code addresses for the lines that are not coloured

When this happens, Coverage Validator has no way of accurately determining which object
code corresponds to the source code, and so can't hook the object code.

For example, here's a few lines of code:

This shows that line 831 has not been hooked, whilst all those around it have been hooked (and in
the example shown, all have been visited). If we now examine the part of the MAP file for the
appropriate executable.

Frequently Asked Questions 451

Copyright © 2002-2025 Software Verify Limited

There's no entry for line 831, which is why Coverage Validator couldn't provide a hook to verify if the
line was executed.

At present we don't know why the compiler map file omits information for source code lines that are
clearly part of the executable image, and which are identified in the PDB debugging information.

When you find this happening, change the line hooking options so that map files are only used when
PDB files can't be found, i.e. use the Use MAP when no PDB option.

Why are some lines not hooked?

Coverage Validator instruments lines in your application by inserting code to recognise the execution
of the start of every line in your application.

Before inserting the code, checks are made to ensure that it is safe to re-write the function lines.

If it is not safe to re-write the lines, they can't be instrumented.

The following items can prevent the function from being hooked:

· Function too short to hook. The function must be at least 5 bytes in length
· The code for the line is too short to hook. The code for the line must be at least 5 bytes in

length
· Function cannot be disassembled
· Instruction sequence cannot be hooked

You can improve the likelihood of your function being hooked by enabling the check boxes on the
Hook Control settings and increasing the instrumentation level.

See also the instrumentation logging which details reasons why some code is not instrumented

Why are some functions not hooked?

Coverage Validator instruments functions in your application by re-writing the prologue and epilogue
of each function in your application, inserting code to monitor code coverage.

Before inserting the code, checks are made to ensure that it is safe to re-write the function prologue
and epilogue.

If it is not safe to re-write the function epilogue and prologue the function cannot be instrumented.

The following items can prevent the function from being hooked:

· Function too short to hook
· Function has multiple exits
· Function has jumps into epilogue
· Function has jumps into prologue
· Function cannot be disassembled
· Instruction sequence cannot be hooked

Coverage Validator Help452

Copyright © 2002-2025 Software Verify Limited

You can improve the likelihood of your function being hooked by enabling the check boxes on the
Hook Control settings and increasing the instrumentation level.

See also the instrumentation logging which details reasons why some code is not instrumented

12.3 Crashes and error reports

The program I'm trying to monitor keeps crashing, why?

The following assumes your crash is one that only happens when using Coverage Validator.

Here's a few scenarios in which your program might crash:

· Third party DLLs are using system wide hooks

Some DLLs from third party vendors use system wide hooks and do not interact with
Coverage Validator and the target program very well.

If you can identify such DLLs, prevent them being hooked by adding the DLL name to the
Hooked DLLs page of the global settings dialog as in the example below.

· Third party DLLs are using global hooks

A global hook DLL from a third party vendor could be adversely affecting Coverage Validator
when hooking your program.

Read about handling global hooks on the Global Hooks page of the settings dialog.

Judging by multiple independent error reports, we believe there may be an incompatibility
between Coverage Validator and the global hooks that come with the Matrox G400 and the
Matrox Millenium II PCI video cards released in the late 1990's.

· There may be a bug in Coverage Validator

Frequently Asked Questions 453

Copyright © 2002-2025 Software Verify Limited

It happens. We've tried to make Coverage Validator as robust as possible, but bugs and new
scenarios do occur.

First, ensure that the crash never happens if you are not using Coverage Validator.

Second, check all the suggestions above.

Then drop us a line sending details of the error and we'll try to reproduce the crash with a
view to fixing any bugs found in as timely a manner as possible.

Coverage Validator gives an Unrecoverable Error?

The Coverage Validator Unrecoverable Error dialog is displayed when an unexpected internal error
means Coverage Validator cannot continue to execute.

A stack trace and register dump is shown and you can Copy to Clipboard so that the data can be
sent to us with a description of the activities that caused the error.

We'll aim to fix any problems in as timely manner as possible.

The data shown in the dialog is also written to c:\users\<username>\AppData\Roaming\Software
Verify\Coverage Validator\cvExceptionLogUI.txt

The picture below shows a stack overflow exception report (we created the crash for this topic).

Coverage Validator Help454

Copyright © 2002-2025 Software Verify Limited

cvExceptionLogUI.txt

cvExceptionLogUI.txt details a crash in the Coverage Validator user interface.

cvExceptionLog.txt

cvExceptionLog.txt details a crash in the target program that Coverage Validator was monitoring.
The crash may be in the target program or in Coverage Validator's monitoring code.

What is in svlCVExceptionReport.txt?

In the event of a crash, the file c:\users\<username>\AppData\Roaming\Software
Verify\Coverage Validator\cvExceptionLogUI.txt contains information that identifies where
Coverage Validator was executing when it crashed.

The file contains a stack trace and register dump and is the same information that is displayed in the
Unrecoverable Error dialog when a crash occurred.

The file contains only the data for the most recent exception.

Frequently Asked Questions 455

Copyright © 2002-2025 Software Verify Limited

12.4 Debug symbols and DbgHelp

Why does Coverage Validator fail to load my symbols?

In a few cases Coverage Validator will fail to load symbols for a DLL that you believe you have
provided symbols for.

This topic describes the possible causes. Please read the suggested course of action for each
compiler.

Microsoft Visual Studio or Developer Studio

Symbols are defined in PDB files with the same name as the .exe or .dll to which it refers.

Coverage Validator uses the Microsoft supplied DbgHelp.dll to perform all symbol handling
activities.

Correct PDB name and location?

To ensure that the correct PDB is found to match a DLL the following must be true:

· The DLL and PDB file have the same name, except for the extension

For example test.pdb matches for test.dll or test.exe.

· The first matching PDB file in the PDB search path has the correct checksum

If DbgHelp finds a PDB file with a different checksum, loading symbols will fail but the
search will still stop.

Verify that there are no PDB files with the same file name that are on the PDB search path,
except for the PDB file you expect to be used.

You can check the DbgHelp symbol search path to troubleshoot symbol loading failures relating
to the symbol search path.

Are compiler and linker producing symbols?

If DbgHelp is still failing to load your symbols, check the following:

· Your program is compiled to include symbol information

· Your program is linked to include symbol information

Linker options are different to the compiler options

Running correct version of DLL?

Check that you are using:

Coverage Validator Help456

Copyright © 2002-2025 Software Verify Limited

· The most recent version of your DLL

· The correct build version of your DLL

For example release DLL with release builds, debug DLL with debug builds

Checking for correctly loaded modules

When your application is running, check the modules being loaded by the application.

In Coverage Validator, you can check the modules by using the Loaded Modules dialog, or by
inspecting the Diagnostics tab.

You need to be sure that your application is not loading a different DLL with the same name from
a different directory that is on the search path.

Correct version of DbgHelp.dll?

Try checking the version of DbgHelp.dll used by your Visual Studio installation and the version of
DbgHelp.dll distributed with Coverage Validator.

If the version used by Visual Studio is higher, it's possible Microsoft changed the PDB file
format, making the symbols unreadable by Coverage Validator.

To fix this:

· Copy the DbgHelp.dll from Visual Studio to the Coverage Validator installation directory

· Remove any DbgHelp.dll from your application directory

When Coverage Validator launches an application it copies Coverage Validator's
DbgHelp.dll to the directory of the executable.

This ensure that the DbgHelp.dll used is more recent than the default
system32\dbghelp.dll which may not get updated.

You need to find and remove these dlls - e.g. c:\myapplication\debug\DbgHelp.dll
etc.

If all else fails...

Sometimes symbolic information will not load for unknown reasons.

In this circumstance, after trying the above suggestions, try changing the location in which
symbols are sourced.

You could also try flushing and disabling the caching of symbols.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

Frequently Asked Questions 457

Copyright © 2002-2025 Software Verify Limited

Visual Studio 2005 (8.0) and later versions

You may find that symbols for the msvcr80.dll, msvcr80d.dll, mf80.dll, mfc80u.dll,
mfc80d.dll and mfc80ud.dll DLLs are not loaded.

The reason for this is that these symbols are stored in c:\windows\symbols\dll rather than with
the DLLs themselves.

This is due to the Windows.NET Side-by-Side (WinSxS) DLL/assembly loading.

To resolve this, add the path c:\windows\symbols\dll to the list of paths for Program Database
Files on the File Locations tab:

You may need to restart Coverage Validator to get valid symbols for MFC80(u)(d).dll if you have
already recorded a session for which you did not get symbols.

Alternatively follow the instructions in the question on how to clear the symbol cache:

Metrowerks CodeWarrior for Windows V8 / V9

Metrowerks symbolic information is embedded in the .exe/.dll as CodeView information.

Please consult the documentation for CodeWarrior in order to include debug information
(including filenames and line numbers) in the CodeView information.

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

Salford Software Fortran 95

Salford Fortran 95 symbolic information is embedded in the .exe/.dll as COFF (Common Object
File Format) information, with some proprietary extensions to Salford Software (which they have
kindly shared with us).

Please consult the documentation for Salford FORTRAN95 to include debug information
(including filenames and line numbers) in the COFF information.

Coverage Validator Help458

Copyright © 2002-2025 Software Verify Limited

If you still have problems, please contact us giving as much detail as possible, including what
you've tried.

MingW compiler

We recommend compiling your software with -gstabs to create stabs debugging information.

The -gCoff option is also supported, but this does create a lot of unnecessary symbols,
making symbol parsing slower.

Troubleshooting DbgHelp.dll

Coverage Validator uses the Microsoft Debugging DLL, DbgHelp.dll , copying the correct private
version to your application's directory as your program is started.

However, there are cases where your application can be started independently, and you must ensure
that your application uses the correct DbgHelp.dll.

Diagnostic error messages appear on the Diagnostics tab as in the example below detailing which
version of DbgHelp.dll was expected and what was actually loaded.

If you see any DbgHelp warning dialogs, or get diagnostic errors, ensure the correct DbgHelp.dll is
used by:

· Copy (don't move) DbgHelp.dll

from: the Coverage Validator install directory

to: the location of the application being tested (the same directory as the .exe).

Rerun your test.

· Try updating the versions of DbgHelp.dll in:

c:\windows\system32

and

c:\windows\system32\dllcache

Accept any Windows permission warnings if you try to do this.

Frequently Asked Questions 459

Copyright © 2002-2025 Software Verify Limited

Rerun your test.

If you still continue to have problems, please drop us a line via our support email.

How do I examine (and fix) the DbgHelp symbol search path?

It can be confusing to see why symbols fail to load for modules built with compilers that generate
PDB files, e.g.: Microsoft, Intel.

There are typically three reasons for failure: the PDB file is...

· missing, for example it was not provided with the executable
· in the wrong place, so the debugging library can't find it
· the wrong version, for example from a different build

The diagnostic tab

The Diagnostic tab of Coverage Validator displays lots of messages that can help diagnose many
problems.

To show only DbgHelp debug information, use the message filter drop down at the top of the
diagnostic tab. This lets you examine where DbgHelp.dll looks for symbols.

Examine the output to see if it's finding the PDB file you think it should, and if it rejects the contents
of any PDB file it finds.

Output for alternate modules is shown in alternating coloursets, and the messages are the exact
same output from the DbgHelp.dll debugging stream.

Examples of examining the diagnostics

Below we show three examples using nativeExample.exe and nativeExample.pdb from our example
application.

· Correct symbol file found

DbgHelp first searches in various places looking for nativeExample.pdb

Depending on your machine, there may be other search paths included.

Finally nativeExample.pdb is found in the same directory as the .exe file of the target
program

Coverage Validator Help460

Copyright © 2002-2025 Software Verify Limited

DbgHelp loads private symbols and lines, (the alternative being that DbgHelp loads public
symbols).

Outcome:
Success. Symbols are loaded.

· Missing symbol file

As before, DbgHelp first searches in various places looking for nativeExample.pdb

But, nativeExample.pdb doesn't get found in the same directory as the .exe file of the target
program.

nativeExample.pdb never gets found on the search path.

SymSrv might then look for additional locations for nativeExample.pdb, but has no luck.

DbgHelp might find some COFF symbols in the executable, however these don't contain
filename or line number information.

Finally all options are exhausted.

Outcome:
Failure. The PDB file could not be found. Some default symbols are loaded but are not of
much use.

Resolution:
Check the File Locations PDB paths to ensure that all the possible paths for PDB files are
listed.

· Incorrect symbol file

As before, DbgHelp first searches in various places looking for nativeExample.pdb

This time, nativeExample.pdb does get found in the same directory as the .exe file of the
target program.

DbgHelp tries to load the symbols but fails - the checksum inside the PDB file does not
match the module.

This might be because the symbols are for a different build of the software, or it's an
incorrectly named PDB file belonging to another program.

Frequently Asked Questions 461

Copyright © 2002-2025 Software Verify Limited

Finally all options are exhausted.

Outcome:
Failure. A PDB file was found, but it was not the right one.

Resolutions:
Double check the PDB is the correct one for the build you are running.
When copying builds from another machine (or from a build server), make sure to copy the
correct PDB as well.
Check the File Locations PDB paths to ensure that all the possible paths for PDB files are
listed.
Check the order of those PDB paths in case there are multiple paths resulting in the wrong
PDB being found first.

How can I create a map file with line numbers

If you don't have the ability to use .PDB files for debug information , you may be able to use .MAP
files with line information.

The following is only applicable to Debug builds. Map files for Release builds can't have line number
data.

 Microsoft discontinued support for including line information in .MAP files with Visual Studio 8.0
(2005). There is no easy workaround to this.

To select the /MAPINFO:LINES option for Visual Studio 6.0 use the following steps. If you are using
Visual Studio 7.0, 7.1 (i.e .NET 2002 or 2003) the project settings user interface is slightly different,
but the basic principle remains the same.

In Visual Studio 6:

 Project Menu Settings... Select project Shows project settings

The example image below shows project nativeExample.

Coverage Validator Help462

Copyright © 2002-2025 Software Verify Limited

· Generate mapfile check option to request MAP file output

· Project Options add the text /MAPINFO:LINES to add line information to the file OK

Save your project workspace and build your project.

 Due to daylight saving times it is possible for a MAP file to have an embedded timestamp that is
different than the DLL timestamp by an hour. In these situations Coverage Validator will not
recognise the MAP as valid. The solution to this problem is to rebuild the application.

See also, the map file timestamp threshold setting.

12.5 Extensions, services and tools

Including stublib.h in my project doesn't compile. Why?

You may encounter problems when including stublib.h in order to link directly with Coverage
Validator.

Include path problems

Frequently Asked Questions 463

Copyright © 2002-2025 Software Verify Limited

Ensure that your project C preprocessor include paths reference both of the stub and stublib
subdirectories in the installation directory of Coverage Validator.

For example, if Coverage Validator is installed in:

C:\Program Files (x86)\Software Verify\Coverage Validator

Then add the following paths for all configurations; Debug, Release, etc:

C:\Program Files (x86)\Software Verify\Coverage Validator\stub

C:\Program Files (x86)\Software Verify\Coverage Validator\stublib

Compiler errors

If you include stublib.h, your project must have included windows.h first, (or see below for an
alternative).

If you fail to include windows.h then stublib.h will refer to some none-existent datatypes, causing
compiler errors similar to the ones shown below.

Here's an example program that will not compile:

#include "stdafx.h"
#include "stublib.h"

int main(int argc, char* argv[])

{
 return 0;

}

See the compiler errors from the above code

--------------------Configuration: testMV_allEnum - Win32

Debug--------------------

Compiling...

testMV_allEnum.cpp

c:\program files\software verification\coverage validator\stub\allenum.h(70) :

error C2146: syntax error : missing ';' before identifier 'lRequest'

c:\program files\software verification\coverage validator\stub\allenum.h(70) :

error C2501: 'LONG' : missing storage-class or type specifiers

c:\program files\software verification\coverage validator\stub\allenum.h(70) :

error C2501: 'lRequest' : missing storage-class or type specifiers

c:\program files\software verification\coverage validator\stub\allenum.h(71) :

error C2146: syntax error : missing ';' before identifier 'reserved3'

c:\program files\software verification\coverage validator\stub\allenum.h(71) :

error C2501: 'DWORD' : missing storage-class or type specifiers

c:\program files\software verification\coverage validator\stub\allenum.h(71) :

error C2501: 'reserved3' : missing storage-class or type specifiers

c:\program files\software verification\coverage validator\stub\allenum.h(73) :

error C2143: syntax error : missing ';' before '*'

c:\program files\software verification\coverage validator\stub\allenum.h(73) :

error C2501: 'BYTE' : missing storage-class or type specifiers

c:\program files\software verification\coverage validator\stub\allenum.h(74) :

error C2501: 'dde_pbData' : missing storage-class or type specifiers

Coverage Validator Help464

Copyright © 2002-2025 Software Verify Limited

To fix this problem simply include windows.h before stublib.h

#include "stdafx.h"
#include <windows.h> // new line to fix compile errors

#include "stublib.h"

int main(int argc, char* argv[])

{
 return 0;

}

Can't include windows.h?

If including windows.h is not an option, you can just define the following types:

#define LONG long
#define DWORD unsigned long
#define BYTE unsigned char
#define HANDLE void *

What do I do if I cannot use svlMVStubService.lib?

You may find that you can't use svlCVStubService.lib / svlCVStubService_x64.lib because your
linker doesn't understand the format of the lib file.

If that happens you can use the code below to compile the two functions that would be provided by
those libraries.

See the header file

#ifndef _SVL_CVSTUB_SERVICE_H
#define _SVL_CVSTUB_SERVICE_H

Frequently Asked Questions 465

Copyright © 2002-2025 Software Verify Limited

#include "svlServiceError.h"

// IMPORTANT.

// If you use svlCVStub_LoadCoverageValidator() to load svlCoverageValidatorStub.dll into your

// application, you must also use svlCVStub_UnloadCoverageValidator() to unload the DLL prior to

// your application being closed down. Failure to do so will almost certainly result in a crash.

// It does not matter how the application is closed down, you must ensure that you use

// svlCVStub_UnloadCoverageValidator() to unload the DLL if you have loaded it.

//

// The DLL prepares itself in different ways and shuts itself down differently depending on if

// it is:-

// a) Directly linked to the application for use with the API or injected with Coverage Validator.

// When the DLL is used in this manner to DLL expects to oversee and manage the application

// shutdown.

// b) Loaded by using svlCVStub_LoadCoverageValidator().

// When the DLL is used in this manner to DLL expects to be removed prior to application shutdown

// and the behaviour of the DLL is undefined once you enter the program shutdown sequence.

//

// This difference in behaviour is intentional and is done to allow the use of the stub DLL in

// services.

#ifdef __cplusplus
extern "C" {

#endif

SVL_SERVICE_ERROR svlCVStub_LoadCoverageValidator(serviceCallback_FUNC callback,
 void *userParam);

SVL_SERVICE_ERROR svlCVStub_UnloadCoverageValidator();

#ifdef __cplusplus
}
#endif

#endif

See the implementation file

Coverage Validator Help466

Copyright © 2002-2025 Software Verify Limited

#include "svlCVStubService.h"

#include <windows.h>
#include <tchar.h>

//-NAME---------------------------------

//.DESCRIPTION..........................

//.PARAMETERS...........................

//.RETURN.CODES.........................

//--------------------------------------

static HMODULE hModule = NULL;

//-NAME---------------------------------

//.DESCRIPTION..........................

//.PARAMETERS...........................

//.RETURN.CODES.........................

//--------------------------------------

typedef void (*ENABLE_STUB_SYMBOL_FUNC)();

SVL_SERVICE_ERROR svlCVStub_LoadCoverageValidator(serviceCallback_FUNC callback,
 void *userParam)

{
 SVL_SERVICE_ERROR errCode = SVL_OK;

 if (hModule == NULL)

 {
 hModule = LoadLibraryW(L"svlCoverageValidatorStub.dll"); // change this to svlCoverageValidatorStub6432.dll or svlCoverageValidatorStub_x64.dll as appropriate
 if (hModule != NULL)

 {
 // DLL loaded, set the service callback function

 SETCALLBACK_FUNC setCallbackFunc;

 setCallbackFunc = (SETCALLBACK_FUNC)GetProcAddress(hModule, "apiSetServiceCallback");
 if (setCallbackFunc != NULL)

 {
 (*setCallbackFunc)(callback, userParam);
 }

 // now start the profiler

 PROC *p;

 p = GetProcAddress(hModule, "startProfiler");
 if (p != NULL)
 (*p)();

Frequently Asked Questions 467

Copyright © 2002-2025 Software Verify Limited

 // now turn on provision of symbols by the stub

 ENABLE_STUB_SYMBOL_FUNC enableSymbolFunc;

 enableSymbolFunc = (ENABLE_STUB_SYMBOL_FUNC)GetProcAddress(hModule, "apiEnableStubSymbols");
 if (enableSymbolFunc != NULL)

 {
 (*enableSymbolFunc)();
 }
 else

 {
 errCode = SVL_FAILED_TO_ENABLE_STUB_SYMBOLS;
 }
 }
 else

 {
 errCode = SVL_LOAD_FAILED;
 }
 }
 else

 {
 errCode = SVL_ALREADY_LOADED;
 }

 return errCode;

}

//-NAME---------------------------------

//.DESCRIPTION..........................

//.PARAMETERS...........................

//.RETURN.CODES.........................

//--------------------------------------

typedef void (*UNLOAD_FUNC)();

typedef HANDLE (*GET_STUB_HEAP_FUNC)();

SVL_SERVICE_ERROR svlCVStub_UnloadCoverageValidator()
{
 SVL_SERVICE_ERROR errCode = SVL_OK;

 if (hModule != NULL)

 {
 // get the stub heap before we shut down the DLL

 HANDLE hStubHeap = NULL;
 GET_STUB_HEAP_FUNC getHeapFunc;

 getHeapFunc = (GET_STUB_HEAP_FUNC)GetProcAddress(hModule, "apiGetInternalMVstubHeap");
 if (getHeapFunc != NULL)

 {
 hStubHeap = (*getHeapFunc)();
 }

 // get the unload stub function

Coverage Validator Help468

Copyright © 2002-2025 Software Verify Limited

 UNLOAD_FUNC unloadFunc;

 unloadFunc = (UNLOAD_FUNC)GetProcAddress(hModule, "apiShutdownCoverageValidator");
 if (unloadFunc != NULL)

 {
 (*unloadFunc)();

 // get the function

 HMODULE hModule;

 hModule = GetModuleHandleW(L"svlCoverageValidatorStub.dll");
 if (hModule != NULL)

 {
 // unload the stub

 FreeLibrary(hModule);

 // destroy the stub's heap (which was still in use whilst FreeLibrary() was in progress

 if (hStubHeap != NULL)

 HeapDestroy(hStubHeap);
 else

 {
 if (errCode == SVL_OK)

 errCode = SVL_FAIL_TO_CLEANUP_INTERNAL_HEAP;
 }
 }
 else

 {
 errCode = SVL_FAIL_MODULE_HANDLE;
 }
 }
 else

 {
 errCode = SVL_FAIL_UNLOAD;
 }

 hModule = NULL;
 }
 else

 errCode = SVL_NOT_LOADED;

 return errCode;

}

Frequently Asked Questions 469

Copyright © 2002-2025 Software Verify Limited

12.6 System and environment

How do I create a Power User on Windows XP?

Windows 2000 and Windows XP Pro allow Power User accounts that stop short of full Administrator
permissions.

To make an existing user (say Test User) a Power User do the following:

· Start Menu Right click on My Computer Manage

The Computer Management window appears

· On the left, expand System Tools Local Users and Groups Users

· On the right, select and Right click on 'Test User' Properties

The User Properties dialog appears

· Select the Member Of tab Add...

The Select Groups dialog appears

· In the bottom box, type Power Users OK

Coverage Validator Help470

Copyright © 2002-2025 Software Verify Limited

· In the user properties dialog select Users Remove OK

· Close Computer Management

Your Test User is now a member of the Power Users group - and probably not really a 'Test' User
any more!

What file extensions does Coverage Validator use?

Most configuration data is stored in the registry, but some information is file-based such as settings,
coverage, hook and filter data.

Coverage Validator uses the following extensions:

Session Export and Session Save

· html HTML export files
· xml XML export files

Settings, Filters, Hooks and Coverage

· cvm
· cvm_x64

Session files for 32 bit or 64 bit Coverage Validator

· cvs
· cvs_x64

Settings for 32 bit or 64 bit

· cvx Hooked DLLs
· cvxc Class and function filters
· cvxfl File locations
· cvxft Source file filters

Program Launch, Extensions

· dll Extension DLLs
· exe Program files

Part

XIII

Coverage Validator Help472

Copyright © 2002-2025 Software Verify Limited

13 Installing Floating Licensing

How to install floating licences

Floating licences float globally. Your team members in an office on the other side of the world can share
a floating licence with you.

If you have floating licences install the software on all machines in your business unit that wish to use
the software.

For an overview of how floating licences work, please read this.

Floating licence server

The floating licence server is managed by Software Verify.

No server to setup, no licences to misconfigure. All the things that are bad about floating licences, we've
removed all that.

If you need to acquire a licences or release a licence, see the Floating Licences tab.

Floating licence help

If you have problems with the floating licences please contact support@softwareverify.com

If you need to purchase additional floating licences for a new floating licence please visit
https://www.softwareverify.com/purchasing/.

If you need to purchase additional floating licences to add to an existing floating licence please contact
sales@softwareverify.com.

Part

XIV

Coverage Validator Help474

Copyright © 2002-2025 Software Verify Limited

14 Copyright notices

14.1 Udis86

This software uses the library svlUdis86.dll and svlUdis86_x64.dll. These libraries are modified binary
versions of the open source disassembler udis86.

udis86 was hosted at http://udis86.sourceforge.net/
udis86 is currently hosted at https://github.com/vmt/udis86 although the current distribution (at the time
of writing) appears to be missing some files required to compile.

The 1.7.0 version of the udis source code contains this copyright notice: Copyright (c) 2005, 2006, Vivek
Mohan
The 1.7.2 version of the udis source code contains this copyright notice: Copyright (c) 2002-2009 Vivek
Thampi

These copyright notices appear to conflict and the latter copyright notice completely ignores the claims
set forth in the 1.7.0 copyright notice.

In accordance with the license terms in the 1.7.2 software we include this binary license.

 * 1.7.2 Copyright (c) 2002-2009 Vivek Thampi
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index 475

Copyright © 2002-2025 Software Verify Limited

Index
- . -
.map files

locations 126

.net services

monitoring 289

.net warnings 181

.pdb files

locations 126

- A -
About box 308

Address

finding lines by 210

Administrator

privileges 259

running as 259

Alignment of numbers 115

API

NT Service 377

arg (command line) 331

args (command line) 331

Arguments

command line overview 318

Ask stub for coverage data 239

Attaching to a process 275

Auto-merging sessions 177

Auto-purging sessions 206

- B -
Baseline sessions 206

Bookmarks (editor) 221

Borland

supported compilers 10

Branch coverage tab

overview 5

user interface 56

Branches 56

Browsing source code 120

Built in editor 221

- C -
Cache

cleaning 162

instrumentation files 162

Caching symbols 167

Central session

auto-merging 177

command line 342

merging sessions 342

Class and function filter 144

Class and function hooks

command line 349

Class and method list

branch coverage tab 56

functions tab 66

Class filters 49, 56, 66, 91, 144

Clearing central session 177

Clipboard use 37

Closing sessions 206

Cobertura XML export 249

Code editing 221

Code exclusion

command line 349

settings 148

Code viewing 117

CodeWarrior

supported compilers 10

Coff debug format 167

Collapsing lines

code viewing 117

in the editor 221

Collected data 49, 56, 66, 75, 83, 91

Collecting your data 307

Colour

lines (faq) 450

Colours (display) 113

Command description (status bar) 43

Command files

command line 357

example 357

Command line

examples 318

interface overview 318

reference 361

refreshing display 339

start modes 331

Coverage Validator Help476

Copyright © 2002-2025 Software Verify Limited

Command line

unrecognised arguments 318

user interface 339

Command line arguments

class and function hooks 349

code exclusion 349

command files 357

DLL hooks 354

editor 123

errors 358

export format 346

export options 346

file extension hooks 349

file locations 354

global settings 354

heartbeat 358

help 358

launching a program 331

load settings 354

MAP files 354

PDB files 354

pipe warnings 358

resetting global settings 331

return codes 358

session export 346

session management 341

session merging 342

source file hooks 349

Communication

between stub and ui 10

Compaq

supported compilers 10

Comparing sessions 206

Compilers

supported 8, 10

symbol lookup 167

Configure menu 37

Contact us 9

Copy and paste 37

Coverage data

from stub 239

Coverage tab

overview 5

user interface 49

Coverage Validator

contact 9

design principles 6

features 5

getting started 19

impact on program 6

licensing 9

purchasing 9

quick start 20

section overview 5

stub and ui 10

support 9

what is it 5

workflow 6

Coverage Validator product page 308

Crashes (faq) 452

- D -
Dashboard (summary tab) 46

Data collection 259, 275, 279, 289, 307

statistics on the status bar 43

Data display settings 115

Data format 115

Data views menu 39

DbgHelp (faq) 455

Debug

DLL information 227

instrumentation log data 235

status 227

Debugging tools for windows 170

Deferred symbol loading 184

Delay loaded DLLs 134

Deleting sessions 206

Diagnostic information 99

Diagnostic tab

overview 5

user interface 99

Diagnostics (settings) 184

Dialog mode 107, 259, 275, 279

Dialogs 167

.net warning 181

About 308

Administrator privileges required 259, 275

Attach to running process wizard 275

Borland compiler debug information 167

Check for software updates 239

Class::Method browser 144

Color 113

Compare session 206

Compiler debug information 167

Downloading 239

Index 477

Copyright © 2002-2025 Software Verify Limited

Dialogs 167

Edit session alias 206

Editor 221

Environment variables 315

Export session 249

File paths 126

File scan 126

Find class/method 56, 66

Find directory/file 75

Find DLL/file 83

Find file 91

Find filename 49

Find function 214

Find in source view 49, 56, 66, 75, 83, 91

Find line by address 210

Find line by C++ object type 213

First run configuration 25

Goto line 49, 56, 66, 75, 83, 91

Hooked DLLs (Advanced) 134

Inject validator into running process 275

instrumentation log data 235

Launch different application 134

List of classes or functions 144

Loaded modules 226

Merge session 206

MinGW compiler debug information 167

Modules containing debug information 227

Monitor a service 289

nativeExample application 407

Options (editor) 221

Options colour (editor) 221

PDB and MAP information 227

Save session 248

Session chooser 206

Session compare 206

Settings 109

Software update download confirmation 239

Software update maintenance has expired 239

Software update maintenance renewal 239

Software update schedule 239

Start an application and inject validator into
process 259

Start application wizard 259

Symbol Cache Cleaner 162

Symbol server 170

Tips 308

Unhooked functions 216

Unvisited files 218

Unvisited lines 217

user interface chooser 107

user permissions warning 181

Wait for application wizard 279

Wait for process to start then inject validator into
process 279

Directories tab

overview 5

user interface 75

Directory (working)

command line 331

working 331

Directory and file list

directories tab 75

Directory filters 49, 56, 66, 75, 83, 91

Disassembly for failed hooks 184

Display

colours 113

refreshing 225

tab views 39

update 49, 56, 66, 75, 83, 91

updating via command line 339

Displaying tabs 46

DLL

debug information 227

delay loaded 134

filters 83

hooking 134

instrumentation log data 235

DLL and file list

directories tab 83

DLL filters 49, 56, 66, 75, 91

DLLs tab

overview 5

user interface 83

Downloading updates 239

Drives

Substituting references 131

- E -
Edit menu 37

Editing source code 49, 56, 66, 75, 83, 91, 123

Editor 123, 221

Environment variables 315

Error notifications 12

Errors

command line 358

Coverage Validator Help478

Copyright © 2002-2025 Software Verify Limited

Errors (faq) 452

Examining source code 49, 56, 66, 75, 83, 91

Example application

building 409

getting started 20

overview 407

usage 407

Example NT service

building 410

building sample client 411

building sample service utility 412

overview 410

Examples

command line 318

example application 407

how to use 407

service source code 390

Excluding source code 148

Expired maintenance 239

Export

class and function filter 144

command line options 346

file locations 126

formats 249

hooked DLLs 134

HTML or XML 249

sessions 249

source file filters 141

Extensions (faq) 469

- F -
File and line list

files and lines tab 91

File extension hooks

command line 349

File extensions (faq) 469

File list

coverage tab 49

File locations 126

command line 354

File menu 35

File scan 126

File type hooks 139

Files and lines tab

overview 5

user interface 91

Filters

class and function 144

class and method 49, 56, 66, 91

directory 49, 56, 66, 75, 83, 91

dll 49, 56, 66, 75, 83, 91

source file 49, 56, 66, 75, 83, 91, 141

Finding addresses 210

Finding functions 214

Finding objects 213

First run configuration 25

Format

file locations 126

XML session export 254

Formatting (editor) 221

Fortran 95

supported compilers 10

Fragment size (source) 120

Frequently asked questions

clearing symbol cache 448

crashes and error reports 452

DbgHelp 455

extensions 469

failing to launch 448

functions not hooked 450

general 448

ideas 448

lines not coloured 450

lines not hooked 450

NT services 448

overview 448

power users 469

unexpected results 450

Function filters 144

Function line hooking 158

Functions 66

finding lines in 214

Functions tab

overview 5

user interface 66

- G -
Getting started 19

Global hook DLLs 196, 199

Global settings

command line 354

resetting 109

Global settings dialog 109

Index 479

Copyright © 2002-2025 Software Verify Limited

- H -
Heartbeat

command line 358

Help

command line 358

notation 4

Help menu 41, 308

Hiding tabs 46

Hook

caching 162

Hook control 160

Hook safety 162

Hooked DLLs 134

Hooking

at function ends 160

branches 160

file types 139

function line 158

MAP files 158

PDB files 158

short instructions 160

HTML help 308

HTML session export

user interface 249

- I -
Icons 45

Immediate symbol loading 184

Import

class and function filter 144

file locations 126

hooked DLLs 134

source file filters 141

Injecting

command line 331

into running process 275

reasons for failure (faq) 448

Instrumentation

detail 155

file caching 162

Instrumentation detail 25

Instrumentation filters

branch coverage tab 56

coverage tab 49

directories tab 75

dlls tab 83

files and line tab 91

functions tab 66

Instrumentation log data 235

Instrumentation logging

enabling 148

Intel

supported compilers 10

Intel symbols 167

Introduction 5

- K -
Keyboard shortcuts 44

- L -
Launch

dialog 20

environment variables 315

methods 259

reasons for failure (faq) 448

wizard 20

Launching a program 259

command line 331

hooks during 134

quick start 20

Licensing 9

Limiting number of sessions 206

Line collapsing

code viewing 117

in the editor 221

Line colours 49, 56, 66, 75, 83, 91

Line counts per visit 155

Linkers 10

Linking Coverage Validator 300

Loaded modules 226

Loading Coverage Validator into NT service 377

Loading sessions

command line 341

menu option 248

Looking up symbols 167

- M -
Maintenance of software 239

Coverage Validator Help480

Copyright © 2002-2025 Software Verify Limited

Managers

menu 38

software maintenance 239

software updates 239

MAP data in modules 256

Map file

command line 354

hooking 158

locations 354

numbers (faq) 455

timestamps 158

unrecognised 158

MAP filestamp warning 181

MAP information 227

Menus

configure 37

data views 39

edit 37

file 35

help 41

managers 38

query 38

software updates 40

tools 39

Merging sessions

auto-merging 177

command line 342

session manager 206

Message area (status bar) 43

Method filters 49, 56, 66, 91

Metrowerks

supported compilers 10

Microsoft

supported compilers 10

symbols 167

MinGW

supported compilers 10

Miscellaneous symbol settings 184

Mixed mode services 289

Module PDB and MAP data 256

Modules

hooking 134

loaded list 226

manual addition 134

Monitor a service 289

Monitoring services 376

Multi line code exclusion 148

Multiple inclusion statistics 179

Multiple sessions 206

Multi-threading

hook safety 162

- N -
Native services 289

nativeExample (application) 409

Notation used in help 4

NT services

API 377

coverage updates 239

working with 376

Number of sessions

command line 341

Numerical format 115

- O -
Objects

C++ object type 213

finding lines by 213

Operating system

requirements 8, 10

Options (editor) 221

Overview 3

- P -
Paused start mode 259

PDB data in modules 256

PDB file

command line 354

debg information 227

hooking 158

locations 354

PDF help 308

Performance 155

Permissions 12

Pipe warnings

command line 358

Power user

accounts 181

creating (faq) 469

Pragmas for code exclusion 148

Prefetching symbols 170

Privileges 8, 12, 259

Index 481

Copyright © 2002-2025 Software Verify Limited

Process modules 134

Program information (status bar) 43

Purchasing Coverage Validator 9

Purging sessions 206

- Q -
Qt

supported compilers 10

Query and search

overview 210

Query menu 38

Quick start 20, 259

- R -
Readme 308

Real-time updates 239

Reference of command line options 361

Refresh 225

Refresh All 225

Registry access 8, 12

Relaunching a program 274

Release mode

hook safety 162

Renewing maintenance 239

Report

exporting 249

format 249

Resetting

all statistics 238

default settings 109

Restart required 259

Restoring settings 109

Results of merging

command line 342

Return codes

command line 358

- S -
Sales 9

Salford

supported compilers 10

Saving sessions 248

Scanning

for files 126

Scheduling software updates 239

Select all 37

Servers (symbols) 170

Service

injecting into 275

Service account (NT services) 376

Service notification callback 377

Services

example source code 390

Session export

command line 346

Session management 206

command line 341

Sessions

alias 206

choosing 206

clearing central session 177

closing 206, 247

comparing 206

deleting 206

limiting 206

loading and saving 248

managing 206

merging 177, 206

purging 206

working with 247

Setting up 25

Settings

auto merging sessions 177

class and function filter 144

code exclusion 148

code viewing 117

colours 113

data display 115

display tabs 46

editing 123

file locations 126

global and local 108

hook control 160

hook insertion 158

hook safety 162

hooked DLLs 134

hooked source file types 139

in the editor 221

instrumentation detail 155

loading and saving 201

miscellaneous 184

source browsing 120

Coverage Validator Help482

Copyright © 2002-2025 Software Verify Limited

Settings

source file filters 141

statistics 179

stub global hook DLLs 196

substitute drives 131

symbol loading 184

symbol lookup 167

symbol servers 170

user interface global hook DLLs 199

user permissions 181

warnings 181

Settings (editor) 221

Short line hooking 155, 160

Shortcuts 44

Showing tabs 46

Single line code exclusion 148

Software updates 239

credentials 25

download location 25

Software updates menu 40

Source browsing 120

Source code

editing 49, 56, 66, 75, 83, 91

examination 49, 56, 66, 75, 83, 91

finding files 49, 56, 66, 75, 83, 91

Source code editor 123, 221

Source code exclusion 148

Source code files 126

Source file

hook insertion 158

hooks via command line 349

locations on command line 354

statistics 179

third party tracking 158

tracking 158

Source file filters

branch coverage 56

coverage 49

directories 75

dlls 83

files and lines tab 91

functions 66

settings 141

Source file-type hooks 139

Stabs debug format 167

Start application wizard 259

Starting a program

launch methods 259

launching 259

methods 256

Starting data collection 307

Startup modes

command line 331

Statistics

resetting all 238

Statistics calculation 179

Status bar

command description 43

message area 43

program information 43

statistics 43

Status bar (editor) 221

Status summary 46

Stopping data collection 307

Stopping your program 303

Stub

as part of Coverage Validator 10

asking for coverage data 239

global hook DLLs 196

global hooks 199

Substitute drives 131

Summary tab 46

overview 5

Support 9

Suspended start mode 259

svlCVExceptionReport (faq) 452

svlCVStubService 377

Symbol cache (faq) 448

Symbol lookup 25

Symbol search path environment variables 25

Symbols

caching 167

deferred loading 184

immediate loading 184

lookup 167

not loading (faq) 455

prefetching 170

servers 170

SymChk 170

Syntax highlighting

code viewing 117

in the editor 221

Synthetic coverage 160

System hooks 196

System requirements 8

Index 483

Copyright © 2002-2025 Software Verify Limited

- T -
Tab size

source browsing 120

Tab visibility 39

Tabs

branch coverage 56

coverage 49

directories 75

display windows 46

DLLs 83

files and lines 91

functions 66

overview 5

Third party source files

command line 354

file locations 126

hook insertion 158

Tips 308

Toolbar reference 41

Tools

editor 221

loaded modules 226

Tools menu 39

Tracking

source files 158

third party source files 158

Tutorials 19, 308

- U -
Unhooked functions

branch coverage tab 56

functions tab 66

reasons for (faq) 450

unhooked functions 216

Unhooked lines

diagnostic tab 99

files and lines tab 91

reasons for (faq) 450

Unit testing (VBUnit) 399

Unit tests tab

overview 5

Unvisited files 218

Unvisited lines 49, 56, 66, 75, 83, 91, 217

Updates from NT services 239

Updating software 239

User

account (NT services) 376

permissions 12, 181

privileges 12

User interface

as part of Coverage Validator 10

branch coverage tab 56

command line 339

coverage tab 49

directories tab 75

DLLs tab 83

functions tab 66, 91

mode 107

mode for injection 275

mode when launching 259

mode when waiting for a program 279

parts of the interface 25

visibility 339

workflow 25

User permissions

managing 181

warnings 181

- V -
VBUnit

using with Coverage Validator 399

Version history 308

View type

branch coverage tab 56

functions tab 66

Views (tab visibility) 39

Visit count tooltips 117

Visit counts 49, 56, 66, 75, 83, 91, 155

in source code 115

Visited files 218

Visited lines 217

Visual Studio

DbgHelp.dll version 167

supported compilers 10

- W -
Waiting for a program

command line 331

startup mode 279

Coverage Validator Help484

Copyright © 2002-2025 Software Verify Limited

Warning dialogs

.net warning 181

global hooks 199

PDB/MAP file warning 181

user permissions 181

Warnings 181

Window orientation 49, 56, 66, 75, 83, 91

Windows requirements 8

Wizard mode 107

Workflow 25

Working directory

command line 331

- X -
XML session export

tags used 254

user interface 249

485

Copyright © 2002-2025 Software Verify Limited

	Overview
	Notation used in this help
	Introducing Coverage Validator
	Why Coverage Validator?
	What do you need to run Coverage Validator?
	Buying Coverage Validator and support
	How does Coverage Validator work?
	Supported Compilers
	User Permissions

	Getting Started
	Enabling Debugging
	Quick Start

	The User Interface
	First run configuration
	Menu Reference
	File menu
	Launch menu
	Edit menu
	Settings menu
	Managers menu
	Query menu
	Tools menu
	Data Views menu
	Software Updates menu
	Help menu

	Toolbar Reference
	The status bar
	Keyboard Shortcuts
	Icons
	The main display
	Summary
	Coverage
	Branch Coverage
	Functions
	Directories
	DLLs
	Files and lines
	Diagnostic
	Floating Licence

	User Interface Mode
	UX Theme
	Settings
	Data Collection Settings
	Data Display
	Display Behaviour
	Colours
	Data Display
	Code Viewing
	Source Browsing
	Editing
	File Locations
	Path Substitutions

	Filters
	Hooked DLLs
	Hooked File Extensions
	Source Files Filters
	Class and Function Filters
	.Net Function Inlining
	.Net Function Caching
	Code Exclusion
	Load Settings Pattern Match

	Instrumentation
	Instrumentation Detail
	Hook Insertion
	Hook Control
	Hook Safety
	Instrumentation Logging

	Symbol Handling
	Symbol Misc
	Symbol Lookup
	Symbol Servers
	Symbol Load Preferences

	Data Collection
	Auto Merge
	Statistics
	Warning
	Don't Show Me Again
	Diagnostic
	Applications to Monitor
	CoInitializeEx
	Data Transfer

	Third Party DLLs
	Stub Global Hook DLLs
	User Interface Global Hook DLLs

	Loading and saving settings
	No Coverage Data Collected Warning

	Managers
	Session Manager

	Query and Search
	Finding addresses
	Finding objects
	Finding functions
	Find unhooked functions
	Find visited/unvisited lines
	Find visited/unvisited files

	Tools
	Edit Source Code...
	Refresh and Refresh All
	Loaded Modules
	DLL Debug Information
	Symbol Path Truncation
	Instrumentation Logging Data
	Instrumentation Failure Data
	Out Of Date DLLs
	Reset All Statistics
	Ask stub for coverage data

	Software Updates
	Sessions: Load, Save, Export, Close
	Loading & Saving Sessions
	Exporting Sessions
	XML Export Tags

	Starting your target program
	Launch Chooser
	Launching the program (native and .Net)
	Launching the program (.Net Core)
	Re-launching the program
	Injecting into a running program
	Waiting for a program
	Monitor a service
	IIS
	Monitor IIS and ISAPI
	Monitor IIS and ASP.Net
	Reset & Stop IIS

	Web Development Server
	Monitor Web Development Server and ASP.Net
	Stop Web Development Server

	ASP.Net Core Web Application
	Start ASP.Net Core Web Application
	Stop ASP.Net Core Web Application

	Linking to a program
	.Net Core Runtime Arguments Editor

	Stopping your target program
	Command Line Builder
	Data Collection
	Help

	Environment Variables
	Command Line Interface
	Example Command Lines
	Environment variables
	Development environment
	Target Program & Start Modes
	User interface visibility
	Session Management
	Merging sessions
	Session Export Options
	Filter and Hook options
	File Locations
	Command Files
	Help, Errors & Return Codes
	Command Line Reference
	Troubleshooting

	API
	Native API Reference
	C# API
	Calling the API via GetProcAddress
	Convenience functions

	Working with IIS and Services
	NT Service API
	Changes to the NT Service API
	NT Service API Reference
	Troubleshooting

	Working with IIS
	Example Source Code
	Example Service Source Code
	Example ISAPI Source Code

	Working With VBUnit
	Working with Visual Basic 6 (VB6)
	Examples
	Example application
	Building the example application

	Example NT Service
	Building the example service
	Building the example client
	Building the example service utility
	Monitoring the service

	Example Application Launched from a Service
	Building the service and application
	Monitoring the application launched from the service

	Debug Information, Symbols, Filenames, Line Numbers
	Visual Studio
	C++ Builder
	Delphi
	MingW, gcc, g++
	Dev C++
	Salford Software FORTRAN 95
	Metrowerks
	Visual Basic 6

	Frequently Asked Questions
	General Questions
	Unexpected results
	Crashes and error reports
	Debug symbols and DbgHelp
	Extensions, services and tools
	System and environment

	Installing Floating Licensing
	Copyright notices
	Udis86

